JPS598086A - Form detector - Google Patents

Form detector

Info

Publication number
JPS598086A
JPS598086A JP57116853A JP11685382A JPS598086A JP S598086 A JPS598086 A JP S598086A JP 57116853 A JP57116853 A JP 57116853A JP 11685382 A JP11685382 A JP 11685382A JP S598086 A JPS598086 A JP S598086A
Authority
JP
Japan
Prior art keywords
line
image
detected
binary
light cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57116853A
Other languages
Japanese (ja)
Other versions
JPH0425584B2 (en
Inventor
Yasuo Nakagawa
中川 泰夫
Takanori Ninomiya
隆典 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57116853A priority Critical patent/JPS598086A/en
Publication of JPS598086A publication Critical patent/JPS598086A/en
Publication of JPH0425584B2 publication Critical patent/JPH0425584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To obtain stably the secondary form corresponding to the information on unevenness of a subject, by extracting a light cut-off line out of a detected picture to obtain a binary picture through a process of threshold value and then detecting the secondary form of the subject. CONSTITUTION:The area which can be viewed from an image detector 5 is observed among the slit bright lines projected to a subject 2 as well as to a table 1, and no bright line is seen at the area of a dead angle. Thus a light cut-off line extracting circuit 9 extracts a light cut-off line. For instance, a video signal is obtained at a part shown by a one-dot chain line as a middle point between Z1 and Z2 in the form of the value Z of the light cut-off line. This value is obtained for every coordinates to obtain a light cut-off line. Then a threshold value process is given to the light cut-off line to obtain a binary signal. Thus an overall binary picture is obtained. In such a way, it is possible to detect the secondary form of the subject 2.

Description

【発明の詳細な説明】 本発明は、機械や部品の位置決めや形状認識に係シ、特
に安定した平面的形状を検出するに好適な自動形状検出
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the positioning and shape recognition of machines and parts, and particularly to an automatic shape detection method suitable for detecting stable planar shapes.

従来の形状検出法の最も一般的なものは、ランプなどで
対象物を照明し、その像をTVカメラなどで検出するも
のであり、これは暗い色のテーブル上に明るい色の物体
がある場合など、明暗がはっきりした物体の形状検出に
は有効であるが、均一色で構成されるシーンや、機械加
工面を持つ金属物体など製造現場に多く実在し、自動化
対象である多くのシーンでは有効ではない。例えば、切
削面を有する機械部品では、照明と検出の方向を一定に
保っても、カッターマークの向きによって一つの面が明
るくも、暗くも検出される。このような対象では、上記
した従来方式は全く無効となる。
The most common conventional shape detection method is to illuminate the object with a lamp or the like and detect its image with a TV camera. Although it is effective for detecting the shape of objects with clear brightness and darkness, it is also effective for many scenes that exist in manufacturing sites and are subject to automation, such as scenes consisting of uniform colors and metal objects with machined surfaces. isn't it. For example, in a mechanical part having a cut surface, even if the direction of illumination and detection is kept constant, one surface may be detected as bright or dark depending on the orientation of the cutter mark. For such objects, the conventional methods described above are completely ineffective.

本発明の目的は、上記した従来方式の欠点をなくし、対
象物の表面状態9色、明暗に影響されることなく、対象
物の2次元形状を検出することができる形状検出装置を
提供することである。
An object of the present invention is to eliminate the drawbacks of the conventional methods described above and to provide a shape detection device capable of detecting the two-dimensional shape of an object without being affected by nine colors and brightness of the object's surface condition. It is.

上記目的を達成するために、本発明による形状検出装置
は、形状を検出しようとする対象物上にスリット輝線を
投光する光切断光学系と、上記スリット輝線の像を検出
する像検出器と、そのようにして検出され、た像から光
切断線を抽出する光切断線抽出回路と、上記光切断線を
異なる高さに対応する二つの値に2値化する2値化回路
と、該2値化回路によって得られる2値信号を順次記憶
するとともに、検出2値画像を処理する2値画像処理装
置と、上記対象物と上記光切断光学系を相対的に移動さ
せる送り機構とを含むことを要旨とする。
In order to achieve the above object, a shape detection device according to the present invention includes a light cutting optical system that projects a slit bright line onto an object whose shape is to be detected, and an image detector that detects an image of the slit bright line. , a light-cutting line extraction circuit for extracting a light-cutting line from the thus detected image; a binarization circuit for binarizing the light-cutting line into two values corresponding to different heights; It includes a binary image processing device that sequentially stores the binary signals obtained by the binarization circuit and processes the detected binary image, and a feeding mechanism that relatively moves the object and the light cutting optical system. The gist is that.

すなわち、本発明による形状検出装置は、光学的検出方
式として光切断法を使用する。検出画像より光切断線を
抽出し、これを闇値処理することによシ、2値信号を得
る。検出器と対象物を相対移動させながら繰返し、上記
2値信号を得、全体として2値画像として対象物の2次
元形状を検出する。
That is, the shape detection device according to the present invention uses a light cutting method as an optical detection method. A light section line is extracted from the detected image, and a binary signal is obtained by subjecting it to dark value processing. The above-mentioned binary signal is obtained repeatedly while relatively moving the detector and the object, and the two-dimensional shape of the object is detected as a binary image as a whole.

以下に附図を参照しながら、実施例を用いて本発明を一
層詳細に説明するが、それらは例示に過ぎず、本発明の
枠を越えることなしに、いろいろな変形や改良があシ得
ることは勿論である。
The present invention will be described in more detail below using examples with reference to the accompanying drawings, but these are merely illustrative, and various modifications and improvements may be made without going beyond the scope of the present invention. Of course.

第1図および第2図は形状を検出しようとする対象物が
それぞれ固定のテーブルおよびコンベアの上に置かれて
いる場合における本発明による形状検出装置の構成の一
例を示すブロック図で、固定のテーブル1またはモータ
で駆動されるコンベア】′上の対象物2の形状を検出す
るものである。
FIG. 1 and FIG. 2 are block diagrams showing an example of the configuration of the shape detection device according to the present invention when the object whose shape is to be detected is placed on a fixed table and a conveyor, respectively. This detects the shape of an object 2 on a table 1 or a conveyor driven by a motor.

形状検出装置は、対象物2上に垂直上方からスリット輝
線3を投光するスリット投光器4、このスリット輝線を
斜め横から検出する像検出器5、投光器4および像検出
器5をテーブル1および対象物2に対し相対的に移動さ
せる送り機構6(第1図では送り機構として送りネジ6
を表示した。
The shape detection device includes a slit projector 4 that projects a slit bright line 3 onto the object 2 from vertically above, an image detector 5 that detects the slit bright line from diagonally from the side, and a table 1 and the object. A feed mechanism 6 that moves the object 2 relative to the object 2 (in Fig. 1, a feed screw 6 is used as the feed mechanism)
was displayed.

摺動機構は必要であるが自明なので図示せず。第2図に
おいては、コンベアの送シ機構6′。)、送シモータ7
または7′、モータ制御回路8.および像検出器5から
検出されるスリット輝線信号よシ光切断線を抽出する光
切断線抽出回路9.検出された光切断線信号を2値化す
る2値化回路10.送りモータの速度1位置と光切断線
の抽出のタイミングを制御する制御回路11.および2
値化回路10よυ得られる2値信号を一時記憶するとと
もに得られた2値画像よシ対象物の形状2位置を認識す
る2値画像処理装置i12から構成される。図の破線で
囲まれた部分は自動組立機、形状検査選別機。
Although the sliding mechanism is necessary, it is not shown because it is obvious. In FIG. 2, the feed mechanism 6' of the conveyor is shown. ), feed motor 7
or 7', motor control circuit 8. and a light cutting line extraction circuit 9 for extracting a light cutting line from the slit bright line signal detected from the image detector 5. A binarization circuit 10 that binarizes the detected optical cutting line signal. A control circuit 11 that controls the speed 1 position of the feed motor and the timing of extracting the optical cutting line. and 2
It is comprised of a binary image processing device i12 which temporarily stores the binary signals obtained from the digitizing circuit 10 and recognizes the shape and two positions of the object from the obtained binary image. The area surrounded by broken lines in the diagram is an automatic assembly machine and a shape inspection and sorting machine.

ロボット−システムなどに視覚サブシステムとして組込
まれるものであシ、装置本体13より起動信号を制御回
路11が受付け、その指令により形状の識別や対象物の
位置、姿勢金検出し、2値画像処理装置12よシ装置本
体13に検出結果を伝えるものである。
It is incorporated as a visual subsystem in a robot system, etc. The control circuit 11 receives a start signal from the device main body 13, and based on the command, it identifies the shape, detects the position and orientation of the object, and performs binary image processing. The detection results are transmitted from the device 12 to the device main body 13.

以下、その動作を説明する。第3図は、本実施例におけ
るスリット輝線の投光、検出状態を示している。この場
合、像検出器5からは第4図に示す光切断像が検出され
る。すなわち、対象物2およびテーブル1またはコンベ
ア1′上に投光されたスリット輝線中、像検出器5から
見える部分、すなわち死角にならない部分が観察され、
死角になる部分は輝線が見えない。光切断線抽出回路9
は、第4図の検出像よシ光切断線を抽出する。すなわち
、第4図の検出像の縦方向、2方向の各映像信号につい
て、あらかじめ設定した閾値71以上の部分の中心点を
求めれば、良い。−例として、第4図の一点鎖線で示す
部分の映像信号が第5図のようである時、Zlとz2の
中点としてそのX座標における光切断線の値2を求める
ことができる。これを画面全体すなわちすべてのX座標
について求めることに゛よシ、光切断線Z (x)を求
めることができる。なお、ここで一つの縦方向の映像信
号が常に■1より小さい時は、そのX座標の出力値はゼ
ロ、すなわち2(ト)=0とする。これにより、死角に
なった部分は光切断線の値がゼロを持つことになる。
The operation will be explained below. FIG. 3 shows the state of projection and detection of the slit bright line in this embodiment. In this case, the image detector 5 detects a light section image shown in FIG. That is, in the slit bright line projected onto the object 2 and the table 1 or the conveyor 1', a portion visible from the image detector 5, that is, a portion that does not become a blind spot, is observed.
The bright line cannot be seen in the blind spot. Optical cutting line extraction circuit 9
Extracts the optical cutting line from the detected image in FIG. That is, it is sufficient to find the center point of the portion of the detected image shown in FIG. 4 in the vertical and two-direction directions, where the value is equal to or higher than the preset threshold value 71. - For example, when the video signal in the portion indicated by the dashed line in FIG. 4 is as shown in FIG. 5, the value 2 of the optical cutting line at the X coordinate can be determined as the midpoint between Zl and z2. By finding this for the entire screen, that is, for all the X coordinates, the light cutting line Z (x) can be found. Note that when one vertical video signal is always smaller than 1, the output value of its X coordinate is zero, that is, 2(g)=0. As a result, the value of the light section line will be zero in the blind spot.

第6図に第4図から得られる光切断線を例示する。FIG. 6 illustrates the optical cutting line obtained from FIG. 4.

々お、光切断線の抽出方法は上記の方法の他に本出願人
になる先願に係る発明に記載された方法であってもよい
。2値化回路10では、光切断線抽出回路9で得られた
光切断線を閾値Zlと比較することによシ2値化する。
In addition to the method described above, the method for extracting the optical cutting line may be the method described in the invention related to the earlier application filed by the present applicant. The binarization circuit 10 binarizes the optical section line obtained by the optical section line extraction circuit 9 by comparing it with a threshold value Zl.

第6図には閾値z1を破線で示している。そして詑7図
に得られた2値信号を示している。ここで、閾値z1は
あらかじめ設定する一定値であってもよいし、検出され
た一3u切断線の2値に対する頻度分布よシ、コンベア
脣たはテーブルの平均Z値、対象物上面の平均Z値を求
め、その中間値として21に求めてもよい。以上により
、一本のスリット輝線から一本の2値信号が得られる。
In FIG. 6, the threshold value z1 is shown by a broken line. Figure 7 shows the obtained binary signal. Here, the threshold value z1 may be a constant value set in advance, or may be a frequency distribution for the binary values of the detected 13u cutting line, the average Z value of the conveyor or the table, or the average Z value of the top surface of the object. The value may be determined and 21 may be determined as the intermediate value. As described above, one binary signal is obtained from one slit bright line.

これをコンベアまたはテーブル上の検出範囲全面にわた
って、すなわち対象物2が固定のテーブル上にあるとき
は送り機構6,7にょシy方向に投光器4および像検出
器5會移動させながら2値信号の検出を繰返すことにょ
シ、2値画像処理装置12のメモリ上に対象物の2値画
像を得ることができる。第8図に得られる2値画像の例
を示す。
This is transmitted over the entire detection range on a conveyor or table, that is, when the object 2 is on a fixed table, the transmitter 4 and image detector 5 are moved in the y direction by the feeding mechanisms 6 and 7, and the binary signal is detected. By repeating the detection, a binary image of the object can be obtained on the memory of the binary image processing device 12. FIG. 8 shows an example of a binary image obtained.

第8図では値1に対応する部分を斜線で、0に対応する
部分を無地で示している。こ\で、送υモータ7は、ス
テップ・モータで、)’座標にステップ位置に対応させ
ることにより、y方向の座標に対応させることができる
。ま′fcDCモータを使用し、エンコーダでy方向座
標を知ることもできる。
In FIG. 8, the portion corresponding to the value 1 is shown with diagonal lines, and the portion corresponding to 0 is shown in solid color. Here, the feed υ motor 7 is a step motor, and by making the )' coordinate correspond to the step position, it can be made to correspond to the coordinate in the y direction. It is also possible to use an fcDC motor and obtain the y-direction coordinate with an encoder.

なお、得られた2値信号は、2値画像処理装置12内で
2直画像として処理し、その形状識別や姿勢。
Note that the obtained binary signal is processed as a binary image in the binary image processing device 12, and its shape and posture are identified.

位置の検出を得なうことができる。It is possible to obtain position detection.

以上の実施例において、スリット投光器としては、スリ
ット状の光の帯を発する投光器を示したが、これはスポ
ット光を高速走査する方式であってもよい。また像検出
器としてはTVカメラを用い、これを90回転して設置
することにょυ、Z軸方向をTVカメラの水平走査方向
と一致させて使用することができる。また像検出器とし
ては、TVカメラ以外に、−次元イメージセンサとガル
バノミラ−の組合せなど各種の2次元走査力式に撮像方
式を用いることができる。
In the above embodiments, the slit projector is a projector that emits a slit-shaped light band, but this may be of a type that scans a spot light at high speed. Furthermore, a TV camera can be used as the image detector, and the TV camera can be rotated 90 degrees and installed so that the Z-axis direction coincides with the horizontal scanning direction of the TV camera. As the image detector, in addition to the TV camera, various types of two-dimensional scanning power imaging methods such as a combination of a -dimensional image sensor and a galvanometer mirror can be used.

さらに光切断法の光学系構成として、上方よυスリット
光を投光し、斜めから検出する例を例示したが、第9図
に示すように斜めからスリット光を投光し、上方より検
出する方式や、第10図に示すように斜めからスリット
光を投光し、反対側斜め方向から検出する方式であって
もよい。さらに、第11図に示すように上方よりスリッ
ト光を投光し、両斜め方向から検出する方式であっても
よい。第11図の方式では一方の像検出器で死角になっ
た部分が他方では死角でないことがあり、より正確な形
状検出が可能となる。この場合、像検出器5゜光切断線
抽出回路9.および2値化回路1oは2式必要となり、
得られた2つの2値信号の論理和をとり、これを最終的
な2値信号として2値画像処理装置12に記憶すればよ
い。
Furthermore, as an optical system configuration for the light sectioning method, we have illustrated an example in which υ slit light is projected from above and detected from an angle, but as shown in Figure 9, a slit light is projected from an angle and detected from above. Alternatively, as shown in FIG. 10, a slit light is emitted diagonally and detected from the opposite diagonal direction. Furthermore, as shown in FIG. 11, a method may be adopted in which slit light is projected from above and detected from both diagonal directions. In the method shown in FIG. 11, a portion that is a blind spot in one image detector may not be a blind spot in the other image detector, and more accurate shape detection is possible. In this case, the image detector 5° optical cutting line extraction circuit 9. And two sets of binarization circuit 1o are required,
The two obtained binary signals may be logically summed, and this may be stored in the binary image processing device 12 as a final binary signal.

以上説明した通92本発明によれば、対象シーンの凹凸
情報に応じた2値画像として対象物の形状を検出するこ
とができるので、シーン中の対象物の色、明暗、切削マ
ークの向きなどの表面状態に影響されずに2次元的形状
を安定に検出することができるという利点が得られる。
According to the present invention as described above, the shape of the object can be detected as a binary image according to the unevenness information of the target scene, so the color, brightness, direction of cutting marks, etc. of the object in the scene can be detected. The advantage is that a two-dimensional shape can be stably detected without being affected by the surface condition of the object.

【図面の簡単な説明】[Brief explanation of drawings]

第】図は形状を検出しようとする対象物が固定のテーブ
ル上に置かれている場合の本発明による形状検出装置の
構成を示すブロック図、第2図は対象物がモータで駆動
されるコンベア上に置かれている場合の本発明による形
状検出装置の構成を示すブロック図、第3図は第1図ま
たは第2図に示す装置における検出状態を説明する図、
第4図は検出された光切断像の例を示す図、第5図U 
一つの映像信号と光切断線の値の求め方を説明する図、
第6図は抽出された光切断線の例を示す図、第7図は得
られた2値信号の例を示す図、第8図は2値画像として
検出された形状の例を示す図、第9図から第11図まで
は、本発明による形状検出装置の中で使用される、それ
ぞれ異った実施の態様の光学系の構成図である。 1・・・テーブル、1′・・・コンベア、2・・・対象
物、3・・・スリット輝線、4・・・スリット投光器、
5・・・像検出器、6.6’・・・送シ機構、7.7’
・・・送υモータ、8・・・モータ制御回路、9用光切
断線抽出回路、1()・・・2値化回路、11・・・制
御回路、12・・・2値画像処理装置、13・・・装置
本体 代理人 弁理士  秋  本  正  実’fi51図 第2図 第3図 第4図 484− 第5因 第6図 第7因 o−「]− 第8図 第9図 第101 第11比
Fig. 2 is a block diagram showing the configuration of a shape detection device according to the present invention when an object whose shape is to be detected is placed on a fixed table, and Fig. 2 shows a conveyor in which the object is driven by a motor. FIG. 3 is a block diagram showing the configuration of the shape detection device according to the present invention when the shape detection device is placed on top of the device;
Fig. 4 is a diagram showing an example of a detected optical section image, Fig. 5U
A diagram explaining how to obtain the value of one video signal and the optical section line,
FIG. 6 is a diagram showing an example of an extracted optical section line, FIG. 7 is a diagram showing an example of the obtained binary signal, and FIG. 8 is a diagram showing an example of a shape detected as a binary image. 9 to 11 are configuration diagrams of optical systems of different embodiments used in the shape detection device according to the present invention. 1...Table, 1'...Conveyor, 2...Object, 3...Slit bright line, 4...Slit floodlight,
5... Image detector, 6.6'... Feeding mechanism, 7.7'
...Transmission υ motor, 8...Motor control circuit, 9 optical cutting line extraction circuit, 1()...Binarization circuit, 11...Control circuit, 12...Binary image processing device , 13... Apparatus body agent Patent attorney Masami Akimoto Fi51 Figure 2 Figure 3 Figure 4 484- 5th cause Figure 6 7th cause o - "]- Figure 8 Figure 9 101 11th ratio

Claims (1)

【特許請求の範囲】[Claims] 形状を検出しようとする対象物上にスリット輝線を投光
する光切断光学系と、上記スリット輝線の像を検出する
像検出器と、そのようにして検出された像から光切断線
を抽出する光切断線抽出回路と、上記光切断線を異なる
高さに対応する二つの値に2値化する2値化回路と、該
2値化回路によって得られる2値信号を順次記憶すると
ともに、検出2値画像を処理する2値画像処理装甑と、
上記対象物と上記光切断光学系を相対的に移動させる送
フ機構とを含むことt−特徴とする形状検出装置。
A light cutting optical system that projects a slit bright line onto an object whose shape is to be detected, an image detector that detects an image of the slit bright line, and an image detector that extracts the light cutting line from the thus detected image. A light cutting line extraction circuit, a binarization circuit that binarizes the light cutting line into two values corresponding to different heights, and sequentially storing and detecting the binary signals obtained by the binarization circuit. a binary image processing device that processes a binary image;
A shape detection device characterized in that it includes a conveyance mechanism that relatively moves the object and the light cutting optical system.
JP57116853A 1982-07-07 1982-07-07 Form detector Granted JPS598086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116853A JPS598086A (en) 1982-07-07 1982-07-07 Form detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116853A JPS598086A (en) 1982-07-07 1982-07-07 Form detector

Publications (2)

Publication Number Publication Date
JPS598086A true JPS598086A (en) 1984-01-17
JPH0425584B2 JPH0425584B2 (en) 1992-05-01

Family

ID=14697238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116853A Granted JPS598086A (en) 1982-07-07 1982-07-07 Form detector

Country Status (1)

Country Link
JP (1) JPS598086A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166480A (en) * 1986-01-20 1987-07-22 Nachi Fujikoshi Corp Binary-coding method by distance image
JPS6421538U (en) * 1987-07-27 1989-02-02
JPH0196505A (en) * 1987-10-08 1989-04-14 Matsushita Electric Ind Co Ltd Measuring instrument for three-dimensional object
JPH0233670A (en) * 1988-07-25 1990-02-02 Matsushita Electric Ind Co Ltd Recognizing method for electronic parts
JPH0255906A (en) * 1988-08-19 1990-02-26 Kumamoto Techno Porisu Zaidan Object measuring device
JPH0273108A (en) * 1988-09-08 1990-03-13 Kumamoto Techno Porisu Zaidan Measuring instrument for object
JPH06226669A (en) * 1993-01-29 1994-08-16 Daifuku Co Ltd Article position detecting device
JP2002107311A (en) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd Printed circuit board inspecting device and method
EP1524492A1 (en) * 2003-10-16 2005-04-20 Fanuc Ltd Three-dimensional measurement apparatus
JP2008512672A (en) * 2004-09-07 2008-04-24 ペトロモデル・イーエイチエフ Apparatus and method for analysis of size, shape, angularity of mineral and rock pieces, and composition analysis
WO2016166807A1 (en) * 2015-04-14 2016-10-20 ヤマハ発動機株式会社 Appearance inspection apparatus and appearance inspection method
WO2021153408A1 (en) * 2020-01-29 2021-08-05 サカタインクス株式会社 Printing plate inspection device and inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036374A (en) * 1973-08-03 1975-04-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036374A (en) * 1973-08-03 1975-04-05

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166480A (en) * 1986-01-20 1987-07-22 Nachi Fujikoshi Corp Binary-coding method by distance image
JPS6421538U (en) * 1987-07-27 1989-02-02
JPH0196505A (en) * 1987-10-08 1989-04-14 Matsushita Electric Ind Co Ltd Measuring instrument for three-dimensional object
JPH0233670A (en) * 1988-07-25 1990-02-02 Matsushita Electric Ind Co Ltd Recognizing method for electronic parts
JPH0255906A (en) * 1988-08-19 1990-02-26 Kumamoto Techno Porisu Zaidan Object measuring device
JPH0273108A (en) * 1988-09-08 1990-03-13 Kumamoto Techno Porisu Zaidan Measuring instrument for object
JPH06226669A (en) * 1993-01-29 1994-08-16 Daifuku Co Ltd Article position detecting device
JP2002107311A (en) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd Printed circuit board inspecting device and method
EP1524492A1 (en) * 2003-10-16 2005-04-20 Fanuc Ltd Three-dimensional measurement apparatus
US7486816B2 (en) 2003-10-16 2009-02-03 Fanuc Ltd Three-dimensional measurement apparatus
JP2008512672A (en) * 2004-09-07 2008-04-24 ペトロモデル・イーエイチエフ Apparatus and method for analysis of size, shape, angularity of mineral and rock pieces, and composition analysis
WO2016166807A1 (en) * 2015-04-14 2016-10-20 ヤマハ発動機株式会社 Appearance inspection apparatus and appearance inspection method
WO2021153408A1 (en) * 2020-01-29 2021-08-05 サカタインクス株式会社 Printing plate inspection device and inspection method
JP2021117208A (en) * 2020-01-29 2021-08-10 サカタインクス株式会社 Printing plate inspection device and inspection method

Also Published As

Publication number Publication date
JPH0425584B2 (en) 1992-05-01

Similar Documents

Publication Publication Date Title
CN110596128B (en) Sheet glass edge flaw detection system based on image acquisition
US5097516A (en) Technique for illuminating a surface with a gradient intensity line of light to achieve enhanced two-dimensional imaging
US4473746A (en) Multiple head optical scanner
JPS62184908A (en) Automatic discriminating method of tire
US4212031A (en) Method of aligning a body
JP2001255281A (en) Inspection apparatus
JPS598086A (en) Form detector
JPH06258231A (en) Defect detecting device for plate glass
JPH0758176A (en) Shape recognizing equipment for semiconductor wafer
US5576948A (en) Machine vision for adaptive laser beam steering
US4672209A (en) Component alignment method
EP0207229A2 (en) Illumination system of the digital control type
JPS63254588A (en) Marked character reader
JPH01227910A (en) Optical inspection device
US7787017B2 (en) Digital camera and method for identification of objects
JP2818347B2 (en) Appearance inspection device
JPH08145637A (en) Method and apparatus for recognizing profile of pipe
JPH06277864A (en) Laser beam machining device
JPS60140107A (en) Shape detecting method and apparatus thereof
JPH0399250A (en) Mounting state recognizing apparatus
JPH0235306A (en) Shape detecting method
JPS5877609A (en) Shape detector
JPS57168384A (en) Detecting method for shape of object
JPH05187831A (en) Appearance inspection device
JPS62150112A (en) System for confirming line pattern