JPS59185968A - Frost clogging detector - Google Patents

Frost clogging detector

Info

Publication number
JPS59185968A
JPS59185968A JP6070983A JP6070983A JPS59185968A JP S59185968 A JPS59185968 A JP S59185968A JP 6070983 A JP6070983 A JP 6070983A JP 6070983 A JP6070983 A JP 6070983A JP S59185968 A JPS59185968 A JP S59185968A
Authority
JP
Japan
Prior art keywords
evaporator
wind speed
air
air passage
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6070983A
Other languages
Japanese (ja)
Inventor
織田 誠
宏一 森谷
功 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6070983A priority Critical patent/JPS59185968A/en
Publication of JPS59185968A publication Critical patent/JPS59185968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明のオ0用分野〕 本発明は、冷却室に蒸発器と送風機のごとき空気循環装
置とを有し、循環冷気により収容物を冷却する方式の冷
凍庫または耐威渾等の冷凍装置における、蒸発器の箱詰
りを検知する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a freezer or a high-performance refrigerator which has an evaporator and an air circulation device such as a blower in a cooling chamber and cools stored items by circulating cold air. The present invention relates to a device for detecting clogging of an evaporator in a refrigeration system such as a ship.

〔従来技術〕[Prior art]

庫内に蒸発器を備え、強制的に庫内空気を循環せしめる
方式を用いた冷凍庫、冷蔵庫等の冷凍装置では、一般に
、蒸発器への着霜が生じ、蒸発器の目詰りが生じると冷
却能力が低下するため、従来、タイマにより定期的に除
霜をすることが行われている。しかし、タイマ方式は着
稍状態のいかんにかかわらず除霜を行うため、実用状態
において最も箱が生じやすい条件に合わせてタイマの時
間間隔を設定する必要がある。
In refrigeration equipment such as freezers and refrigerators that are equipped with an evaporator inside the refrigerator and use a method to forcefully circulate the air inside the refrigerator, frost builds up on the evaporator and the cooling stops when the evaporator becomes clogged. Conventionally, defrosting is performed periodically using a timer to prevent the capacity from decreasing. However, since the timer method performs defrosting regardless of the state of fertilization, it is necessary to set the timer time interval according to the conditions in which boxes are most likely to occur in practical use.

そのため、積の生じ難い冬期や、扉の開閉頻度の少ない
使用状態においては、蒸発器上に詣が付着していなくて
も、一定時間が経過すると除霜動作を行うことになり、
除霜電力および再冷却用′電力の無駄を生じていた。そ
こで、この対策として、蒸発器への着霜を直接検知する
方法が極々提案されてさている。すなわち、蒸発器の一
部に発光素子と受光素子とを設け、看箱による光の透過
率または反射率の変化を用いる方式や、蒸発器の冷媒循
環用バイグの表面温度とその近傍空気温度との温度差が
着霜により変化することを利用する方式や、蒸発器の一
部に振動子を設け、その振動状態が着霜により変化する
ことを利用する方式など、数多くの方式が検討されてぎ
た。しかし、上記した各部の直接検知方式は、着霜検九
部への着ねを検知するには有用な方法であるが、冷却能
力の低下と対応する蒸発器の箱詰り程度とは必すしも対
応が取れるものではなかった。つまり、冷凍装置の実使
用状況により蒸発器への着霜分布が異するので、着籟検
仰部へは着霜しているが、蒸発器の冷却能力に影響を与
えるほどの1′目詰りには至っていない場合が生じたと
き、この場合でも、頼詰りありと検知して除γi@作を
行うという不都合が生じていた。これは、上記した従来
の方式か、蒸発器の冷却能力と対応する蒸発器の箱詰り
そのものな検知1−るのではなく、検知部への着霜を検
知することで蒸発器全体を代表させていることに原因が
ある。この対策としては、蒸発器の各部の着霜を検知す
るために層箱検昶部の数を増し、多数個配置することが
必要であるが、これは、検知部の配置および検知信号の
処理の面で非常に複雑になるとともに、コストアップを
招き、実用的ではない。そこで、従来から、N箱分布等
の外乱の影響を受けにくり、冷却能力と対応があり、し
かも簡便で実用的な蒸発器の霜詰り検知装置が求められ
ていた。
Therefore, in the winter when accumulation is less likely to occur, or when the door is opened and closed less frequently, the defrosting operation will be performed after a certain period of time even if there is no debris on the evaporator.
Defrosting power and recooling power were wasted. Therefore, as a countermeasure to this problem, methods of directly detecting frost formation on the evaporator have been proposed. In other words, there is a method in which a light emitting element and a light receiving element are provided in a part of the evaporator, and changes in the transmittance or reflectance of light are used by a display box, and a method in which the surface temperature of the refrigerant circulation vig of the evaporator and the temperature of the air in its vicinity are used. A number of methods have been studied, including one that takes advantage of the fact that the temperature difference between the two changes due to frost formation, and one that uses a vibrator installed in a part of the evaporator to take advantage of the fact that its vibration state changes due to frost formation. I got it. However, although the method of directly detecting each part described above is a useful method for detecting frost buildup on the parts, it is not always possible to detect the degree of clogging of the evaporator that corresponds to a decrease in cooling capacity. There was nothing that could be done about it. In other words, the distribution of frost on the evaporator differs depending on the actual usage conditions of the refrigeration equipment, so although there is frost on the evaporator, there is no clogging that affects the cooling capacity of the evaporator. Even in this case, when a case has occurred where γi@ has not been reached, there is an inconvenience in that it is detected that there is a jam and the removal γi@ crop is performed. This method uses the conventional method described above, or detects the clogging of the evaporator itself, which corresponds to the cooling capacity of the evaporator. There is a reason for this. As a countermeasure to this, it is necessary to increase the number of layer box detectors and arrange them in large numbers in order to detect frost formation in each part of the evaporator. This method becomes extremely complicated in terms of design, increases costs, and is not practical. Therefore, there has been a need for a simple and practical evaporator frost clogging detection device that is not affected by disturbances such as N box distribution, is compatible with cooling capacity, and is simple and practical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくシ、冷
却能力の変化と対応がよく、シかも簡便で実用的な蒸発
器の霜詰り検九装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a frost clogging detection device for an evaporator that eliminates the above-mentioned drawbacks of the prior art, is responsive to changes in cooling capacity, and is simple and practical.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達JN、するため、庫内に蒸発器
と冷気強制循環用送風機とを備えた冷凍庫または冷蔵庫
等の冷凍装置に2い℃、庫内空気を循環し熱交換するだ
めの蒸発器を通過する主風路と、該蒸発器を通過し11
いバイパス風路とを設け、該主風路の一部と前記バイパ
ス風路の一部に設置した風速検知部と、検昶イ百号処理
演算部と、該検出信号処理演真部より出力される演算信
号とあらかじめ定めた基準レベルとを比較するための比
較部と、該比較部からのイ]号により除霜装置Rを制御
するための制御部とからなることを特徴とする箱詰り検
知装置を提供するもので、前記主風路と前記バイパスj
賊路の風速変化により前記蒸発器の霜詰り検知を行わし
めるものである。
In order to achieve the above object, the present invention provides a refrigeration device such as a freezer or a refrigerator that is equipped with an evaporator and a blower for forced circulation of cold air inside the refrigerator, and is equipped with a cooling device that circulates and exchanges heat inside the refrigerator at a temperature of 2°C. a main air passage passing through the evaporator of 11;
A bypass air path is provided, and a wind speed detection unit installed in a part of the main air path and a part of the bypass air path, a detection signal processing calculation unit, and an output from the detection signal processing logic unit. A box packing characterized in that it is comprised of a comparison section for comparing the calculated signal and a predetermined reference level, and a control section for controlling the defrosting device R by the item (i) from the comparison section. The present invention provides a detection device in which the main air path and the bypass j
Frost clogging of the evaporator is detected based on changes in wind speed on the wind path.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第1図ないし第4図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、庫内に蒸発器と冷気強?1IIJ循塚用込風
磯とを備えた冷凍冷蔵庫で、本発明による鞘詰り検知装
置の一実施例を具備したものの全体構造を示した図であ
る。図におい又、1は冷凍冷蔵庫本体、ヌは蒸発器、3
は冷気強制循垢用送風像、4は圧舶凱5は冷凍ヱ、6は
冷凧室。
Figure 1 shows the evaporator and cold air inside the refrigerator. FIG. 1 is a diagram showing the overall structure of a refrigerator-freezer equipped with a 1IIJ circulation mound and a casing clogging detection device according to an embodiment of the present invention. In the figure, 1 is the refrigerator-freezer body, nu is the evaporator, and 3
4 is a blower for forced circulation of cool air, 5 is a refrigerator, and 6 is a cold kite room.

7.7′および7“は冷凍呈冷却用空気の流路、8゜8
′およびビは耐蔵室冷却用空気の流路を示したものであ
る。次に、第2図は、第1図の酎保冷S側本体1の背面
側から蒸発器lを設置しである冷却室を透視した場合の
構造図である。図にお5℃、9は冷却室、1oは冷却用
の冷媒の流路を形成す°る冷媒管、11および11′は
該勺媒管1゜と空気との熱交換を良ぐするためのフィン
、12および12′は前記冷媒管1oを固定して蒸発器
名を形成するとともに、該蒸発器才を通って熱交換され
る空気の主風路を形成するだめの側板であり、該側板1
2および12′は庫内空気の風上側又は(および)A下
仰1において、前記フィン11および11′の先端より
突出させである。16は第1図に示した冷x呈sから冷
却室9への璧気尿り口、14および14′は同じく冷凍
室5から冷却9への錯気戻り口である。15は冷蔵室6
と冷凍室5からの戻り空気が蒸発器2を通り、熱交換さ
ti、、再6却されるための主風路であり、蒸発器ノの
2枚の1iitl板12および12′にはさ1れた狐域
からなっている。16および16′は側板12′26よ
ひ12′の外画のバイパス風路部である。17および1
7′は前記主風路15に設けた風連検g都、18および
18′は前記バイパス風路部16および16′に設げた
風速検知部である。
7. 7′ and 7″ are the cooling air flow paths, 8°8
'' and 'B' indicate the air flow path for cooling the storage room. Next, FIG. 2 is a structural diagram when the cooling chamber in which the evaporator 1 is installed is seen through from the back side of the main body 1 on the S-side sake storage shown in FIG. 1. In the figure, 5°C is shown, 9 is a cooling chamber, 1o is a refrigerant pipe that forms a flow path for cooling refrigerant, and 11 and 11' are for improving heat exchange between the refrigerant pipe 1° and air. The fins 12 and 12' are the side plates of the tank which fix the refrigerant pipe 1o and form the evaporator name, and also form the main air passage for the air that undergoes heat exchange through the evaporator pipe. Side plate 1
2 and 12' project from the tips of the fins 11 and 11' on the windward side of the air in the refrigerator or (and) on the lower elevation 1 of A. Reference numeral 16 designates a gas inlet from the cold storage chamber 9 shown in FIG. 15 is refrigerator compartment 6
This is the main air path for the return air from the freezer compartment 5 to pass through the evaporator 2, where it is heat exchanged, re-discharged. It consists of one fox area. Reference numerals 16 and 16' designate bypass air passages on the outside of the side plates 12' and 26 and 12'. 17 and 1
Reference numeral 7' indicates a wind speed detection unit provided in the main air passage 15, and 18 and 18' indicate wind speed detection units provided in the bypass air passage portions 16 and 16'.

次に、本実施例における鞘詰り検知方法につい℃説明す
る。第2図におりて、蒸発器2に霜が付層していない場
合、蒸発器lの側板12.1’2’の間の主風路15で
の風速は大きく、バイパス風路部16および16′での
風速は小さい。しかし、冷蔵室6からの空気戻り口16
および冷IN室°5からの空気戻り口14 、14’か
ら入るを気によって蒸発器ノへの着霜が進み、蒸発器l
の箱詰りか生じてくると、蒸発器7の狽1」板12 、
12’の間の主風路15での風速は小さくなり、逆にバ
イパス風路部16および16′に戻り空気が流れ、バイ
パス風路部16および16′での風速が増大してくる。
Next, the method for detecting sheath clogging in this embodiment will be explained. In FIG. 2, when there is no frost on the evaporator 2, the wind speed in the main air passage 15 between the side plates 12.1'2' of the evaporator l is high, and the bypass air passage section 16 and The wind speed at 16' is small. However, the air return port 16 from the refrigerator compartment 6
The air that enters from the air return ports 14 and 14' from the cold IN room 5 causes frosting on the evaporator to progress.
When the box becomes clogged, the evaporator 7's plate 12,
12', the wind speed in the main air passage 15 becomes small, and conversely, the air returns to the bypass air passage parts 16 and 16', and the wind speed in the bypass air passage parts 16 and 16' increases.

冷凍冷蔵庫の運転時間がさらに進み、蒸発器名の箱詰り
か進行すると、蒸発器ヌの主風路15での風速はさらに
低下してくる。一方、バイパス風路部16および16′
での風速は増大するが、あるところまで増大すると、バ
イパス風路部1g16′にも着霜が生じ始める影響で、
バイパス風路部での風速は逆に低下してくる。すなわち
、蒸発器ヱの主風路15での風速は、蒸発器ヱへのN箱
が進み1箱詰りか進行するにつれて低下する一方である
が、バイパス風路部16および16′での風速は、蒸発
器lへの着霜、箱詰りにつれて、いったん増太し、次に
低下してくることを見いだした。第3図は、蒸発器ヱの
主風路15に設けた風速検知部17と、バイパス風路部
16に設けた風速検知部18による風速検知結果を示し
た図である。図において1曲線19は風速検知部17の
風速推移を、曲線20は風速検知部18の風速推移を、
曲線21は主風路15とバイパス風路部16との風速差
の推移を、それぞれ示したものである。
As the operating time of the refrigerator-freezer continues and the evaporator becomes clogged, the wind speed in the main air passage 15 of the evaporator further decreases. On the other hand, the bypass air passage sections 16 and 16'
The wind speed at
On the contrary, the wind speed in the bypass air passage section decreases. In other words, the wind speed in the main air passage 15 of the evaporator (E) decreases as the number of boxes to the evaporator (E) progresses until one box is clogged, but the wind speed in the bypass air passages 16 and 16' decreases. It was found that as frost builds up on the evaporator l and as the boxes become clogged, the thickness increases and then decreases. FIG. 3 is a diagram showing the results of wind speed detection by the wind speed detecting section 17 provided in the main air path 15 of the evaporator E and the wind speed detecting section 18 provided in the bypass air path section 16. In the figure, a curve 19 represents the wind speed transition of the wind speed detection section 17, a curve 20 represents the wind speed transition of the wind speed detection section 18,
Curves 21 indicate the changes in the wind speed difference between the main air passage 15 and the bypass air passage section 16, respectively.

次に1本実施例における箱詰り検知装置について説明す
る。第4図にその構成を示す。図において、22は蒸発
器の主風路およびバイパス風路部に設置した風速検知部
、26は風速検知部22からの検知信号を処理演算する
処理演算部、24は処理演算部23からの信号と、あら
かじめ足めた基準レベルと乞比−較するだめの比較部、
25は該比較部24かもの信号により除自装置(図示せ
ず)を制御するための制御部である。
Next, a box jam detection device in this embodiment will be explained. Figure 4 shows its configuration. In the figure, 22 is a wind speed detection unit installed in the main air path and bypass air path of the evaporator, 26 is a processing calculation unit that processes and calculates the detection signal from the wind speed detection unit 22, and 24 is a signal from the processing calculation unit 23. , and a comparison section for comparing with the standard level set in advance,
Reference numeral 25 denotes a control section for controlling a self-exclusion device (not shown) based on the signal from the comparison section 24.

以下、上記箱詰り検知装置の動作について記述する。蒸
発器の主風路およびバイパス風路部に設置する風速検知
部として、周囲の温度より高い温度に自己加熱したサー
ミスタ素子を用いると、蒸発路にN箱がない場合は、蒸
xA6の主風路での風速がバイパス風路部での風速より
大であるため、主j虱路側のサーミスタ素子は、バイパ
ス風路部側のサーミスタ素子に比べて放熱が良く1発熱
温度が低下し、素子の抵抗が上昇するために、素子側か
ら処理演算部側への印加゛電圧が大となる。蒸発器の主
風路に設けたサーミスタ素子側からの印加電圧を胸、バ
イパス風路部に設けたサーミスタ素子側からの印加電圧
VBとし、電圧rmとVBとが処理演算部23に送られ
ると、処理演算部23では例えば゛電圧差(VBFm)
が求められ、この電圧差が比較部24に送られる。。
The operation of the box jam detection device will be described below. If a thermistor element that is self-heated to a temperature higher than the surrounding temperature is used as the wind speed detection unit installed in the main air path and bypass air path of the evaporator, if there is no N box in the evaporator path, the main air Since the wind speed in the bypass air passage is higher than that in the bypass air passage, the thermistor element on the main passage side has better heat dissipation than the thermistor element on the bypass air passage side, and the heat generation temperature is lower. Since the resistance increases, the voltage applied from the element side to the processing calculation section side increases. The voltage applied from the thermistor element side provided in the main air path of the evaporator is defined as the voltage applied from the thermistor element side provided in the bypass air path section, and the voltage rm and VB are sent to the processing calculation section 23. , the processing calculation unit 23 calculates, for example, ``voltage difference (VBFm)''.
is determined, and this voltage difference is sent to the comparison section 24. .

比較部24では、この電圧差と基準値Cとの比較を行う
が、着霜のない場合この電圧差は負であり、(VE−V
、、) < O< Cであるから、比較部24は除霜装
置を制御するための制御部25に信号を送らず、除霜は
行われない。ついで、蒸発器へのN霜量が多くなり、蒸
発器の主風路が箱詰りを生じ、冷凍室や冷蔵室からの戻
り空気がバイパス風路に循環し始めると、バイパス風路
部での風速が主風路での風速より大とrLす、それぞれ
の風路に設けたサーミスタ素子の′電圧差(Vs−V;
n)は正に転じた後、さらに増大し、あらかじめ定めた
基準値CK達すると、比較部24は制御部25へ(g号
を送り、制御部25は除霜ヒータ等の除■装置を動作さ
せて蒸発器の除霜を行い、霜詰りによる冷却能力低下を
防止することができる。筐だ1本実施例では、風速検知
部の設置場所の一例について説明したが、設!場所が、
蒸発器の主風路内と、蒸発器の側板外側のバイパス風路
部内であれば(例えば第2図の17′と18′)同様な
結果が得られる。
The comparator 24 compares this voltage difference with the reference value C, but when there is no frost, this voltage difference is negative, and (VE-V
,, ) < O < C, the comparison unit 24 does not send a signal to the control unit 25 for controlling the defrosting device, and defrosting is not performed. Then, when the amount of N frost on the evaporator increases, the main air path of the evaporator becomes clogged, and return air from the freezer and refrigerator compartments begins to circulate into the bypass air path. When the wind speed is higher than the wind speed in the main air path, the voltage difference (Vs-V;
After n) turns positive, it further increases, and when it reaches a predetermined reference value CK, the comparator 24 sends a signal (g) to the controller 25, and the controller 25 operates a defrosting device such as a defrosting heater. It is possible to defrost the evaporator and prevent a decrease in cooling capacity due to frost clogging.In this embodiment, an example of the installation location of the wind speed detection section has been described, but the installation location can be
Similar results can be obtained in the main air path of the evaporator and in the bypass air path outside the side plate of the evaporator (for example, 17' and 18' in FIG. 2).

なお、本実施例によれは、蒸発器の箱詰り検知を行なう
ために、蒸発器が有している側板を庫内空気の風下側」
又は(および)風下Illにおいて、冷媒管と空気との
熱交換を良くづるためのフィンの先端より突出させるご
とくに構成し、主風路とバイパス風路とを形成してなる
ため。
According to this embodiment, in order to detect clogging of the evaporator, the side plate of the evaporator is placed on the leeward side of the air inside the refrigerator.
Or (and) in the leeward direction, the fins are configured to protrude from the tips of the fins for improving heat exchange between the refrigerant pipe and the air, thereby forming a main air path and a bypass air path.

簡便で実用的な霜詰り検知ができる利点を有している。It has the advantage of being able to detect frost clogging in a simple and practical manner.

また1本実施例では冷媒管と空気との熱交換を艮くする
ためのフィンが、冷媒管毎に独立した構造をなしてなる
蒸発器1毛つい℃説り」したが。
In addition, in this embodiment, the evaporator has a structure in which each refrigerant pipe has an independent fin to prevent heat exchange between the refrigerant pipe and the air.

該フィンが風上狽1」から風下論まで連続した一体形構
造をなしてなる蒸発器の場合には、前記1則板の代りに
該フィンの最外部に位置する2枚のフィンを他のフィン
の先端より突出させることにより、主風路部とバイパス
風路部とを構成しても同様な効果が得られた。またさら
に1本実施例に示した側板と同等の機能を有する風路の
案内板を、蒸発器の瑣外部、風上側又は(ゴロよひ)風
下側にフィンの先端より突出させて設置することにより
風路を形成しても上記と同様な効果が得られることは言
うまでもない。
In the case of an evaporator in which the fins have a continuous integral structure from the upwind fin to the leeward fin, the two outermost fins of the fin can be replaced by another fin instead of the first rule plate. A similar effect was obtained even if the main air path section and the bypass air path section were configured by making the fins protrude from the tips. Furthermore, a guide plate for the air passage having the same function as the side plate shown in this embodiment may be installed on the outside of the evaporator, on the windward side or on the leeward side so as to protrude from the tip of the fin. It goes without saying that the same effect as above can be obtained even if the air passage is formed by

〔発明の効果〕〔Effect of the invention〕

本発明によれば、庫内に蒸発器と冷気強制循環用送風機
とを備えた冷凍庫、冷蔵庫等の冷却装置において、庫内
空気を循環し熱交換するための蒸発器を通過する主風路
と、該蒸発器を通過しr、cいバイパス風路とを設け、
各々に風速検fiJ部を設置し、該バイパス風路と該主
風路とにおける風速差を用いて蒸発器の箱詰りを検知す
るので、主風路を構成する蒸発器の霜詰りを直接的に検
知でき1着霜分布等の外乱の影響を受けに〈〈、冷却能
力と対応があり、しかも簡便で実用的であるとともに、
省電力を図り得る霜詰り検知装置を提供することができ
る。
According to the present invention, in a cooling device for a freezer, a refrigerator, etc., which is equipped with an evaporator and a blower for forced cold air circulation inside the refrigerator, a main air path passing through the evaporator for circulating the air inside the refrigerator and exchanging heat. , a bypass air path passing through the evaporator is provided;
A wind speed detection unit is installed in each, and clogging of the evaporator is detected using the difference in wind speed between the bypass air path and the main air path, so frost clogging of the evaporator forming the main air path can be detected directly. It can be detected easily and is not affected by external disturbances such as frost distribution, has corresponding cooling capacity, and is simple and practical.
A frost clogging detection device that can save power can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による箱詰り検知装置の一実施例を具備
した冷凍冷蔵庫の全体構造を示す側面断面図、第2図は
該冷凍冷蔵庫の冷却室を背面より透視した構造図、第5
図は該実施例の風速検知部における風速特性を示す特性
図゛、第4図は該実施例の構成を示すブロック図である
。。 符号の説明 ス・・・蒸発器 3・・・冷気強制循環用送風機 ?・・・冷却室     10・・・冷媒管1111’
・・・フィン   12,12’・・・側板15・・・
主風路 16.16’・・・バイパス風路部 17.17’ 、 18,18’・・・風速検知部22
・・・風速検知部   23・・・処理演算部24・・
・比較部     25・・・制飢1部代理人弁勉士 
尚 橘 1 夫 劉z図 第3F1 着霜量
FIG. 1 is a side cross-sectional view showing the overall structure of a refrigerator-freezer equipped with an embodiment of the box jam detection device according to the present invention, FIG. 2 is a structural diagram of the cooling chamber of the refrigerator-freezer seen from the back, and FIG.
The figure is a characteristic diagram showing the wind speed characteristics in the wind speed detecting section of the embodiment, and FIG. 4 is a block diagram showing the configuration of the embodiment. . Explanation of codes...Evaporator 3...Cold air forced circulation blower? ...Cooling chamber 10...Refrigerant pipe 1111'
...Fin 12, 12'...Side plate 15...
Main air passage 16.16'... Bypass air passage section 17.17', 18, 18'... Wind speed detection section 22
...Wind speed detection section 23...Processing calculation section 24...
・Comparison section 25...Famine control section 1 agent lawyer
Nao Tachibana 1 Husband Liu Z Figure 3F1 Amount of frost formation

Claims (1)

【特許請求の範囲】[Claims] (1)庫内に蒸発器と冷気強制循環用送風機とを備えた
冷凍庫または冷蔵庫等の冷凍装置における、該蒸発器の
霜詰りを検知する装置であって、前記送風機による冷気
が循環する風路の一部に、循環空気を熱交換するための
蒸発器を通過する土鍋と、該蒸発器を通過しないバイパ
ス風路との2つの風路な設け、該主風路と該バイパス風
路とにそれぞれ風速検知部を設置し、該風速検知部から
の信号をそれぞれ入力する検知信号処理演算部と、該検
仰侶号処理演算部からの演算毎号とあらかじめ定めた基
準レベルとを比較するための比較台ムと、該比較部から
の信号により除籟装置を制御するための制御部と?具備
してなることを特徴とする霜詰り検知装置。 (2、特許請求の範囲第1項に記載の箱詰り検知装置に
おいて、風速検知部が、目己加熱型サーミスタ素子で構
成されてな、ることを特徴とする霜詰り検知装置。 (3ン  特許請求の範囲第1項に記載の箱詰り検知装
置において、主風路とバイパス風路とが、庫内空気を循
環し熱交換するための蒸発器を構成する側板もしくはそ
れと同等の機能を有する熱交供用フィンもしくは風路の
案内板により分離されてなり、前記側板もしくは前虻熱
交換用フィン、もしくは前記風路の案内板の端部が、庫
内空気の風上世」又は(及び)風下側において、熱交供
用フィンの先端より突出させてなることを特徴とするね
詰り検知装置。
(1) A device for detecting frost clogging of an evaporator in a refrigeration device such as a freezer or a refrigerator that is equipped with an evaporator and a blower for forced circulation of cold air in the refrigerator, the air path through which cold air is circulated by the blower. In part, there are two air passages: an earthenware pot that passes through an evaporator for heat exchange of circulating air, and a bypass air passage that does not pass through the evaporator, and the main air passage and the bypass air passage are provided with two air passages. A detection signal processing calculation unit which is equipped with a wind speed detection unit and inputs the signals from the wind speed detection unit, respectively, and a detection signal processing calculation unit which inputs the signals from the wind speed detection unit, and a detection signal processing calculation unit that compares each calculation from the inspection target processing calculation unit with a predetermined reference level. A comparison unit, and a control unit for controlling the husk removing device based on the signal from the comparison unit? A frost clogging detection device comprising: (2. The frost clogging detection device according to claim 1, characterized in that the wind speed detection section is composed of a self-heating thermistor element. In the box clogging detection device according to claim 1, the main air passage and the bypass air passage have a side plate constituting an evaporator for circulating indoor air and exchanging heat, or a function equivalent thereto. "or (and) A clogging detection device characterized by protruding from the tip of a heat exchanger fin on the leeward side.
JP6070983A 1983-04-08 1983-04-08 Frost clogging detector Pending JPS59185968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070983A JPS59185968A (en) 1983-04-08 1983-04-08 Frost clogging detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070983A JPS59185968A (en) 1983-04-08 1983-04-08 Frost clogging detector

Publications (1)

Publication Number Publication Date
JPS59185968A true JPS59185968A (en) 1984-10-22

Family

ID=13150081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070983A Pending JPS59185968A (en) 1983-04-08 1983-04-08 Frost clogging detector

Country Status (1)

Country Link
JP (1) JPS59185968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190101669A (en) * 2018-02-23 2019-09-02 엘지전자 주식회사 Refrigerator
WO2019172532A1 (en) * 2018-03-08 2019-09-12 엘지전자 주식회사 Refrigerator and controlling method thereof
WO2019190113A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same
WO2019190114A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190101669A (en) * 2018-02-23 2019-09-02 엘지전자 주식회사 Refrigerator
CN111801539A (en) * 2018-03-08 2020-10-20 Lg电子株式会社 Refrigerator and control method thereof
WO2019172532A1 (en) * 2018-03-08 2019-09-12 엘지전자 주식회사 Refrigerator and controlling method thereof
KR20190106242A (en) * 2018-03-08 2019-09-18 엘지전자 주식회사 Refrigerator and controlling method the same
AU2019232055B2 (en) * 2018-03-08 2022-08-25 Lg Electronics Inc. Refrigerator and controlling method thereof
CN111801539B (en) * 2018-03-08 2022-04-26 Lg电子株式会社 Refrigerator and control method thereof
US20210055034A1 (en) * 2018-03-08 2021-02-25 Lg Electronics Inc. Refrigerator and controlling method the same
US20210010738A1 (en) * 2018-03-26 2021-01-14 Lg Electronics Inc. Refrigerator and method for controlling same
KR20190112464A (en) * 2018-03-26 2019-10-07 엘지전자 주식회사 Refrigerator and controlling method the same
KR20190112482A (en) * 2018-03-26 2019-10-07 엘지전자 주식회사 Refrigerator and controlling method the same
WO2019190114A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same
CN114704993A (en) * 2018-03-26 2022-07-05 Lg电子株式会社 Control method of refrigerator
AU2019243005B2 (en) * 2018-03-26 2022-07-14 Lg Electronics Inc. Refrigerator and method for controlling same
CN114777395A (en) * 2018-03-26 2022-07-22 Lg电子株式会社 Control method of refrigerator
WO2019190113A1 (en) * 2018-03-26 2019-10-03 엘지전자 주식회사 Refrigerator and method for controlling same
AU2019243004B2 (en) * 2018-03-26 2022-11-10 Lg Electronics Inc. Refrigerator and method for controlling same
CN114777395B (en) * 2018-03-26 2023-11-03 Lg电子株式会社 Control method of refrigerator
US11867448B2 (en) 2018-03-26 2024-01-09 Lg Electronics Inc. Refrigerator and method for controlling the same
CN114704993B (en) * 2018-03-26 2024-04-02 Lg电子株式会社 Control method of refrigerator

Similar Documents

Publication Publication Date Title
US7775058B2 (en) Cooler and refrigerator
CN101619916B (en) Ice refrigerator
US10495368B2 (en) Refrigerator and operation method of the same
JP4159172B2 (en) How to prevent icing of dampers for refrigerators
US20070283706A1 (en) Defrost operating method for refrigerator
CN100483049C (en) Refrigerating storage cabinet
US4077229A (en) Household refrigerator with air circulation and cooling arrangement
JP6074596B2 (en) refrigerator
US4843831A (en) Refrigerator control system
JPH06249562A (en) Refrigerator-freezer
WO2019107066A1 (en) Refrigerator
JPS59185968A (en) Frost clogging detector
KR102206097B1 (en) Refrigerator and method for controlling defrosting of the same
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP2001263912A (en) Refrigerator
JPS59180265A (en) Detector for clogging of frost
JP6846599B2 (en) refrigerator
JPH10267506A (en) Cooling system
JP3066147B2 (en) Showcase defrost control method
JPS59208374A (en) Detector for clogging of frost
JPS60226688A (en) Defrostation controller
JP4286106B2 (en) Freezer refrigerator
KR0136062Y1 (en) Refrigerator
JPH11281232A (en) Freezing show case
JPS58178171A (en) Detecting sensor for clogging of frost for refrigerator