JPS59155709A - Ultrasonic wave measuring equipment - Google Patents

Ultrasonic wave measuring equipment

Info

Publication number
JPS59155709A
JPS59155709A JP58029398A JP2939883A JPS59155709A JP S59155709 A JPS59155709 A JP S59155709A JP 58029398 A JP58029398 A JP 58029398A JP 2939883 A JP2939883 A JP 2939883A JP S59155709 A JPS59155709 A JP S59155709A
Authority
JP
Japan
Prior art keywords
reflector
probe
ultrasonic
pipe body
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58029398A
Other languages
Japanese (ja)
Other versions
JPH0344245B2 (en
Inventor
Tasuku Takeda
翼 武田
Tokuo Hosoda
細田 篤雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58029398A priority Critical patent/JPS59155709A/en
Publication of JPS59155709A publication Critical patent/JPS59155709A/en
Publication of JPH0344245B2 publication Critical patent/JPH0344245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/20Reflecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure all directions of a pipe body to be inspected at the same time keeping the relative position of a srobe and a reflector held and fixed and without complex signal changes and the like by a method wherein the reflection surface of the reflector is formed to be approximately conical and an oscillator is so provided as to have its center on the same axial line as the reflector facing the reflection surface and the ultrasonic wave is radiated to all directions at the same time so that the flaw detection of all directions of the pipe body can be carried out instantly for one cross section. CONSTITUTION:A rod part 10b of the tip of a reflector 10 whose reflection surface 10a is formed to be approximately conical is inserted into a hollow part of an annular probe 9. The reflector itself is so arranged to positioned on the same axial line 9a of the probe and at the same time they are composed solidly. An ultrasonic beam C generated by an annular oscillator 8 is reflected by the facing reflection surface 10a of the reflector 10 to the apprxoimately perpendicular direction to the axis of the reflector, in other words, to the direction in the plane crossing the axis, and is propagated toward the pipe body 5. After the ultrasonic beam C reaches the pipe body 5, it is reflected by the inner surface and the outer surface of the pipe body 5 and returns to the oscillator 8 by the order opposite to that of oscillation and is received.

Description

【発明の詳細な説明】 この発明は超音波を用いて管体の探傷及び又は肉厚の測
定を行う装置に係り、特に管体の全方位を均等かつ同時
に測定し得る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting flaws and/or measuring wall thickness of a tube using ultrasonic waves, and particularly to an apparatus capable of measuring all directions of a tube evenly and simultaneously.

ボイラ装置特に高温高圧の発電用ボイラの過熱器、再熱
器等の管はその内部に高温高圧の蒸気が流れかつその外
面は高温の燃焼ガスに接触することからその肉厚減少、
損傷についてはボイラの定期検査に際し入念に調査しボ
イラの安全をはかる必要がある。しかも定検時は短期間
に多数の管の検査を完了せねばならないという問題があ
る。しかしこれら過熱器管は燃焼ガス通路内に位置し、
その外面にはダスト、タリンカが付着堆積しており、し
かも高所の近より難い個所に位置しており加えて入念な
検査をせねばならずしかも管の本数も極めて多い。また
現実的には管外面のダストを除去して入念にこれらの管
を検査することは殆んど出来ないことである。しかしこ
れらの条件を満足し短期間にかつ多数の管の損傷肉厚減
少について信頼性の高い検査の出来る手段を開発するこ
とは強く要望される処である。
The tubes of boiler equipment, especially superheaters and reheaters of high-temperature, high-pressure power generation boilers, have high-temperature, high-pressure steam flowing inside them, and their outer surfaces come into contact with high-temperature combustion gas, so their wall thickness decreases.
Damage must be carefully investigated during regular boiler inspections to ensure boiler safety. Moreover, there is a problem in that during regular inspections, inspections of a large number of pipes must be completed in a short period of time. However, these superheater tubes are located in the combustion gas passage,
Dust and tarinka are deposited on its outer surface, and it is located near a high place, making it difficult to inspect.In addition, it requires careful inspection, and there are an extremely large number of pipes. Furthermore, in reality, it is almost impossible to carefully inspect these pipes by removing dust from the outer surface of the pipes. However, there is a strong need to develop a means that satisfies these conditions and is capable of highly reliable inspection of damage and wall thickness reduction in a large number of pipes in a short period of time.

このため発明者等はダスト等のない管内からの検査でか
つ火炉天井上のベントハウス等の安全な場所より検査で
きるように以下に述べる装置を発明した。
For this reason, the inventors have devised the following device to enable inspection from inside the pipe, which is free of dust, etc., and from a safe location such as a vent house on the ceiling of the furnace.

第]−図及び第2図は従来型の超音波測定装置の縦断向
を示す図面である。先ず第1図において、探触子構成体
4の内部には超音波をその軸心方向に出す垂直型探触子
1と反射体2が配置してあり、探触子1から発した超音
波ビームbは反射体2で反射し、その方向をほぼ90度
かえて開口4aを経て被検体たる管体5に向う。この場
合、管体の全方位の探傷及び肉厚測定(以下「探傷」と
略称する)を行うため反射体を回転させ超音波ビームb
の反射方向を管体円周方向につき順次移動させるが、こ
の場合探触子と反射体の組の探触子構成体(外箱を含む
)4自体は一体的に形成しておく必要があるので同構成
体の全周にわたって開口を形成することはできない。つ
まり全方位探傷を行う場合、この開口を形成していない
接続部分についてはその部分が音波の伝播に対する干渉
体となって探傷測定を不正確なものとしている。また反
射1体2を回転させるために特にモータ3も必要となる
Figures 1 and 2 are drawings showing a conventional ultrasonic measuring device in a longitudinal section. First, in FIG. 1, a vertical probe 1 and a reflector 2 that emit ultrasonic waves in the axial direction are arranged inside the probe assembly 4, and the ultrasonic waves emitted from the probe 1 The beam b is reflected by the reflector 2, changes its direction by approximately 90 degrees, and passes through the opening 4a toward the tube 5, which is the object to be examined. In this case, in order to perform flaw detection and wall thickness measurement in all directions of the pipe body (hereinafter referred to as "flaw detection"), the reflector is rotated and the ultrasonic beam b
The reflection direction of the reflector is sequentially moved in the circumferential direction of the tube, but in this case, the probe assembly (including the outer box) 4 itself of the probe and reflector pair must be formed integrally. Therefore, it is not possible to form an opening around the entire circumference of the structure. In other words, when performing omnidirectional flaw detection, the connecting portions that do not have openings act as an interference to the propagation of sound waves, making flaw detection measurements inaccurate. In addition, a motor 3 is particularly required in order to rotate the reflector 1 body 2.

なお探触子構成体は管体の奥深くまで挿入するのでこの
構成体自体を回転させることは事実上不可能である。ま
た取扱者に対する反射体の反射面の指向方向についての
表示と伝達の手段が必要である。
Note that since the probe structure is inserted deep into the tube, it is virtually impossible to rotate this structure itself. Also, a means for displaying and communicating to the operator the direction of orientation of the reflective surface of the reflector is required.

第2図に示す装置は前述の問題点を解決すべく構成した
ものである。すなわち、この装置においては円筒形で超
音波について干渉することのない材料であるダンパ材7
の外周部に多数の超音波振動子6を配置し、これらの超
音波振動子に対して電子走査等により順次信号を切り換
えて送受信をするように構成しである。この様にすれば
反射体の回転が不要となり、かつ第1図における非開口
部の如き死角も発生しないがその反面探触子構成が複雑
になり、かつ装置が高価となってしまう。
The apparatus shown in FIG. 2 is constructed to solve the above-mentioned problems. That is, in this device, the damper material 7 is cylindrical and is made of a material that does not interfere with ultrasonic waves.
A large number of ultrasonic transducers 6 are arranged around the outer periphery of the ultrasonic transducer, and signals are sequentially switched to and received from these ultrasonic transducers by electronic scanning or the like. This eliminates the need to rotate the reflector and eliminates the occurrence of blind spots such as the non-opening portion shown in FIG. 1, but on the other hand, the probe structure becomes complicated and the apparatus becomes expensive.

この発明は探触子および反射体の相対位置を保持固定し
たまま、複雑な信号切換え等を行うことなく被検体たる
管体の全方位を同時に測定し得る装置を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus that can simultaneously measure all directions of a tube as a subject without performing complicated signal switching while keeping the relative positions of a probe and a reflector fixed.

要するにこの発明は反射体の反射面をほぼ円錐形に形成
し、この反射体の反射面に対して反射体とほぼ同一軸心
線上に中心をもち位置するよう振動子を配置し、電子走
査や反則体を回転させたりすることなく超音波を同時全
方位に送出し管体の全方位探傷を管等の一横断面につい
ては瞬時に行えるよう構成した超音波測定装置であるこ
とを特徴とする。
In short, this invention forms the reflective surface of a reflector into a substantially conical shape, and arranges a vibrator with its center on the same axis as the reflector, and performs electronic scanning. The ultrasonic measuring device is characterized in that it is configured to send out ultrasonic waves in all directions at the same time without rotating the fouling body, and can instantly perform omnidirectional flaw detection on a single cross section of a pipe, etc. .

以下この発明の実施例につき説明する。Examples of the present invention will be described below.

第3図において、9は環状に形成した探触子(振動子8
を含む)であり、被検体たる管体5とほぼ同一軸心線上
に位置するよう配置する。
In Fig. 3, 9 is a ring-shaped probe (oscillator 8
), and is arranged so as to be located approximately on the same axis as the tube body 5, which is the subject.

10は反射面10aを略円錐形に形成した反射体であり
、その先端の棒状部10bを環状探触子9の中空部内に
挿入することにより、この反射体自体が探触子と同一軸
心9aの線上に位置するように配置すると共に両者を一
体的に構成して測定装置本体を構成する。8は探触子9
に対して、前記反射体10の反射面10aと対向するよ
う取り何けた環状の振動子である。11は探触子9に対
して取り付けた探触子挿入用の棒であり、12は電源と
の接続線、送信用の電線を含むコネクターである。また
符号13は探触子9の外周部及び反射体10の外周部に
取り何けたボールベアリング式の調心部であり、探触子
9及び反射体10と螺合しており、螺合状態を調節する
ことによって探触子9及び反射体]Oと管体5の内壁面
との距離を調節し、管体5内の測定装置の心出しを行う
と共に装置の移動を容易にする。また要すれば図示のボ
ールが管体5の内面に弾性をもち接触し管径の多少の差
には対応できるように構成するとよい。
Reference numeral 10 denotes a reflector having a reflecting surface 10a formed in a substantially conical shape, and by inserting the rod-shaped portion 10b at the tip into the hollow part of the annular probe 9, the reflector itself is aligned with the same axis as the probe. They are arranged so as to be located on the line 9a, and both are integrally constructed to constitute the main body of the measuring device. 8 is probe 9
In contrast, it is a ring-shaped vibrator arranged to face the reflective surface 10a of the reflector 10. 11 is a rod for inserting a probe attached to the probe 9, and 12 is a connector including a connection line to a power source and a transmission wire. Further, reference numeral 13 indicates a ball bearing type alignment part provided on the outer periphery of the probe 9 and the outer periphery of the reflector 10, which is screwed together with the probe 9 and the reflector 10, and is in a screwed state. By adjusting the distance between the probe 9 and the reflector]O and the inner wall surface of the tube body 5, the measuring device is centered within the tube body 5, and the device can be easily moved. Further, if necessary, it is preferable to configure the ball shown in the figure to be elastically in contact with the inner surface of the tube body 5 so as to be able to accommodate slight differences in tube diameter.

以」二の装置において、環状の振動子8から発信された
超音波ビームCは対向する反射体10の反射面10aに
おいて反射体10の軸心に対してほぼ直角となるよう換
言すれば軸心に直交する面内で反射し、管体5に向う。
In the following two devices, the ultrasonic beam C emitted from the annular transducer 8 is approximately perpendicular to the axis of the reflector 10 at the reflecting surface 10a of the opposing reflector 10, in other words, the axis The light is reflected within a plane orthogonal to the plane and is directed toward the tube body 5.

管体5に至った超音波ビームCは管体5の内表面と外表
面で反射された後、発信の場合とは逆の1lli序で振
動子8に戻り受信される。なお被検体の検査に際しては
媒質(例えば水)14を被検体内に充填して行う。
The ultrasonic beam C that has reached the tubular body 5 is reflected by the inner and outer surfaces of the tubular body 5, and then returns to the transducer 8 and is received in the reverse order of transmission. Note that when testing a subject, a medium (for example, water) 14 is filled into the subject.

第4図は管体5に対して超音波ビームを入射させた場合
の超音波探傷器のブラウン管波形を示す。Sは管体の内
表面からの反射波形を示しBは管体外表面からの反射波
形を示す。この場合、SからBまでの距離tは管体の全
方位中の最小肉厚を表示する。またこのブラウン管波形
から距離tをコネクター12に接続する制御箱23によ
りデジタル表示またはプリンタ表示するよう構成する。
FIG. 4 shows a cathode ray tube waveform of an ultrasonic flaw detector when an ultrasonic beam is incident on the tube body 5. S indicates a reflected waveform from the inner surface of the tube, and B indicates a reflected waveform from the outer surface of the tube. In this case, the distance t from S to B represents the minimum wall thickness in all directions of the tube. Further, the distance t from this cathode ray tube waveform is configured to be displayed digitally or on a printer using a control box 23 connected to the connector 12.

つぎに反射体の反射面の形状についてのべる。Next, we will discuss the shape of the reflective surface of the reflector.

第5図は反射体101が円錐形の反射面101aをもつ
場合の超音波ビームeの放射状態を示すもので、現実に
は環状振動子8からの超音波ビームは必ずしも軸心9a
に平行ではなくや\拡散するものであり被検体5に入射
するときはθ1e2.e、となる。即ち音波の広がりに
よる時間差ができマルチパス(multipath )
現象を生ずる。
FIG. 5 shows the radiation state of the ultrasonic beam e when the reflector 101 has a conical reflecting surface 101a.
It is not parallel to θ1e2. e, becomes. In other words, there is a time difference due to the spread of the sound waves, resulting in multipath.
cause a phenomenon.

即チソのエコーのブラウン管上の表示は第5A図に示す
形状のものでその゛音波の広がりI w o。
In other words, the display of the Chiso echo on the cathode ray tube has the shape shown in Figure 5A, and the spread of the sound wave is Iwo.

をもつものとなり、かつ超音波の広がりによる超音波エ
ネルギーの拡散減衰を生じ従ってエコー強度も低下する
こととなる。
In addition, due to the spread of the ultrasonic waves, the ultrasonic energy is attenuated by diffusion, and the echo intensity also decreases.

一方第6図に示すごとく反射体100の軸心を含む断面
で表示される反射面100 aの断面曲線を曲率をもつ
ものにするときは超音波ビームはft1人、f8となり
集束してマルチパス化を解消しかつエコー強度も上る。
On the other hand, when the cross-sectional curve of the reflective surface 100a shown in the cross-section including the axis of the reflector 100 is made to have a curvature as shown in FIG. This eliminates the distortion and increases the echo strength.

この断面曲線は幾何光学的に超音波ビームが集束する楕
円曲線とするとよい。その場合には″音波の広がり :
’ W iは第6A図に示す如<WI、fl:り狭いも
のとなりエコー強度も強いものとなり測定精度は向上す
る。なお管体に薄肉の個所があるときは第6A図に示す
B1(点線で示す)エコーが表示されtmはその軸心9
aに直交する検査している個所の面内での管体の肉厚の
最小肉厚tを示すこととなる。このtmはデジタル表示
で示すことができる。この場合規定(標準)の肉厚の個
所からの反射波(エコー)については電気的に除き薄肉
部のエコーを制御箱24に送りデジタル表示寸法はその
検査個所断面内での最小肉厚を表示するものにできる。
This cross-sectional curve is preferably an elliptic curve on which the ultrasound beam is focused geometrically. In that case, the spread of the sound wave:
As shown in FIG. 6A, W i is narrower than WI, fl: and the echo intensity is strong, improving measurement accuracy. Note that when the tube body has a thin part, the B1 (indicated by a dotted line) echo shown in Fig. 6A is displayed, and tm is the axis 9.
This indicates the minimum wall thickness t of the tube within the plane of the inspected location perpendicular to a. This tm can be shown on a digital display. In this case, the reflected waves (echoes) from areas with specified (standard) wall thickness are electrically removed, and the echoes from thin wall areas are sent to the control box 24, and the digital display dimensions display the minimum wall thickness within the cross section of the inspection area. It can be made into something.

第7図は別の実施例を示す。前述の実施例が測定装置本
体を管体内部に配置したのに対してち管体5を囲み配置
した探触子18はこの探触子19に取り付けた環状の振
動子である。15はやはり管体5を囲み配置した反射体
であり、探触子19と同様軸心を囲む中央空所151が
設けられている。15aは反射体15の端面に形成した
反射面であり、振動子18から発振した超音波ビームを
管体5の外表面側から入射させるため、前述の実施例と
は逆に反射体軸心上に頂点をもつ円錐面とし凹む様に凹
形錐状面に形成しである。
FIG. 7 shows another embodiment. In contrast to the above-mentioned embodiment, in which the main body of the measuring device is placed inside the tube, the probe 18, which is placed surrounding the tube 5, is an annular vibrator attached to the probe 19. Reference numeral 15 is also a reflector placed around the tube body 5, and like the probe 19, a central cavity 151 surrounding the axis is provided. Reference numeral 15a denotes a reflecting surface formed on the end surface of the reflector 15, and in order to make the ultrasonic beam oscillated from the transducer 18 enter from the outer surface side of the tube body 5, the reflection surface 15a is formed on the axis of the reflector 15, contrary to the previous embodiment. It is formed into a concave conical surface with a concave concave surface.

このような構造をもつ超音波探傷装置は外面に凹凸やス
ケールの少ない新管の肉厚及び又は欠陥を検出するのに
好適である。即ち管の製造工場等において連続して送出
されてくる新管を磁気渦流探傷機などと併用してこの発
明の一実施例にかかる第7図に示す装置の前記中央空所
151を相当な速度で通過させることにより、より確実
、かつ精度の高い検査をすることができる。
An ultrasonic flaw detection device having such a structure is suitable for detecting the thickness and/or defects of a new pipe with few irregularities or scales on the outer surface. That is, by using a magnetic eddy current flaw detector or the like, new pipes continuously delivered from a pipe manufacturing factory or the like are used to inspect the central cavity 151 of the apparatus shown in FIG. 7 according to an embodiment of the present invention at a considerable speed. By passing it through the test, it is possible to perform a more reliable and accurate inspection.

この発明の一実施例にかかる装置で管の肉厚を測定し、
測定後切断して実測した肉厚との対比した関係は第8図
に示すようなものとなり、その精度は+0.09mmと
高精度のものであった。
Measuring the wall thickness of a pipe with a device according to an embodiment of the present invention,
The relationship between the wall thickness measured by cutting after measurement was as shown in FIG. 8, and the accuracy was +0.09 mm, which was a high precision one.

この発明を実施することにより、超音波ビームを被検体
の全周に対して同時かつ全方位に送出しかつその反射波
(エコー)を受信することができるので、検査時間を短
縮できると共に検査精度を高める高効率の検査をするこ
とができる。
By implementing this invention, it is possible to simultaneously send an ultrasonic beam to the entire circumference of the subject in all directions and receive the reflected waves (echoes), which reduces inspection time and improves inspection accuracy. It is possible to conduct highly efficient inspections that increase

また反射体の回転機構、電子走査機構等が不用であって
装置を安価にしかつ単純化でき、故障の発生を減少させ
て装置の信頼性を高めることができ、発電所用等のボイ
ラの定期検査における検査期間の短縮と信頼性の十に格
段の効果を奏するものである。
In addition, there is no need for a rotating mechanism for the reflector, an electronic scanning mechanism, etc., making the device inexpensive and simple, reducing the occurrence of failures and increasing the reliability of the device. Regular inspection of boilers for power plants, etc. This has a significant effect on shortening the inspection period and improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反射体回転型超音波測定装置の断面図、第2図
は電子走査型超音波測定装置の断面図、第3図はこの発
明の一実施例に係る超音波測定装置の一部破断側面図、
第4−図はこの装置を使用したときのブラウン管波形図
、第5図は反射面が円錐面のときの超音波ビームの拡散
状況の一部断面模式図、第5A図は第5図の場合のブラ
ウン管表示の模式図、第6図は曲率をもつ反射面をもつ
反射体についての超音波ビームの集束することを示す一
部断面模式図、第6A図は第6図の場合のブラウン管表
示の模式図、第7図は別の実施例を示す被検体が装置の
中央空所を通過することのできる装置の縦断面図、第8
図は試験用の管について計測したときの計測値と実測値
を対比して示す図面である。 5・・・・・・管体 8.18・・・・・・振動子 9.19・・・・・・探触子 10.15・・・・・・反射体 10a、 15a・・・・・・反射面 10b・・・・・・棒状部
FIG. 1 is a sectional view of a rotating reflector type ultrasonic measuring device, FIG. 2 is a sectional view of an electronic scanning type ultrasonic measuring device, and FIG. 3 is a part of an ultrasonic measuring device according to an embodiment of the present invention. Broken side view,
Figure 4 is a CRT waveform diagram when this device is used, Figure 5 is a partial cross-sectional schematic diagram of the diffusion state of the ultrasound beam when the reflecting surface is a conical surface, and Figure 5A is the case of Figure 5. Figure 6 is a partial cross-sectional schematic diagram showing the focusing of an ultrasonic beam on a reflector with a reflective surface with curvature, and Figure 6A is a schematic diagram of the cathode ray tube display in the case of Figure 6. A schematic diagram, FIG. 7 is a longitudinal cross-sectional view of an apparatus in which a subject can pass through the central cavity of the apparatus, showing another embodiment, FIG.
The figure is a drawing showing a comparison of measured values and actual measured values when measuring a test tube. 5... Tube body 8.18... Vibrator 9.19... Probe 10.15... Reflector 10a, 15a... ... Reflective surface 10b ... Rod-shaped part

Claims (1)

【特許請求の範囲】 1、 超音波ビームにより被検体の肉厚および又は探傷
をするものにおいて、探触子と反射体をほぼ同軸心に連
設し、該探触子の振動子の形状を被検体の横断内面形状
に近似する環状に形成し、該反射体はその頂部を該探触
子側でかつ前記軸心上に位置する錐状部をもつものとし
、前記連設した探触子と反射体の組は一体となり被検体
内を変位しかつ被検体の横断面の内周方向に超音波ビー
ムを全方位同時放射するように形成したことを特徴とす
る超音波測定装置。 2、反射体をその軸心を含む縦断面において反射面のな
す曲線が曲率をもつ曲線であるmf率付円錐体とするこ
とを特徴とする特許請求の範囲第1項記載の超音波測定
装置。 3、計測した横断面個所についての最小肉厚寸法をデジ
タル表示する変換器を設けたことを特徴とする特許請求
の範囲第1項又は第2項記載の超音波測定装置。 4゜ 被検体を管とし、振動子をほぼ円環状上履反射体
をほぼ円錐体とすることを特徴とする特許請求の範囲第
1項ないし第3項のいずれかに記載の超音波測定装置。 5、 反射体をその頂点を反射体内でかつその細心上に
位置させた凹形錐状部をもつように形成し、かつ被検体
が探触子及び反射体の中央空所内を通過変位可能に形成
したことを特徴とする特許請求の範囲第1項ないし第3
項のいずれかに記載の超音波測定装置。 6、 被検体を管とし、振動子をほぼ円環状とし反射体
の反射面をほぼ凹形円錐状面にすることを特徴とする特
許請求の範囲第5項記載の超音波測定装置。
[Claims] 1. In a device that detects the thickness and/or flaws of an object using an ultrasonic beam, a probe and a reflector are arranged approximately coaxially, and the shape of the transducer of the probe is The reflector is formed into an annular shape approximating the transverse inner surface shape of the object, and the reflector has a conical portion with its top facing the probe and located on the axis, and the reflector has a conical portion located on the axis of the probe. An ultrasonic measurement device characterized in that a set of a reflector and a reflector are integrally displaced within a subject and are formed so as to simultaneously radiate an ultrasonic beam in all directions in the inner peripheral direction of a cross section of the subject. 2. The ultrasonic measurement device according to claim 1, wherein the reflector is a cone with an mf ratio, in which the curve formed by the reflecting surface is a curved curve in a longitudinal section including its axis. . 3. The ultrasonic measuring device according to claim 1 or 2, further comprising a converter that digitally displays the minimum wall thickness dimension of the measured cross-sectional area. 4. The ultrasonic measuring device according to any one of claims 1 to 3, characterized in that the object to be examined is a tube, the vibrator is a substantially annular shape, and the shoe reflector is a substantially conical shape. . 5. The reflector is formed to have a concave conical part with its apex located within and above the reflector, and the object to be examined can be displaced through the central cavity of the probe and the reflector. Claims 1 to 3 characterized in that
The ultrasonic measuring device according to any one of paragraphs. 6. The ultrasonic measuring device according to claim 5, wherein the object to be examined is a tube, the vibrator is approximately annular, and the reflecting surface of the reflector is approximately a concave conical surface.
JP58029398A 1983-02-25 1983-02-25 Ultrasonic wave measuring equipment Granted JPS59155709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029398A JPS59155709A (en) 1983-02-25 1983-02-25 Ultrasonic wave measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029398A JPS59155709A (en) 1983-02-25 1983-02-25 Ultrasonic wave measuring equipment

Publications (2)

Publication Number Publication Date
JPS59155709A true JPS59155709A (en) 1984-09-04
JPH0344245B2 JPH0344245B2 (en) 1991-07-05

Family

ID=12275029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029398A Granted JPS59155709A (en) 1983-02-25 1983-02-25 Ultrasonic wave measuring equipment

Country Status (1)

Country Link
JP (1) JPS59155709A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264905A (en) * 1985-08-12 1987-03-24 ゼネラル・エレクトリツク・カンパニイ Device and method for measuring thickness of partition wall of fuel tube
JP2004233144A (en) * 2003-01-29 2004-08-19 Daido Steel Co Ltd Method and apparatus for inspecting junction part
JP2018048460A (en) * 2016-09-21 2018-03-29 株式会社人材開発支援機構 Device and method for chemical injection using ultrasonic vibration in combination
WO2020091011A1 (en) * 2018-11-01 2020-05-07 株式会社ハイボット Ultrasonic probe, and method for measuring thickness of pipe being inspected using same
CN113832337A (en) * 2021-10-22 2021-12-24 北京理工大学 Residual stress reduction device for barrel type component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339786A (en) * 1976-09-24 1978-04-11 Tokyo Keiki Kk Ultrasonic flaw detection
JPS53110551A (en) * 1977-03-07 1978-09-27 Texaco Development Corp Measuring method and apparatus for thickness using pulseeecho
JPS53149057A (en) * 1977-05-31 1978-12-26 Commissariat Energie Atomique Supersonic centering apparatus
JPS54109467A (en) * 1976-03-29 1979-08-28 Commissariat Energie Atomique Measuring apparatus by supersonic wave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109467A (en) * 1976-03-29 1979-08-28 Commissariat Energie Atomique Measuring apparatus by supersonic wave
JPS5339786A (en) * 1976-09-24 1978-04-11 Tokyo Keiki Kk Ultrasonic flaw detection
JPS53110551A (en) * 1977-03-07 1978-09-27 Texaco Development Corp Measuring method and apparatus for thickness using pulseeecho
JPS53149057A (en) * 1977-05-31 1978-12-26 Commissariat Energie Atomique Supersonic centering apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264905A (en) * 1985-08-12 1987-03-24 ゼネラル・エレクトリツク・カンパニイ Device and method for measuring thickness of partition wall of fuel tube
JP2004233144A (en) * 2003-01-29 2004-08-19 Daido Steel Co Ltd Method and apparatus for inspecting junction part
JP2018048460A (en) * 2016-09-21 2018-03-29 株式会社人材開発支援機構 Device and method for chemical injection using ultrasonic vibration in combination
WO2020091011A1 (en) * 2018-11-01 2020-05-07 株式会社ハイボット Ultrasonic probe, and method for measuring thickness of pipe being inspected using same
JP2020071167A (en) * 2018-11-01 2020-05-07 荏原環境プラント株式会社 Ultrasonic probe and method for measuring pipe thickness under test using the same
CN113832337A (en) * 2021-10-22 2021-12-24 北京理工大学 Residual stress reduction device for barrel type component

Also Published As

Publication number Publication date
JPH0344245B2 (en) 1991-07-05

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US5767410A (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
JP3186810B2 (en) Apparatus for ultrasonic nondestructive inspection of elongated components having a substantially constant cross section
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
JPH07167841A (en) Method for detecting corrosion fatigue crack of boiler tube with film
JP7450098B2 (en) Ultrasonic testing method and ultrasonic testing equipment
US3262307A (en) Omnidirectional ultrasonic search system
EP0139867B1 (en) Near surface inspection system
US5377237A (en) Method of inspecting repaired stub tubes in boiling water nuclear reactors
JP2019506597A (en) Apparatus and method for inspecting and measuring welding defects on a cylindrical wall
US4388831A (en) Ultrasonic probe for nondestructive inspection
JPS59155709A (en) Ultrasonic wave measuring equipment
US3417609A (en) Ultrasonic inspection transducer
KR101199717B1 (en) The Phased Array Ultrasonic Testing Calibration Block for the Circumferential Scan Located at Tapered Weld and System for Measuring the Position of refracting angle and twisting angle using thereof
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
KR100768390B1 (en) Heat exchanger tube inspection device using guided ultrasonic wave
CN115047071A (en) Detection device and detection method for plug-in fillet weld of thick-wall pressure-bearing equipment
JP2994852B2 (en) Ultrasonic probe for boiler tube flaw detection
JPS61191960A (en) Ultrasonic inspection of tube or bar material
CN214374519U (en) Fine sound beam ultrasonic probe
JP3297348B2 (en) Ultrasonic probe
JP2539019B2 (en) Ultrasonic flaw detection
JP2002090352A (en) Axial flaw detecting ultrasonic flaw detector
JPH08189919A (en) Ultrasonic flaw detection test method
JPH11258214A (en) Ultrasonic sensor