JPH07244028A - Apparatus and method for ultrasonically detecting flaw on spherical body to be detected - Google Patents

Apparatus and method for ultrasonically detecting flaw on spherical body to be detected

Info

Publication number
JPH07244028A
JPH07244028A JP6035883A JP3588394A JPH07244028A JP H07244028 A JPH07244028 A JP H07244028A JP 6035883 A JP6035883 A JP 6035883A JP 3588394 A JP3588394 A JP 3588394A JP H07244028 A JPH07244028 A JP H07244028A
Authority
JP
Japan
Prior art keywords
defect
ultrasonic
spherical object
probe
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6035883A
Other languages
Japanese (ja)
Inventor
Taiji Hirasawa
泰治 平澤
Ichiro Furumura
一朗 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6035883A priority Critical patent/JPH07244028A/en
Publication of JPH07244028A publication Critical patent/JPH07244028A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/265Spherical objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Abstract

PURPOSE:To improve the defect detecting capacity and operability of inspection without necessity of executing a measurement with a complicated operation in the case of inspecting a defect occurred on the surface of a spherical body to be detected made of ceramics, etc. CONSTITUTION:A pair of probes 12 for simultaneously focusing ultrasonic waves to one position of the surface of a fixed spherical body 11 to be detected are disposed symmetrically to a normal O of an ultrasonic wave incident point P to the body 11 to be detected in such a manner that an ultrasonic incident beam is at a predetermined angle to be the state along the surface of the body 11 to be detected. The apparatus for ultrasonically detecting the flaw of the body to be detected comprises a driving mechanism 13 for holding and rotating the probes 12 by disposing around the normal O and angle conditions, and a controller 14 for detecting a defect position and a defect shape of the body 11 to be detected based on transmitted and received ultrasonic waveforms of the probes 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックボールベア
リング等の球状被検体の欠陥検査を行い、微小な欠陥に
対して、高精度の欠陥および欠陥位置検出を行い、製品
の健全性を確保するための球状被検体の超音波探傷装置
およびその方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention inspects a spherical object such as a ceramic ball bearing for a defect and detects a minute defect and a defect position with respect to a minute defect to ensure product soundness. The present invention relates to an ultrasonic flaw detector for a spherical object and a method therefor.

【0002】[0002]

【従来の技術】セラミックなどの硬質材料では、加工時
に発生する微小な表面傷が応力集中源となり、割れの発
生等、製品の健全性や信頼性を損う原因となる。このた
め、従来より被検体の健全性確保を目的として超音波探
傷による欠陥検査が実施されている。
2. Description of the Related Art In a hard material such as ceramics, minute surface scratches generated during processing serve as a stress concentration source, which may cause cracks or the like to impair product soundness and reliability. Therefore, conventionally, a defect inspection by ultrasonic flaw detection has been performed for the purpose of ensuring the soundness of the object.

【0003】しかし、セラミックボールベアリング等の
球状被検体を対象とする従来の超音波探傷方法では、一
般に欠陥検出能が低い。
However, in the conventional ultrasonic flaw detection method for a spherical object such as a ceramic ball bearing, the defect detectability is generally low.

【0004】例えば、図9に示すように、球状被検体1
を水2中に浸した状態で垂直探触子3aを球状被検体1
の中心軸上の一定位置P0 に設置して行う垂直探傷法で
は、球状被検体1の表面の欠陥R0 を探傷できる範囲が
限定され、特に割れのような欠陥の検出は困難である。
この条件で被検体1の全面を探傷するには、球状被検体
1を回転させるともに、超音波入射点P1 を被検体1の
全面に設定しなければならず、探傷データの再現性が悪
く、また、多大な検査時間がかかり、困難な問題も多
い。
For example, as shown in FIG. 9, a spherical object 1
The vertical probe 3a with the spherical probe 1 immersed in water 2.
In the vertical flaw detection method, which is performed at a fixed position P0 on the central axis of, the flaw R0 on the surface of the spherical object 1 is limited in its flaw detection range, and it is particularly difficult to detect flaws such as cracks.
In order to perform flaw detection on the entire surface of the subject 1 under this condition, the spherical subject 1 must be rotated and the ultrasonic wave incident point P1 must be set on the entire face of the subject 1, resulting in poor reproducibility of flaw detection data. Further, it takes a lot of inspection time and there are many difficult problems.

【0005】なお、垂直探触子3aを一定の偏心位置P
1 に設定し、被検体表面を超音波が伝搬する条件を与え
て探傷する方法も知られているが、適正位置P1 の選定
に要する時間が多大にかかり、また上記同様、球状被検
体1を回転させて、超音波入射点を被検体全面に設定し
なければならず、検査時間や工数が多大に費される。
It should be noted that the vertical probe 3a is set to a constant eccentric position P.
There is also known a method in which the ultrasonic wave is set to 1 and the ultrasonic wave is propagated on the surface of the object to be inspected, but it takes a lot of time to select the proper position P1. Since the ultrasonic wave incident point must be set on the entire surface of the subject by rotating it, the inspection time and man-hours are greatly increased.

【0006】また、例えば特開昭63−243751号
公報等で開示されているように、斜角探傷法によって球
状被検体の探傷を行う方法も知られている。即ち、図1
0に示すように、斜角探触子3bの被検体入射角度γを
臨界角(表面波発生角)以上の角度に設定して欠陥R2
の探傷を行う方法である。この方法では、欠陥反射面積
を大きくして欠陥検出能を被検体全面に設定しなければ
ならず、またノイズも多い。したがって、探傷データの
再現性に難点があるとともに、検査時間が多くかかる等
の問題がある。
Further, as disclosed in, for example, Japanese Patent Laid-Open No. 63-243751, there is also known a method for flaw detection of a spherical object by an oblique angle flaw detection method. That is, FIG.
As shown in 0, the incident angle γ of the bevel probe 3b is set to an angle equal to or greater than the critical angle (surface wave generation angle) and the defect R2
This is a method of flaw detection. In this method, it is necessary to increase the defect reflection area and set the defect detectability on the entire surface of the object, and there is much noise. Therefore, there is a problem in that the reproducibility of flaw detection data is difficult and the inspection time is long.

【0007】[0007]

【発明が解決しようとする課題】従来、セラミック等の
球状被検体の表面に発生する欠陥の検査を行う場合、超
音波入射点を被検体表面の全ての位置に設定する必要が
あるために、被検体を適正に回転させるか、あるいは探
触子を走査させる等の複雑な操作を行う必要があり、欠
陥形状および欠陥位置に関する高精度や検査が行えず、
また作業効率が悪いという問題があった。
Conventionally, when inspecting defects generated on the surface of a spherical object such as ceramic, it is necessary to set the ultrasonic wave incident point at all positions on the object surface. It is necessary to perform complicated operations such as properly rotating the subject or scanning the probe, and high precision and inspection regarding the defect shape and defect position cannot be performed,
There was also the problem of poor work efficiency.

【0008】本発明は上記問題に鑑みてなされたもの
で、その目的はセラミック等の球状被検体の表面に発生
する欠陥の検査において、複雑な操作を伴う計測を実施
する必要がなく、欠陥検出能や検査の作業性向上が図れ
る球状被検体の超音波探傷装置およびその方法を提供す
ることにある。
The present invention has been made in view of the above problems, and its purpose is to detect a defect generated on the surface of a spherical object such as a ceramic, without the need to perform a measurement involving a complicated operation and to detect the defect. An object of the present invention is to provide an ultrasonic flaw detector for a spherical object and a method therefor capable of improving the performance and the workability of inspection.

【0009】[0009]

【課題を解決するための手段】本発明は、例えばリング
状の振動子を同心円に多数配列したリングアレイ探触子
を一対用い、被検体中心と被検体への超音波入射点とで
つくる法線に対して対象に配置し、各振動子の励振タイ
ミングを調整して、超音波強度の大きい信号を集束さ
せ、かつ被検体表面を超音波が伝搬するように球状被検
体の入射点に送受信させる。さらに、このような一対の
探触子を対向保持させた状態で、被検体中心と超音波入
射点とでつくる法線の周りを所定の角度ずつ回転させつ
つ、超音波送受信を繰り返して実施する。
According to the present invention, for example, a pair of ring array probes in which a large number of ring-shaped transducers are concentrically arranged are used, and a method of forming the center of an object and an ultrasonic wave incident point on the object is used. Arranged on the line as a target, adjusting the excitation timing of each transducer to focus signals with high ultrasonic intensity, and transmit / receive to / from the incident point of the spherical object so that ultrasonic waves propagate on the surface of the object. Let Further, while holding such a pair of probes facing each other, ultrasonic transmission / reception is repeatedly performed while rotating around a normal line formed by the center of the subject and the ultrasonic wave incident point by a predetermined angle. .

【0010】さらに、球状被検体表面の全面探傷におい
て、各探傷ラインで検出された欠陥エコーに対しては、
その検出時間や被検体内の音速等の計測条件を求めるこ
とにより、欠陥位置を高精度で検出し、また欠陥検出エ
コーの振幅強度データを予め求めておいた距離振幅構成
曲線に照合することで、欠陥寸法も測定する。
Further, in the flaw detection on the entire surface of the spherical object, the defect echo detected in each flaw detection line is as follows:
By obtaining the measurement conditions such as the detection time and the sound velocity in the subject, the defect position can be detected with high accuracy, and the amplitude intensity data of the defect detection echo can be collated with the previously obtained distance amplitude configuration curve. Also, measure the defect size.

【0011】[0011]

【作用】このような本発明に係る球状被検体の超音波探
傷装置およびその方法によれば、探傷条件の1つである
超音波入射角を非常に容易にかつ高精度で求めることが
でき、また、被検体中心と超音波入射点とでつくる法線
の周りを所定の角度で回転させながら探傷することによ
り、球状被検体の表面を全面探傷でき、さらに、前記探
傷で検出された欠陥エコーについては、探傷ライン,欠
陥エコーの検出時間,被検体の音速等により欠点位置を
高精度で測定できる。さらに、欠陥エコーの振幅強度デ
ータを予め求めておいた距離振幅構成曲線に照合するこ
とで、欠陥寸法も測定することができ、製品の健全性を
確保することができる。
According to the ultrasonic flaw detection apparatus for a spherical object and the method therefor according to the present invention, the ultrasonic wave incident angle, which is one of the flaw detection conditions, can be obtained very easily and highly accurately. Further, by performing flaw detection while rotating around a normal line formed by the center of the subject and the ultrasonic wave incident point at a predetermined angle, the entire surface of the spherical subject can be flaw-detected, and further, the defect echo detected by the flaw detection. With respect to, the defect position can be measured with high accuracy by the flaw detection line, the detection time of the defect echo, the sound velocity of the subject, and the like. Further, by comparing the amplitude intensity data of the defect echo with the previously obtained distance amplitude configuration curve, the defect size can be measured and the soundness of the product can be secured.

【0012】[0012]

【実施例】以下、本発明の実施例を図1〜図7を参照し
て説明する。図1は本実施例による球状被検体の超音波
探傷装置の全体構成を示し、図2および図3はそのうち
計測機構部を拡大して詳細に示している。図4〜図6は
作用を示している。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows the overall configuration of an ultrasonic flaw detector for a spherical object according to this embodiment, and FIGS. 2 and 3 show the measurement mechanism section in enlarged detail. 4 to 6 show the operation.

【0013】本実施例の超音波探傷装置は基本的に図1
および図2に示すように、固定された球状被検体11の
表面一個所に超音波を共に集束させる一対の探触子12
を、その球状被検体11への超音波入射点Pにおける法
線Oに対して対象となる配置で、かつ超音波入射ビーム
が球状被検体11の表面に沿う状態となる一定の角度で
それぞれ設け、各探触子12を法線Oの周りで前記配置
および角度条件を保持して回転させる駆動機構13と、
探触子12の超音波送受信波形に基づいて球状被検体1
1の欠陥位置および欠陥形状の検出を行なう制御装置1
4とを備えた構成とされている。
The ultrasonic flaw detector of this embodiment is basically shown in FIG.
As shown in FIG. 2 and FIG. 2, a pair of probes 12 for focusing the ultrasonic waves together on one surface of the fixed spherical object 11.
Are provided in a symmetrical arrangement with respect to the normal line O at the ultrasonic wave incident point P to the spherical subject 11, and at a constant angle such that the ultrasonic incident beam is along the surface of the spherical subject 11. A drive mechanism 13 for rotating each probe 12 around the normal O while maintaining the arrangement and the angle condition,
The spherical subject 1 based on the ultrasonic wave transmission / reception waveform of the probe 12
Control device 1 for detecting defect position and defect shape of No. 1
4 is provided.

【0014】詳述すると、探触子12は、水等の接触媒
質15を介して超音波送受信される構成になっている。
接触媒質14の収容槽16の底部には、球状被検体11
との接触時の接触媒質15の漏洩防止および超音波伝搬
特性の低下防止のために、音響インピーダンス特性の優
れたシート17が設けらてれいる。
More specifically, the probe 12 is constructed so that ultrasonic waves are transmitted and received via a contact medium 15 such as water.
At the bottom of the storage tank 16 for the couplant 14, the spherical object 11
A sheet 17 having excellent acoustic impedance characteristics is provided in order to prevent the leakage of the contact medium 15 and the deterioration of the ultrasonic wave propagation characteristics during contact with the sheet.

【0015】また、一対の探触子12の法線Oに対する
距離a、および被検体11との距離bは、それぞれ後述
する機構によって調節可能とされている。
The distance a with respect to the normal line O of the pair of probes 12 and the distance b with respect to the subject 11 can be adjusted by mechanisms described later.

【0016】そして、一対の探触子12は、その配置を
一定に保持した状態で、超音波入射点における法線O上
を所定の回転角θで、順次連続的に回転できるようにな
っている。
The pair of probes 12 can be sequentially and continuously rotated at a predetermined rotation angle θ on the normal line O at the ultrasonic wave incident point while the arrangement thereof is kept constant. There is.

【0017】各探触子12は、図2に示すように、角度
変化可能な筒状の探触子走査ガイド18内に、法線Oに
対して対象に設置され、かつ保持機構19によってそれ
ぞれ所定の位置に保持されている。
As shown in FIG. 2, each probe 12 is installed inside a cylindrical probe scanning guide 18 whose angle can be changed and is symmetrical with respect to the normal O, and is held by a holding mechanism 19. It is held in place.

【0018】また、球状の入射角設定治具20が両探触
子12間に配置され、その突出部21が、探触子走査ガ
イド18の溝部22に挿入されており、入射が設定用治
具20に連結されている駆動ロッド23の上下動によ
り、入射角γが任意に変更できるようになっている。
Further, a spherical incident angle setting jig 20 is arranged between both the probes 12, and a projecting portion 21 thereof is inserted into a groove portion 22 of the probe scanning guide 18 so that the incident light is set. The incident angle γ can be arbitrarily changed by the vertical movement of the drive rod 23 connected to the tool 20.

【0019】各探触子12は、それぞれ複数の異径リン
グ状の振動子12aを同心円上に配列したリングアレイ
探触子とされている。
Each probe 12 is a ring array probe in which a plurality of different-diameter ring-shaped vibrators 12a are arranged concentrically.

【0020】制御装置14は図1に示すように、探触子
12の機械的動作を制御するコントローラ24,探触子
12の各振動子の励振タイミングの遅延時間制御により
球状被検体表面の超音波入射点Pへの超音波集束を行う
制御手段としてのパルサー群25,各振動子12a毎の
超音波エコーの受信を行うレシーバ群26,これらの動
作指令を行うCPU27,レシーバ群26からの超音波
エコーを総和して波形を求める加算回路28,加算した
信号を変換するA/D変換器29,変換した信号を記憶
する記憶装置30,この記憶装置30とCPU27から
の情報に基づいて信号処理を行う演算処理部31および
その表示装置32を備えた構成とされている。
As shown in FIG. 1, the control unit 14 controls the mechanical operation of the probe 12 by controlling the delay time of the excitation timing of each transducer of the probe 12 and the transducer 12, and controls the surface of the spherical object. A pulser group 25 as a control means for focusing the ultrasonic wave on the sound wave incident point P, a receiver group 26 for receiving ultrasonic echoes for each transducer 12a, a CPU 27 for issuing an operation command for these, and a super unit from the receiver group 26. An adding circuit 28 for summing the sound wave echoes to obtain a waveform, an A / D converter 29 for converting the added signals, a storage device 30 for storing the converted signals, and signal processing based on information from the storage device 30 and the CPU 27. It is configured to include an arithmetic processing unit 31 for performing the above and a display device 32 thereof.

【0021】次に作用を説明する。Next, the operation will be described.

【0022】まず、各探触子12の振動子12aを、図
1のパルサー群25の励振タイミングを制御することに
より、各探触子からの超音波ビームが、球状被検体11
への入射点Pに集束するようにする。ここで、超音波ビ
ームの入射角γは、次の(1)式で求められる、被検体
表面上を表面波が伝搬するような角度αである。
First, by controlling the excitation timing of the pulsar group 25 shown in FIG. 1 for the transducer 12a of each probe 12, the ultrasonic beam from each probe becomes a spherical object 11.
The light is focused on the incident point P on. Here, the incident angle γ of the ultrasonic beam is an angle α such that the surface wave propagates on the surface of the subject, which is obtained by the following equation (1).

【0023】[0023]

【数1】 V1/ sinα=V2/ sin90° ……(1) ここで、V1,V2はそれぞれ接触媒質15および球状
被検体11内の各音速である。
## EQU1 ## V1 / sin α = V2 / sin 90 ° (1) where V1 and V2 are the sonic velocities in the contact medium 15 and the spherical object 11, respectively.

【0024】このように設定した入射角αで、探触子1
2の一方から超音波ビームUB1を入射させると、超音
波ビームUB1は、球状被検体11表面を伝搬し、伝搬
経路上に欠陥が存在すれば、欠陥で反射して超音波エコ
ーUB2として探触子12で受信される。また、伝搬経
路上に欠陥が存在しなければ、球表面を1周して探触子
12の他方で受信される。探触子12の他方から超音波
を入射させた場合も同様であり、探触子12の一方で受
信される。
With the incident angle α thus set, the probe 1
When the ultrasonic beam UB1 is made incident from one of the two, the ultrasonic beam UB1 propagates on the surface of the spherical object 11 and if there is a defect on the propagation path, the ultrasonic beam UB1 is reflected by the defect and detected as an ultrasonic echo UB2. It is received by the child 12. Further, if there is no defect on the propagation path, it is received by the other side of the probe 12 after making one round of the spherical surface. The same applies when the ultrasonic wave is incident from the other side of the probe 12, and the ultrasonic wave is received by the one side of the probe 12.

【0025】このような作用を行いながら、各探触子1
2はその相対位置を保持した状態で、球状被検体11の
中心と入射点とでつくる法線O上を、所定の角度ずつ移
動しながら、前記同様な超音波送受信を、回転角θ=3
60°になるまで繰り返し行う。
While performing such an operation, each probe 1
Reference numeral 2 indicates the same ultrasonic wave transmission / reception as described above while rotating the normal line O formed by the center of the spherical object 11 and the incident point in a state where the relative position is held by a predetermined angle.
Repeat until 60 °.

【0026】このようにして各振動子12aで受信され
る超音波は、レシーバ群26で電気信号に変換され、加
算回路28にて遅延加算された後、A/D変換機29を
介して記憶装置30に送られ、超音波波形データとして
記憶される。さらに、中性子波形データは、演算処理部
31に送られ、回転角θ=0〜360°の探傷時の全超
音波波形データに対して、欠陥波形の発生時間t1,振
幅値V1の演算処理が行われ、欠陥位置および予め求め
ておいた評価曲線を用いて等価欠陥寸法の算出が行われ
る。これらの演算処理結果および検出した全超音波波形
データは、表示装置32に選択的に表示することができ
る。これら一連の超音波送受信操作,探触子12の回転
制御,各種演算処理,演算処理結果等の表示等は、CP
U27により制御される。
In this way, the ultrasonic waves received by each transducer 12a are converted into electric signals by the receiver group 26, delayed and added by the adding circuit 28, and then stored via the A / D converter 29. It is sent to the device 30 and stored as ultrasonic waveform data. Further, the neutron waveform data is sent to the arithmetic processing unit 31, and the arithmetic processing of the defect waveform occurrence time t1 and the amplitude value V1 is performed on all the ultrasonic waveform data at the time of flaw detection at the rotation angle θ = 0 to 360 °. Then, the equivalent defect dimension is calculated using the defect position and the evaluation curve obtained in advance. The results of these arithmetic processes and the detected total ultrasonic waveform data can be selectively displayed on the display device 32. This series of ultrasonic wave transmission / reception operations, rotation control of the probe 12, various calculation processes, display of calculation process results, etc.
Controlled by U27.

【0027】ここで超音波入射角に対する受信強度分布
図である図4も用いて探触子12の球状被検体11への
超音波入射角設定方法について説明する。
Here, a method of setting the ultrasonic wave incident angle on the spherical object 11 of the probe 12 will be described with reference to FIG. 4 which is a distribution diagram of the reception intensity with respect to the ultrasonic wave incident angle.

【0028】探触子12は、前記のようにそれぞれリン
グ状の振動子12aを多数配列設置しており、CPU2
7の指令によるパルサー群25の励振タイミングの制御
により、超音波ビームを集束させ、エネルギの強い超音
波を球状被検体11への入射点Pに入射させることがで
きる。そこで、駆動ロッド23を法線Oの方向に沿って
動作させながら、探触子12の一方から送信した超音波
を、探触子12の他方にて受信させ、そのときの超音波
受信強度を入射角γに対してプロットすると、図4に示
すように、受信強度が著しく低下する角度がある。この
角度が超音波臨界角、即ち、球状被検体11の表面を伝
播する入射角γ0 である。このような方法を用いれば、
計算処理することなく、また、非常に容易にかつ高精度
で、球状被検体11への入射角γを決定することができ
る。
As described above, the probe 12 has a large number of ring-shaped vibrators 12a arranged in an array.
By controlling the excitation timing of the pulsar group 25 in accordance with the command of 7, the ultrasonic beam can be focused and the ultrasonic wave with high energy can be made incident on the incident point P on the spherical object 11. Therefore, while operating the drive rod 23 along the direction of the normal O, the ultrasonic wave transmitted from one of the probes 12 is received by the other side of the probe 12, and the ultrasonic wave reception intensity at that time is calculated. When plotted against the incident angle γ, as shown in FIG. 4, there is an angle at which the reception intensity significantly decreases. This angle is the ultrasonic critical angle, that is, the incident angle γ 0 propagating on the surface of the spherical object 11. With this method,
The incident angle γ on the spherical object 11 can be determined very easily and highly accurately without performing calculation processing.

【0029】次に、各探触子12を、法線Oを挟んで対
向配置させた状態で、この法線Oの周囲に所定の角度ず
つ回転させながら、前記同様、球状被検体11の探傷を
行う。
Next, while the probes 12 are arranged opposite to each other with the normal line O interposed therebetween, the flaw detection of the spherical object 11 is performed in the same manner as above while rotating around the normal line O by a predetermined angle. I do.

【0030】図5は、探触子12を所定の角度で回転さ
せたときの探傷に関する模式図である。
FIG. 5 is a schematic diagram relating to flaw detection when the probe 12 is rotated at a predetermined angle.

【0031】同図に示すように、探触子12はの一方の
探傷位置をA1,A2,A3,…と所定の回転角度毎に
移動させたときの超音波伝搬経路は、球状被検体11の
表面に沿うa1 ,a2 ,a3 ,…の如き状態となり、ま
た、探触子12の他方の探傷位置をB1,B2,B3,
…と所定の回転角度毎に移動させたときの超音波伝搬経
路は、同様にb1 ,b2 ,b3 ,…となり、回転角θ=
0〜360°の範囲を、所定の移動角度で探傷すること
により、球状被検体11の全表面を探傷することができ
る。
As shown in the figure, the probe 12 has a spherical test object 11 as an ultrasonic wave propagation path when one of the flaw detection positions is moved by A1, A2, A3 ,. , Along the surface of the probe 12, and the other flaw detection positions of the probe 12 are set to B1, B2, B3.
, And the ultrasonic wave propagation paths when moved at predetermined rotation angles are b1, b2, b3, ... Similarly, the rotation angle θ =
By performing flaw detection in the range of 0 to 360 ° at a predetermined movement angle, it is possible to detect the entire surface of the spherical object 11.

【0032】図6および図7は、前記探傷の欠陥検出に
関する説明図である。
FIGS. 6 and 7 are explanatory views relating to the defect detection of the flaw detection.

【0033】探触子12の位置A1から超音波を送信
し、その伝搬経路上に欠陥Rが存在する場合、探触子位
置A1では欠陥Rからの反射エコーが時間t1 の位置に
検出され、探触子位置B1では、超音波が到達せず超音
波エコーは検出されない。
When ultrasonic waves are transmitted from the position A1 of the probe 12 and a defect R exists on the propagation path of the ultrasonic wave, a reflection echo from the defect R is detected at the position of the probe A at the time t1. At the probe position B1, ultrasonic waves do not reach and ultrasonic echoes are not detected.

【0034】また、探触子12の位置B1から超音波を
送信した場合は、前記とは逆に、探触子位置B1では欠
陥Rからの反射エコーが時間t2 の位置に検出され、探
触子位置A1では、超音波が到達せず超音波エコーは検
出されない。
When ultrasonic waves are transmitted from the position B1 of the probe 12, contrary to the above, at the probe position B1, the reflection echo from the defect R is detected at the position of time t2, and At the child position A1, ultrasonic waves do not reach and ultrasonic echoes are not detected.

【0035】このような方法で検出された欠陥位置は、
次の(2),(3)式で求めることができる。即ち、
The defect position detected by such a method is
It can be obtained by the following equations (2) and (3). That is,

【数2】 [Equation 2]

【数3】 [Equation 3]

【0036】また、探触子12から入射点Pまでの距離
a1 と接触媒質15の音速V1が既知であれば、次の
(4)式で欠陥位置が求められる。
If the distance a1 from the probe 12 to the incident point P and the sound velocity V1 of the contact medium 15 are known, the defect position can be obtained by the following equation (4).

【0037】[0037]

【数4】 [Equation 4]

【0038】また、欠陥寸法は、予め距離振幅構成曲線
を求めておき、この曲線に、検出された欠陥エコーの振
幅値を照合することにより、等価欠陥寸法として求める
ことができる。
Further, the defect size can be obtained as an equivalent defect size by previously obtaining a distance amplitude component curve and checking the amplitude value of the detected defect echo with this curve.

【0039】以上の実施例によれば、複数個の振動子1
2aをリング状に配列したリングアレイ探触子12を一
対用い、球状被検体11の中心とその超音波入射点Pと
でつくる法線Oに対して対象に配置し、各振動子12a
の励振タイミングを電子的に遅延時間制御して、超音波
強度の大きい信号を所定の位置を集束させ、かつ被検体
表面を超音波が伝搬するように球状被検体の入射点に送
受信することになる。このような一対の探触子12を対
向保持させた状態で、球状被検体11の中心と超音波入
射点Pとでつくる法線Oの周りを所定の角度ずつ回転さ
せつつ、超音波の送受信を繰り返し実施することで、球
状被検体11の表面を全面探傷することができる。
According to the above embodiment, a plurality of vibrators 1
A pair of ring array probes 12 in which 2a are arranged in a ring shape are used, and they are arranged in a target with respect to a normal line O formed by the center of the spherical object 11 and its ultrasonic wave incident point P.
By electronically controlling the delay time of the excitation timing of, the signal with a large ultrasonic intensity is focused at a predetermined position, and the ultrasonic wave is transmitted / received to / from the incident point of the spherical object so that the ultrasonic wave propagates. Become. While the pair of probes 12 are held facing each other, ultrasonic waves are transmitted and received while rotating around a normal line O formed by the center of the spherical object 11 and the ultrasonic wave incident point P by a predetermined angle. By repeatedly carrying out, it is possible to detect the entire surface of the spherical object 11.

【0040】したがって、各探傷ラインで検出された欠
陥エコーに対し、その検出時間や被検体の音速等の計測
条件が既知であれば、欠陥位置を高精度で検出できる。
また、欠陥エコーの振幅強度データを、予め求めておい
た距離振幅構成曲線に照合することで、欠陥寸法も測定
することができ、被検体製品の健全性,信頼性を確保す
ることができる。
Therefore, for the defect echo detected on each flaw detection line, if the measurement conditions such as the detection time and the sound velocity of the object are known, the defect position can be detected with high accuracy.
Further, by comparing the amplitude intensity data of the defect echo with the previously obtained distance-amplitude constituent curve, the defect size can be measured and the soundness and reliability of the object product can be ensured.

【0041】なお、以上の実施では、探触子12をリン
グアレイ探触子としたが、本発明では他の構成の探触子
を適用することができる。
In the above implementation, the probe 12 is the ring array probe, but a probe having another structure can be applied in the present invention.

【0042】例えば図8に示すように、複数個の振動子
12bを1列に配列したアレイ探触子12′を用い、送
信時および受信時に、各振動子12bの励振タイミング
を電子的に遅延時間制御することで、球状被検体11の
表面の超音波入射点Pに超音波集束を施し、以下、前記
実施例と同様の操作を行うことで、欠陥および欠陥の位
置を高精度で測定でき、さらに、寸法測定も可能とする
ことができる。
For example, as shown in FIG. 8, an array probe 12 'having a plurality of transducers 12b arranged in a line is used to electronically delay the excitation timing of each transducer 12b during transmission and reception. By controlling the time, the ultrasonic wave is focused on the ultrasonic wave incident point P on the surface of the spherical object 11, and the defect and the position of the defect can be measured with high accuracy by performing the same operation as in the above embodiment. Further, it is possible to enable dimension measurement.

【0043】ここで、前記遅延時間制御は、図8に示す
ように外側で大きく設定することで、従来に比べて超音
波ビームを長い距離に亘って細い指向性を有するような
制御を可能とする。
Here, the delay time control is set to a large value on the outside as shown in FIG. 8, so that the ultrasonic beam can be controlled to have a narrow directivity over a long distance as compared with the conventional one. To do.

【0044】即ち、アレイ探触子12′の両端の振動子
12bを中心として、半径r1(r1:アレイ探触子の
長さの1/2)の半円の形状になるような遅延時間の与
え方を行うことで、前記超音波ビームの特性を得ること
ができる。
That is, there is a delay time of a semicircle having a radius r1 (r1: 1/2 of the length of the array probe) centered on the transducers 12b at both ends of the array probe 12 '. The characteristics of the ultrasonic beam can be obtained by giving the method.

【0045】また、前記アレイ探触子12′の各振動子
の配列は、一対の探触子の移動方向あるいは、移動方向
に垂直な方向のいずれでも選択することができる。
The array of the transducers of the array probe 12 'can be selected either in the moving direction of the pair of probes or in the direction perpendicular to the moving direction.

【0046】[0046]

【発明の効果】以上で詳述したように、本発明によれ
ば、探傷条件の1つである超音波入射角を非常に容易に
かつ高精度で求めることができ、また、被検体中心と超
音波入射点とでつくる法線の周りを所定の角度で回転さ
せながら探傷することにより、球状被検体の表面を全面
探傷でき、さらに、前記探傷で検出された欠陥エコーに
ついては、探傷ライン,欠陥エコーの検出時間,被検体
の音速等により欠点位置を高精度で測定できる。さら
に、欠陥エコーの振幅強度データを予め求めておいた距
離振幅構成曲線に照合することで、欠陥寸法も測定する
ことができ、製品の健全性を確保することができる。
As described above in detail, according to the present invention, the ultrasonic wave incident angle, which is one of the flaw detection conditions, can be determined very easily and with high accuracy, and the center of the object By performing flaw detection while rotating at a predetermined angle around the normal line formed with the ultrasonic wave incident point, the entire surface of the spherical object can be flaw-detected, and further, regarding the defect echo detected by the flaw detection, the flaw detection line, The defect position can be measured with high accuracy based on the detection time of the defect echo and the sound velocity of the object. Further, by comparing the amplitude intensity data of the defect echo with the previously obtained distance amplitude configuration curve, the defect size can be measured and the soundness of the product can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る球状被検体の超音波探傷装置の一
実施例を示す全体構成図。
FIG. 1 is an overall configuration diagram showing an embodiment of an ultrasonic flaw detector for a spherical object according to the present invention.

【図2】図1のセンサ部を拡大して示す詳細図。FIG. 2 is a detailed view showing the sensor section of FIG. 1 in an enlarged manner.

【図3】図2のX部を拡大して示す斜視図。3 is an enlarged perspective view showing an X portion of FIG.

【図4】同実施例の作用説明図で、超音波入射角に対す
る超音波受信強度分布を示す図。
FIG. 4 is an operation explanatory view of the embodiment, showing an ultrasonic wave reception intensity distribution with respect to an ultrasonic wave incident angle.

【図5】同実施例の作用説明図で、超音波探触子を回転
させたときの探傷模式図。
FIG. 5 is a schematic view of flaw detection when the ultrasonic probe is rotated in the operation explanatory view of the embodiment.

【図6】同実施例における超音波探傷の欠陥検出に関す
る説明図。
FIG. 6 is an explanatory diagram relating to defect detection of ultrasonic flaw detection in the example.

【図7】図6に対応するパルス信号を示す図。7 is a diagram showing a pulse signal corresponding to FIG.

【図8】本発明の他の実施例を示すもので、アレイ探触
子に与える遅延時間の説明図。
FIG. 8 shows another embodiment of the present invention, and is an explanatory diagram of a delay time given to the array probe.

【図9】従来の超音波探傷法の一例を示す説明図。FIG. 9 is an explanatory diagram showing an example of a conventional ultrasonic flaw detection method.

【図10】従来の超音波探傷法の他の例を示す説明図。FIG. 10 is an explanatory view showing another example of the conventional ultrasonic flaw detection method.

【符号の説明】[Explanation of symbols]

1,11 球状被検体 2 水 3a 垂直探触子 12 探触子 12a 振動子 13 駆動機構 14 制御装置 15 接触媒質 16 収容槽 17 シート 18 探触子走査ガイド 19 保持機構 20 入射角設定治具 21 突出部 22 溝部 23 駆動ロッド 24 コントローラ 25 パルサー群 26 レシーバ群 27 CPU27 28 加算回路 29 A/D変換器 30 記憶装置 31 演算処理部 32 表示装置 A1,A2,A3,… 探傷位置 a1 ,a2 ,a3 ,… 超音波伝搬経路 B1,B2,B3,… 探傷位置 O 法線 P 超音波入射点 P0 中心軸上の一定位置 P1 偏心位置 R0 ,R2 欠陥 t1 ,t2 時間 UB1 超音波ビーム UB2 超音波エコー V1,V2 音速 α,γ 入射角 θ 回転角 1, 11 Spherical test object 2 Water 3a Vertical probe 12 Probe 12a Transducer 13 Drive mechanism 14 Control device 15 Contact medium 16 Storage tank 17 Sheet 18 Probe scanning guide 19 Holding mechanism 20 Incident angle setting jig 21 Projection part 22 Groove part 23 Drive rod 24 Controller 25 Pulsar group 26 Receiver group 27 CPU27 28 Adder circuit 29 A / D converter 30 Storage device 31 Arithmetic processing unit 32 Display device A1, A2, A3, ... A flaw detection position a1, a2, a3 , ... Ultrasonic wave propagation path B1, B2, B3, ... flaw detection position O normal line P ultrasonic wave incident point P0 fixed position on the central axis P1 eccentric position R0, R2 defect t1, t2 time UB1 ultrasonic beam UB2 ultrasonic echo V1 , V2 Sound velocity α, γ Incident angle θ Rotation angle

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固定された球状被検体の表面一個所に超
音波を共に集束させる一対の探触子を、前記球状被検体
への超音波入射点における法線に対して対象となる配置
で、かつ超音波入射ビームが前記球状被検体の表面に沿
う状態となる一定の角度でそれぞれ設け、前記各探触子
を前記法線の周りで前記配置および角度条件を保持して
回転させる駆動機構と、前記探触子の超音波送受信波形
に基づいて前記被検体の欠陥位置および欠陥形状の検出
を行なう制御装置とを備えたことを特徴とする球状被検
体の超音波探傷装置。
1. A pair of probes for focusing ultrasonic waves together on one surface of a fixed spherical object in a target arrangement with respect to a normal line at an ultrasonic wave incident point on the spherical object. A driving mechanism for rotating the respective probes around the normal line while maintaining the arrangement and the angular conditions, the ultrasonic incidence beams being provided at a certain angle such that they are along the surface of the spherical object. And a control device for detecting a defect position and a defect shape of the subject based on an ultrasonic wave transmission / reception waveform of the probe.
【請求項2】 探触子は、複数の異径のリング状の振動
子を同心円配置で備えたリングアレイ探触子である請求
項1記載の球状被検体の超音波探傷装置。
2. The ultrasonic flaw detector for a spherical object according to claim 1, wherein the probe is a ring array probe provided with a plurality of ring-shaped transducers having different diameters in a concentric arrangement.
【請求項3】 探触子は、複数の振動子を並列配置で備
えたアレイ探触子である請求項1記載の球状被検体の超
音波探傷装置。
3. The ultrasonic flaw detector for a spherical object according to claim 1, wherein the probe is an array probe having a plurality of transducers arranged in parallel.
【請求項4】 制御装置は、各振動子の励振タイミング
の遅延時間制御により球状被検体表面の超音波入射点へ
の超音波集束を行なう制御手段を備えている請求項1記
載の球状被検体の超音波探傷装置。
4. The spherical object according to claim 1, wherein the control device includes control means for focusing ultrasonic waves on an ultrasonic wave incident point on the surface of the spherical object by controlling the delay time of the excitation timing of each transducer. Ultrasonic flaw detector.
【請求項5】 請求項1から4までに記載の装置を用い
る球状被検体の超音波探傷方法であって、一対の探触子
のうち一方を送信用、他方を受信用として用い、これら
の探触子を同時に移動させながら、超音波受信波形の強
度分布を求め、その最も弱い強度が得られた角度から超
音波入射角を設定するとともに、前記各探触子を対向保
持させた状態で、球状被検体の中心と同被検体への超音
波入射点とでつくる法線の周りで回転させながら順次に
超音波送受信を行って球状被検体表面の全面探傷を行
い、その探傷結果に基づき、探傷ライン,欠陥エコーの
発生時間および被検体内の音速ならびに被検体半径を用
いて欠陥の位置を求め、さらに欠陥の振幅値を、予め求
めておいた距離振幅構成曲線と照合することによって、
欠陥の寸法を測定することを特徴とする球状被検体の超
音波探傷方法。
5. An ultrasonic flaw detection method for a spherical object using the apparatus according to claim 1, wherein one of a pair of probes is used for transmission and the other is used for reception. While moving the probes at the same time, obtain the intensity distribution of the ultrasonic wave reception waveform, set the ultrasonic wave incident angle from the angle at which the weakest intensity was obtained, and with each probe held oppositely. , The ultrasonic wave is transmitted and received sequentially while rotating around the normal line formed by the center of the spherical object and the ultrasonic wave incident point on the same object, and the entire surface of the spherical object surface is inspected and based on the inspection result. , The flaw detection line, the time of occurrence of the defect echo and the sound velocity in the subject and the subject radius are used to determine the position of the defect, and the amplitude value of the defect is further collated with the distance-amplitude constituent curve previously obtained,
An ultrasonic flaw detection method for a spherical object, which comprises measuring the size of a defect.
JP6035883A 1994-03-07 1994-03-07 Apparatus and method for ultrasonically detecting flaw on spherical body to be detected Pending JPH07244028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6035883A JPH07244028A (en) 1994-03-07 1994-03-07 Apparatus and method for ultrasonically detecting flaw on spherical body to be detected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6035883A JPH07244028A (en) 1994-03-07 1994-03-07 Apparatus and method for ultrasonically detecting flaw on spherical body to be detected

Publications (1)

Publication Number Publication Date
JPH07244028A true JPH07244028A (en) 1995-09-19

Family

ID=12454413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6035883A Pending JPH07244028A (en) 1994-03-07 1994-03-07 Apparatus and method for ultrasonically detecting flaw on spherical body to be detected

Country Status (1)

Country Link
JP (1) JPH07244028A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617733B2 (en) * 2007-07-18 2009-11-17 Uchicago Argonne, Llc Method and apparatus for ultrasound phased array testing of bearing balls
CN105486758A (en) * 2015-12-29 2016-04-13 中国农业大学 Detection method for mildewed corn seeds
WO2016192770A1 (en) * 2015-06-01 2016-12-08 Siemens Aktiengesellschaft Ultrasonic inspection apparatus for a spherical body
CN106556645A (en) * 2016-11-25 2017-04-05 长沙理工大学 A kind of ultrasonic synthetic aperture focusing detection means of solid shafting and imaging method
CN108072700A (en) * 2017-12-07 2018-05-25 华中科技大学无锡研究院 A kind of steel ball ultrasonic detection method and device based on point focusing probe
EP3361247A4 (en) * 2015-10-06 2019-06-12 NTN Corporation Non-destructive inspection device and method for producing bearing
FR3098302A1 (en) * 2019-07-01 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Surface wave imaging device
CN115097007A (en) * 2022-08-25 2022-09-23 哈尔滨长川超声仪器科技有限公司 Holographic ultrasonic detection method for internal tissue of bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617733B2 (en) * 2007-07-18 2009-11-17 Uchicago Argonne, Llc Method and apparatus for ultrasound phased array testing of bearing balls
US10739312B2 (en) 2015-06-01 2020-08-11 Siemens Gamesa Renewable Energy A/S Ultrasonic inspection apparatus for a spherical body
WO2016192770A1 (en) * 2015-06-01 2016-12-08 Siemens Aktiengesellschaft Ultrasonic inspection apparatus for a spherical body
CN107949787A (en) * 2015-06-01 2018-04-20 西门子公司 Ultrasonic tester for ball
US20180149620A1 (en) * 2015-06-01 2018-05-31 Siemens Aktiengesellschaft Inspection apparatus for a spherical body
CN107949787B (en) * 2015-06-01 2021-02-05 西门子公司 Ultrasonic testing device for spherical bodies
EP3361247A4 (en) * 2015-10-06 2019-06-12 NTN Corporation Non-destructive inspection device and method for producing bearing
CN105486758B (en) * 2015-12-29 2019-01-04 中国农业大学 A kind of mildew corn seed detection method
CN105486758A (en) * 2015-12-29 2016-04-13 中国农业大学 Detection method for mildewed corn seeds
CN106556645A (en) * 2016-11-25 2017-04-05 长沙理工大学 A kind of ultrasonic synthetic aperture focusing detection means of solid shafting and imaging method
CN108072700A (en) * 2017-12-07 2018-05-25 华中科技大学无锡研究院 A kind of steel ball ultrasonic detection method and device based on point focusing probe
FR3098302A1 (en) * 2019-07-01 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Surface wave imaging device
CN115097007A (en) * 2022-08-25 2022-09-23 哈尔滨长川超声仪器科技有限公司 Holographic ultrasonic detection method for internal tissue of bearing

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
US3895685A (en) Method and apparatus for ultrasonic inspection of weldments
JPH0352908B2 (en)
JPS6391554A (en) Method and apparatus for ultrasonic flaw detection of welded part in steel pipe
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JP5840910B2 (en) Ultrasonic flaw detection method
US4760737A (en) Procedure for flaw detection in cast stainless steel
JP5574731B2 (en) Ultrasonic flaw detection test method
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP2002062281A (en) Flaw depth measuring method and its device
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP7180494B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP4175762B2 (en) Ultrasonic flaw detector
JP2019174239A (en) Ultrasonic flaw detection method
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
JPH05180807A (en) Method for selecting ultrasonic-wave probe and probe selected by method thereof
JPH0545346A (en) Ultrasonic probe
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes