JPH0545346A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0545346A
JPH0545346A JP23226791A JP23226791A JPH0545346A JP H0545346 A JPH0545346 A JP H0545346A JP 23226791 A JP23226791 A JP 23226791A JP 23226791 A JP23226791 A JP 23226791A JP H0545346 A JPH0545346 A JP H0545346A
Authority
JP
Japan
Prior art keywords
longitudinal
wave
waves
test specimen
transversal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23226791A
Other languages
Japanese (ja)
Inventor
Yasushi Tokuda
康史 徳田
Toru Miyata
徹 宮田
Norimitsu Sakuma
宣光 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP23226791A priority Critical patent/JPH0545346A/en
Publication of JPH0545346A publication Critical patent/JPH0545346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain echoes of high flaw detecting sensitivity and high measuring accuracy by converging waves at a focal point at the side of a transversal wave oscillator separately provided from a longitudinal wave oscillator and, detecting the echoes of the longitudinal wave+transversal wave by two oscillators. CONSTITUTION:Longitudinal ultrasonic beams of a piezoelectric element 2b are brought in and refracted with an angle between the critical angles alpha1 and beta2 of the longitudinal and transversal waves by an acoustic lens 3a, turned to transversal waves in a test specimen 6 and converged at the position of a focal point F. Meanwhile, longitudinal ultrasonic beams from a piezoelectric element 2a enter to be refracted with an angle smaller than the angle alpha1, and converged in the vicinity of the point F inside the test specimen 6 as longitudinal waves, then passing through the test specimen. A focal area F where directional areas 12a, 12b of the ultrasonic beams of the elements 2a, 2b overlap is formed. When a defect exists in the area F, the element 2a detects the longitudinal wave echoes when mainly the longitudinal waves propagate in the test specimen 6. On the other hand, the element 2b detects the transversal wave echoes when the transversal waves propagate in the test specimen 6, as longitudinal wave echoes converted at the surface of the test specimen 6. These two detecting signals are processed to be a defect detecting signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超音波探触子(以下
プローブ)に関し、詳しくは、探傷感度が高く、かつ測
定精度の高いエコーが得られるようなプローブに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe (hereinafter referred to as a probe), and more particularly to a probe capable of obtaining an echo having high flaw detection sensitivity and high measurement accuracy.

【0002】[0002]

【従来の技術】超音波探傷装置は、超音波を利用するこ
とで被検体(検査対象物)の内部の欠陥等を非破壊で検
査することができ、被検体は、通常水等の液中に浸漬さ
れるか、プローブと被検体との間に超音波伝達媒質を介
在させてその内部に超音波が導入される。そして、使用
される超音波としては縦波と横波とがある。
2. Description of the Related Art An ultrasonic flaw detector is capable of nondestructively inspecting defects (inspection objects) inside an object (object to be inspected) by utilizing ultrasonic waves. Or ultrasonic waves are introduced into the inside of the probe by interposing an ultrasonic transmission medium between the probe and the subject. The ultrasonic waves used include longitudinal waves and transverse waves.

【0003】横波の超音波を利用する場合にも一般的に
は縦波発生型のプローブが利用され、縦波と横波は、被
検体の表面に入射する角度で選択される。すなわち、被
検体に対してプローブの超音波入射点における入射角が
大きくなると、被検体内部に侵入した際に縦波が横波に
変換されて横波としての探傷ができ、被検体に対する入
射角が小さい場合には、縦波の超音波は、主として縦波
として被検体に侵入し、縦波の探傷となる。しかし、実
際には、純粋に縦波あるいは横波を発生させることが難
しく、図3に示すような従来の焦点型プローブでも縦波
と横波とが混在する。
A longitudinal wave generation type probe is also generally used in the case of utilizing a transverse wave ultrasonic wave, and the longitudinal wave and the transverse wave are selected by the angle of incidence on the surface of the subject. That is, when the incident angle at the ultrasonic wave incident point of the probe with respect to the subject becomes large, longitudinal waves are converted into transverse waves when entering the inside of the subject and flaw detection as transverse waves can be performed, and the incident angle with respect to the subject is small. In this case, the ultrasonic wave of the longitudinal wave mainly penetrates into the subject as a longitudinal wave and becomes a flaw detection of the longitudinal wave. However, in reality, it is difficult to generate purely a longitudinal wave or a transverse wave, and the longitudinal wave and the transverse wave are mixed even in the conventional focus type probe as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】図3において、9はプ
ローブであって、1はそのハウジング、2は超音波振動
子としての圧電素子、3は音響レンズ、4は、ダンパー
材、5は、リード線、6は、被検体である。そして、点
線で示すのは、このプローブ9による超音波ビームの集
束線である。なお、この点線は、直線状になっている
が、実際には、被検体6の材質に応じて被検体表面で多
少屈折する。
In FIG. 3, 9 is a probe, 1 is its housing, 2 is a piezoelectric element as an ultrasonic transducer, 3 is an acoustic lens, 4 is a damper material, and 5 is The lead wire 6 is the subject. And, the dotted line shows the focusing line of the ultrasonic beam by the probe 9. Although the dotted line is a straight line, in reality, the surface of the subject is slightly refracted depending on the material of the subject 6.

【0005】ところで、縦波と横波とでは媒体中での音
波の伝搬速度が相違する。超音波測定では音速により路
程を計算する関係からこれらの波が相互に干渉した場合
にいずれの波によるエコーであるかが区別つかなくな
る。その結果、欠陥までの正確な路程を計測し難い。こ
れによって探傷精度が低下する。これは、特に、被検体
の内部が多層になっていて境界面が複数ある被検体や欠
陥が平面的にみて重なる状態で異なる深さ方向にいくつ
かあるときなどに問題になる。その理由は、奥の境界面
(あるいは欠陥)での縦波の反射波と手前の境界面(あ
るいは欠陥)での反射波とが干渉するからである。
By the way, longitudinal waves and transverse waves have different propagation speeds of sound waves in the medium. In ultrasonic measurement, it is impossible to distinguish which wave is an echo when these waves interfere with each other because of the calculation of the path length based on the speed of sound. As a result, it is difficult to measure the accurate distance to the defect. This lowers the flaw detection accuracy. This becomes a problem especially when the inside of the subject is multi-layered and has a plurality of boundary surfaces, or when there are some defects in different depth directions in a state of overlapping in a plan view. The reason is that the reflected wave of the longitudinal wave at the back boundary surface (or defect) and the reflected wave at the front boundary surface (or defect) interfere with each other.

【0006】また、焦点型のプローブを用いて超音波探
傷を行った場合、焦点を絞って探傷精度を高くするとエ
コーレベルが低下して探傷感度が落ち、逆に探傷感度を
上げるために焦点を大きく採ると、探傷精度が低下して
しまい被検体によっては十分な探傷ができない欠点があ
る。この発明の目的は、このような従来技術の問題点を
解決するものであって、探傷感度が高く、かつ測定精度
の高いエコーが得られるプローブを提供することにあ
る。
Further, when ultrasonic flaw detection is performed using a focus type probe, if the focus is focused and the flaw detection accuracy is increased, the echo level is lowered and the flaw detection sensitivity is lowered. Conversely, the focus is increased to increase the flaw detection sensitivity. If it is taken large, the flaw detection accuracy is lowered, and there is a drawback that sufficient flaw detection cannot be performed depending on the subject. An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a probe having high flaw detection sensitivity and capable of obtaining an echo with high measurement accuracy.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るこの発明のプローブは、中央に円板状の第1の振動子
と、これに対して同心円状に設けられたリング状の第2
の振動子と、この第2のリング状の振動子からの超音波
を縦波の臨界角より大きく、横波の臨界角より小さい範
囲で被検体に入射させて所定の位置に集束させる音響レ
ンズとを備えていて、第1及び第2の振動子を駆動して
前記被検体からのエコーを得るものである。
A probe according to the present invention which achieves the above object has a disk-shaped first oscillator in the center and a ring-shaped second oscillator provided concentrically with the first oscillator.
And an acoustic lens that causes the ultrasonic waves from the second ring-shaped oscillator to enter the subject in a range larger than the critical angle of the longitudinal wave and smaller than the critical angle of the transverse wave and focused at a predetermined position. And to obtain an echo from the subject by driving the first and second oscillators.

【0008】[0008]

【作用】このように、縦波を主体とする振動子の他に被
検体内部で横波を発生する振動子を別個に設けて横波を
発生する振動子側で焦点集束を行うようにし、それぞれ
を駆動することで焦点集束の位置で縦波+横波のエコー
を2つの振動子により受信するようにすれば、焦点付近
での被検体の欠陥については感度が高く、精度の高いエ
コーを得ることができる。
As described above, in addition to the oscillator mainly composed of the longitudinal wave, the oscillator for generating the transverse wave is separately provided inside the object, and the focus is performed on the side of the oscillator for generating the transverse wave. If the two transducers receive the echoes of the longitudinal wave and the transverse wave at the focus focusing position by driving, the defect of the subject near the focus is highly sensitive and highly accurate echo can be obtained. it can.

【0009】[0009]

【実施例】図1は、この発明を適用したプローブの一実
施例の縦断面図及びその横断面図であり、図2は、その
超音波ピーク集束状態についての説明図である。なお、
図3と同等の構成は、同一の符号で示す。図1の(a)
の縦断面図及びその圧電素子に面に沿った横断面図に示
すように、プローブ10は、ハウジング1に収納されて
いる圧電素子としてハウジング1の円筒の中心線位置に
その中心を一致させて設けられた小さい円板状の圧電素
子2aと、中心がこの圧電素子2aの中心に一致してそ
の外側に設けられたリング状の圧電素子2bとからな
る。これら圧電素子は、縦波を発生するものであって、
音響レンズ3aは、リング状の圧電素子2bで発生した
縦波の超音波ビームに対して縦波の臨界角α1 と横波の
臨界角α2 との間の角度で入射させ、それを屈折させて
被検体6の内部において横波にして焦点位置Fで集束さ
せる作用をする。また、円板状の圧電素子2aで発生し
た縦波の超音波ビームを臨界角α1 よりも小さい角度で
入射させ、屈折させて被検体6の内部において縦波とし
て焦点位置F付近で絞られてここを通過するように作用
する。なお、7は、圧電素子2aのリードであり、8
は、圧電素子2bのリード線である。
1 is a longitudinal sectional view and a lateral sectional view of an embodiment of a probe to which the present invention is applied, and FIG. 2 is an explanatory view of its ultrasonic peak focusing state. In addition,
The same components as those in FIG. 3 are designated by the same reference numerals. Figure 1 (a)
As shown in the longitudinal sectional view of FIG. 1 and the transverse sectional view along the surface of the piezoelectric element, the probe 10 is a piezoelectric element housed in the housing 1 and has its center aligned with the center line position of the cylinder of the housing 1. It is composed of a small disk-shaped piezoelectric element 2a provided and a ring-shaped piezoelectric element 2b whose center coincides with the center of the piezoelectric element 2a and is provided outside thereof. These piezoelectric elements generate longitudinal waves,
The acoustic lens 3a makes the longitudinal ultrasonic beam generated by the ring-shaped piezoelectric element 2b incident at an angle between the critical angle α 1 of the longitudinal wave and the critical angle α 2 of the transverse wave and refracts it. Then, it acts to make a transverse wave inside the subject 6 and focus it at the focal position F. Further, an ultrasonic wave of a longitudinal wave generated by the disk-shaped piezoelectric element 2a is made incident at an angle smaller than the critical angle α 1 and refracted to be a longitudinal wave inside the subject 6 and is focused near the focal point F. It acts to pass through here. In addition, 7 is a lead of the piezoelectric element 2a, and 8
Is a lead wire of the piezoelectric element 2b.

【0010】その結果、図2に示すように、これら2つ
の圧電素子2a,2bが駆動された場合には、圧電素子
2aによる超音波ビームの指向性領域12aと圧電素子
2bによる超音波ビームの指向性領域12bとが重畳す
る焦点領域Fが形成される。そこで、圧電素子2aの超
音波ビームによる主として縦波(縦波+横波)が被検体
6の内部を伝搬して先の焦点領域に欠陥があるときには
その縦波のエコーが圧電素子2aにより受信されてそれ
が検出される。これとは別に圧電素子2bの超音波ビー
ムによる横波が被検体6の内部を伝搬して先の焦点領域
に欠陥があるときにはその横波のエコーが被検体6の表
面で縦波のエコーに変換されて圧電素子2bにより縦波
エコーとして受信されて検出される。ここで検出される
2つのエコー受信信号を欠陥検出信号として処理するこ
とによりエコーレベルが大きく採れるので感度は高くな
り、また、しかも、焦点は、横波側で絞られた状態にな
っているので高精度な欠陥が検出ができる。
As a result, as shown in FIG. 2, when these two piezoelectric elements 2a and 2b are driven, the directivity region 12a of the ultrasonic beam by the piezoelectric element 2a and the ultrasonic beam by the piezoelectric element 2b are generated. A focus area F that overlaps the directional area 12b is formed. Therefore, when a longitudinal wave (longitudinal wave + transverse wave) mainly due to the ultrasonic beam of the piezoelectric element 2a propagates inside the subject 6 and there is a defect in the previous focal region, the echo of the longitudinal wave is received by the piezoelectric element 2a. It is detected. Separately from this, when the transverse wave generated by the ultrasonic beam of the piezoelectric element 2b propagates inside the subject 6 and there is a defect in the previous focal region, the echo of the transverse wave is converted into a longitudinal wave echo on the surface of the subject 6. The piezoelectric element 2b receives and detects a longitudinal wave echo. By processing the two echo reception signals detected here as a defect detection signal, a large echo level can be obtained, so that the sensitivity is high, and the focus is high on the side of the transverse wave. Accurate defects can be detected.

【0011】ところで、縦波の臨界角α1 は、これより
大きな角度(法線を基準として)となると被検体6の内
部に超音波が縦波として侵入できなくなる角度である。
したがって、臨界角α1 より小さい角度では縦波と横波
とが混在する。この臨界角α1 以上のときには被検体6
の入射点で縦波が横波に変換され、横波の臨界角α2
り大きな角度になると被検体6の内部に横波としても侵
入できなくなって超音波は被検体6の表面で全反射す
る。このような臨界角α1 ,α2 は、被検体6やプロー
ブ10と被検体6との間に介在する伝播媒質に応じて相
違でする。したがって、プローブ10の音響レンズ3a
や圧電素子2a,2bの半径等は、検査対象となる被検
体6の材質や超音波伝播媒質(通常は水)に応じて決定
されることになる。例えば、被検体6が銅材のときには
水と銅との臨界角α1 は、25℃で14°前後であり、
臨界角α2 は、28°前後になる。そこで、これに応じ
て圧電素子2a,2bの半径と音響レンズ3aの曲率等
が焦点距離との関係で決定される。
By the way, the critical angle α 1 of the longitudinal wave is an angle at which the ultrasonic wave cannot penetrate into the inside of the subject 6 as a longitudinal wave when the angle is larger than this (on the basis of the normal line).
Therefore, longitudinal waves and transverse waves coexist at angles smaller than the critical angle α 1 . When this critical angle α 1 or more, the subject 6
The longitudinal wave is converted into the transverse wave at the incident point of, and when it becomes an angle larger than the critical angle α 2 of the transverse wave, the transverse wave cannot penetrate into the inside of the subject 6 and the ultrasonic wave is totally reflected on the surface of the subject 6. The critical angles α 1 and α 2 are different depending on the object 6 or the propagation medium interposed between the probe 10 and the object 6. Therefore, the acoustic lens 3a of the probe 10
The radii of the piezoelectric elements 2a and 2b and the like are determined according to the material of the subject 6 to be inspected and the ultrasonic propagation medium (usually water). For example, when the subject 6 is a copper material, the critical angle α 1 between water and copper is about 14 ° at 25 ° C.,
The critical angle α 2 is around 28 °. Therefore, according to this, the radius of the piezoelectric elements 2a and 2b and the curvature of the acoustic lens 3a are determined in relation to the focal length.

【0012】なお、縦波と横波との伝播速度に相違があ
るので、被検体6の深いところで焦点位置が設定される
場合には、圧電素子2aで検出されるエコーと圧電素子
2bで検出されるエコーとの時間的なずれを調整する必
要がある。この調整として簡単な方法としては、例え
ば、縦波と横波の焦点Fのまでの路程の相違に対応する
遅延時間を算出し、圧電素子2bを先にパルス駆動し、
先に算出された所定の時間遅延の後に圧電素子2aをパ
ルス駆動するようにすればよい。しかし、焦点位置が浅
い位置のときには、横波と縦波との調整はほとんど不要
であって、図2の焦点集束状態から理解できるように、
横波で決定される焦点位置の欠陥について感度よく高い
精度で欠陥の検出が可能である。
Since the longitudinal and transverse waves have different propagation velocities, when the focus position is set deep in the subject 6, the echo detected by the piezoelectric element 2a and the echo detected by the piezoelectric element 2b are detected. It is necessary to adjust the time lag with the echo. As a simple method for this adjustment, for example, the delay time corresponding to the difference in the path length between the longitudinal wave and the transverse wave to the focal point F is calculated, and the piezoelectric element 2b is pulse-driven first,
The piezoelectric element 2a may be pulse-driven after the previously calculated predetermined time delay. However, when the focus position is shallow, adjustment of the transverse wave and the longitudinal wave is almost unnecessary, and as can be understood from the focus focusing state of FIG.
It is possible to detect a defect at a focus position determined by a transverse wave with high sensitivity and high accuracy.

【0013】以上説明してきたが、実施例では、中心に
設けた円板状の圧電素子に対してリング状圧電素子を1
個設けているが、各種の被検体に対応して使用できるよ
うにするために半径の相違するリング状圧電素子を中心
の円板状圧電素子に対して同心円状に多数設けてもよ
い。
As described above, in the embodiment, one ring-shaped piezoelectric element is provided for the disk-shaped piezoelectric element provided at the center.
Although individual pieces are provided, a large number of ring-shaped piezoelectric elements having different radii may be provided concentrically with respect to the central disk-shaped piezoelectric element so that they can be used corresponding to various types of subjects.

【0014】[0014]

【発明の効果】以上の説明から理解できるように、この
発明にあっては、縦波を主体とする振動子の他に被検体
内部で横波を発生する振動子を別個に設けて横波を発生
する振動子側で焦点集束を行うようにし、それぞれを駆
動することで焦点集束の位置で縦波+横波のエコーを2
つの振動子により受信するようにしているので、焦点付
近での被検体の欠陥については感度が高く、精度の高い
エコーを得ることができる。その結果、それぞれの振動
子を使用することにより高感度で高精度なプローブを提
供することができ、さらに、リング状振動子のみを駆動
すれば選択的に横波のみを発生させて探傷することも可
能であり、2つの波の干渉が発生せずに正確な測定がで
きる。
As can be understood from the above description, according to the present invention, in addition to a vibrator mainly composed of longitudinal waves, a vibrator for generating transverse waves is separately provided inside the subject to generate transverse waves. Focusing is performed on the transducer side, and by driving each of them, longitudinal wave + transverse wave echo is generated at the focus focusing position.
Since the two transducers are used for reception, it is possible to obtain highly accurate echoes with high sensitivity for defects of the subject near the focal point. As a result, it is possible to provide a highly sensitive and highly accurate probe by using each transducer. Furthermore, if only the ring-shaped transducer is driven, only transverse waves can be selectively generated for flaw detection. It is possible, and accurate measurement can be performed without the interference of two waves.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、この発明を適用したプローブの一実
施例の縦断面図及びその横断面図である。
FIG. 1 is a longitudinal sectional view and a lateral sectional view of an embodiment of a probe to which the present invention is applied.

【図2】 図2は、その超音波ピーク集束状態について
の説明図である。
FIG. 2 is an explanatory diagram of the ultrasonic peak focusing state.

【図3】 図3は、従来の固定焦点型プローブの縦断面
図である。
FIG. 3 is a vertical cross-sectional view of a conventional fixed focus probe.

【符号の説明】[Explanation of symbols]

1…ハウジング、2,2a,2b…圧電素子、3,3a
…音響レンズ、4…ダンパー材、5,7,8…リード
線、6…被検体、9,10…プローブ、12a,12b
…超音波ビームの指向性領域。
1 ... Housing, 2, 2a, 2b ... Piezoelectric element, 3, 3a
... Acoustic lens, 4 ... Damper material, 5, 7, 8 ... Lead wire, 6 ... Subject, 9, 10 ... Probe, 12a, 12b
… Directional area of ultrasonic beam.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中央に円板状の第1の振動子と、これに
対して同心円状に設けられたリング状の第2の振動子
と、この第2のリング状の振動子からの超音波を縦波の
臨界角より大きく、横波の臨界角より小さい範囲で被検
体に入射させて所定の位置に集束させる音響レンズとを
備え、第1及び第2の振動子を駆動して前記被検体から
のエコーを得ることを特徴とする超音波探触子。
1. A disk-shaped first vibrator in the center, a ring-shaped second vibrator provided concentrically with the disk-shaped first vibrator, and an ultrasonic wave from the second ring-shaped vibrator. An acoustic lens that causes a sound wave to be incident on a subject in a range larger than a critical angle of a longitudinal wave and smaller than a critical angle of a transverse wave to focus the acoustic wave at a predetermined position; An ultrasonic probe characterized by obtaining an echo from a specimen.
JP23226791A 1991-08-20 1991-08-20 Ultrasonic probe Pending JPH0545346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23226791A JPH0545346A (en) 1991-08-20 1991-08-20 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23226791A JPH0545346A (en) 1991-08-20 1991-08-20 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0545346A true JPH0545346A (en) 1993-02-23

Family

ID=16936572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23226791A Pending JPH0545346A (en) 1991-08-20 1991-08-20 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0545346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028704A2 (en) * 2005-09-07 2007-03-15 Siemens Vdo Automotive Ag Ultrasonic vibration transducer comprising a piezoelectric element that is mounted on a membrane surface
JP2009055458A (en) * 2007-08-28 2009-03-12 Nippon Ceramic Co Ltd Ultrasonic wave transmitting/receiving apparatus
US20160109412A1 (en) * 2014-10-15 2016-04-21 Fbs, Inc. Piezoelectric shear rings for omnidirectional shear horizontal guided wave excitation and sensing
CN106290581A (en) * 2015-05-27 2017-01-04 中国石油化工股份有限公司 A kind of ultrasound wave wafer set, ultrasound probe and core ultrasound test system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028704A2 (en) * 2005-09-07 2007-03-15 Siemens Vdo Automotive Ag Ultrasonic vibration transducer comprising a piezoelectric element that is mounted on a membrane surface
WO2007028704A3 (en) * 2005-09-07 2007-06-07 Siemens Ag Ultrasonic vibration transducer comprising a piezoelectric element that is mounted on a membrane surface
JP2009055458A (en) * 2007-08-28 2009-03-12 Nippon Ceramic Co Ltd Ultrasonic wave transmitting/receiving apparatus
US20160109412A1 (en) * 2014-10-15 2016-04-21 Fbs, Inc. Piezoelectric shear rings for omnidirectional shear horizontal guided wave excitation and sensing
US9910016B2 (en) * 2014-10-15 2018-03-06 Fbs, Inc. Piezoelectric shear rings for omnidirectional shear horizontal guided wave excitation and sensing
CN106290581A (en) * 2015-05-27 2017-01-04 中国石油化工股份有限公司 A kind of ultrasound wave wafer set, ultrasound probe and core ultrasound test system

Similar Documents

Publication Publication Date Title
US5094108A (en) Ultrasonic contact transducer for point-focussing surface waves
US4435984A (en) Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
JPH0257268B2 (en)
JP2001108661A (en) Method and apparatus for ultrasonically detecting flaw
JP2001208729A (en) Defect detector
JPH0545346A (en) Ultrasonic probe
JPS6321135B2 (en)
US5046363A (en) Apparatus for rapid non-destructive measurement of die attach quality in packaged integrated circuits
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JPS61160053A (en) Ultrasonic flaw detection test
US4080839A (en) Testing method using ultrasonic energy
JPS61245055A (en) Ultrasonic flaw inspecting device
JPS6356946B2 (en)
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
RU2787645C1 (en) Method for non-destructive testing of ceramic products by ultrasonic method
JP2002071648A (en) Method and device for ultrasonic flaw detection
JP2001124746A (en) Ultrasonic inspection method
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JP3298085B2 (en) Ultrasonic flaw detection method and device
JPS5831870B2 (en) Ultrasonic flaw detection equipment
JPH07325070A (en) Ultrasonic method for measuring depth of defect
SU603896A1 (en) Method of testing acoustic contact
JP2883051B2 (en) Ultrasonic critical angle flaw detector
JPH08220079A (en) Ultrasonic probe