JPS59137334A - Manufacturing apparatus of base material for optical fiber - Google Patents

Manufacturing apparatus of base material for optical fiber

Info

Publication number
JPS59137334A
JPS59137334A JP887883A JP887883A JPS59137334A JP S59137334 A JPS59137334 A JP S59137334A JP 887883 A JP887883 A JP 887883A JP 887883 A JP887883 A JP 887883A JP S59137334 A JPS59137334 A JP S59137334A
Authority
JP
Japan
Prior art keywords
tube
base material
furnace
optical fiber
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP887883A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kyodo
倫久 京藤
Hisao Sato
久雄 佐藤
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP887883A priority Critical patent/JPS59137334A/en
Publication of JPS59137334A publication Critical patent/JPS59137334A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve the durability of a carbon tube by providing a furnace core tube consisting of a carbon tube with a quartz tube fitted to the inside thereof in the center of a heating furnace to prevent the scaling of the carbon tube by oxidation. CONSTITUTION:A carbon tube 3b is inserted into the center of the main body of a heating furnace 6 equipped with a heating element 5 at the inside, and a transparent quartz tube 3a having <=0.5ppm CuO content and <=1% Fe2O3 content is fitted close to the element 5 on the inner circumference of the carbon tube 3b. A supply port 7 for introducing a shield gas such as Ar, N2 etc. is provided on the lower side of the main body of the furnace 6, and an introducing port 8 for the treating gas such as He, Ar, Cl2 etc. is provided on the bottom side. A porous glass base material 1 is hung down in the upper part of the furnace core tube 3 through a supporting rod 2. In this way, the base mterial for optical fiber free from impurities such as Cu or water can be manufactured, and the optical fiber having a small transmission loss is obtained.

Description

【発明の詳細な説明】 本発明はガラス母相に対する不純物元素の混入を防止し
、かつ耐久性の優れた光フアイバ用母材の製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing an optical fiber base material that prevents contamination of impurity elements into the glass matrix and has excellent durability.

光フアイバ用母材を大量生産する一般的な方法としてV
AI)法が知られている。このVAD法は回転する出発
部材、例えばガラス板あるいはガラス棒の上に酢水素炎
中で生成したガラス微粒子を堆積させて円柱状の多孔質
母材をつくり、この多孔質母材を焼結して透明な光フア
イバ用母材を製造する方法である。この方法において多
孔質母材を焼結し透明化、するには母材を′Heもしく
はArjfス雰囲気で約1500−1600℃に加熱す
る必要がある。この加熱炉としては通常カーボン炉が用
いられている。焼結に際して特に留意しなければならな
い点はcu+FCなどの遷移元素の混入並びに水分の混
入の防止である。遷移元素が1 ppb以上混入すると
、光ファイバの損失波長特性が全波長にわたり著しく損
われ、また水分が0.lppm以上混入すると長波長域
におけるその特性が損なわれるからである。
V as a general method for mass producing base materials for optical fibers.
AI) method is known. This VAD method involves depositing glass particles generated in an acetic acid flame on a rotating starting member, such as a glass plate or a glass rod, to create a cylindrical porous base material, and then sintering this porous base material. This is a method for manufacturing a transparent optical fiber base material. In order to sinter and make the porous base material transparent in this method, it is necessary to heat the base material to about 1500 DEG -1600 DEG C. in a He or Arjf gas atmosphere. A carbon furnace is usually used as this heating furnace. During sintering, special attention must be paid to the prevention of contamination of transition elements such as cu+FC and prevention of moisture contamination. If 1 ppb or more of transition elements are mixed in, the loss wavelength characteristics of the optical fiber will be significantly impaired over all wavelengths, and the moisture content will be 0. This is because if more than 1 ppm is mixed in, the characteristics in the long wavelength range will be impaired.

一方、上記VAD法はガラス微粒子を生成するために火
炎加水分解反応を利用することがら、未反応の水分の一
部がすでに多孔質母材にある程度混入している。従って
、多孔質母材内に存在する水分を除去するための脱水処
理として、該多孔質母材をC1,あるいは5OC121
02雰囲気中で高温加熱することが行なわれている。こ
の脱水処理は通常焼結の前工程としてカーボン炉内で行
なわれる。カーボン炉にはカーボン発熱体が母材の加熱
処理中に発生する水分や酸素で消耗するのを防ぐため、
カーボン発熱体と焼結雰囲気とを隔離する炉心管が設置
されており、従来アルミナ製のものが使用されていた。
On the other hand, since the VAD method uses a flame hydrolysis reaction to generate glass particles, some unreacted water is already mixed into the porous base material to some extent. Therefore, as a dehydration treatment to remove water present in the porous base material, the porous base material is treated with C1 or 5OC121.
High-temperature heating in a 02 atmosphere is practiced. This dehydration treatment is usually carried out in a carbon furnace as a pre-sintering step. In order to prevent the carbon heating element from being consumed by moisture and oxygen generated during the heat treatment of the base material, the carbon furnace is equipped with
A furnace tube is installed to isolate the carbon heating element from the sintering atmosphere, and conventionally it was made of alumina.

しかし、アルミナ製の炉心管を用いる七アルミナの中に
含まれるアルカリ成分が高温で周囲に飛散し、これが多
孔質母材表面に付着し、クリストバライト層を形成する
とい1う問題がある。そこで炉心管として石英ガラス製
のものが実用化されつつある。しかし石英ガラス製の炉
心管にCuやFeが含有されていると、脱水処理雰囲気
中の塩素系のガスとCuあるいはFeとが容易に化学反
応し、下式に示すような揮散性の塩化物として多孔質母
材に侵入し、ファイバの損失特性を著しく損なうという
新たな問題も生じている。
However, there is a problem in that the alkaline components contained in hepta-alumina, which uses an alumina core tube, scatter around at high temperatures and adhere to the surface of the porous base material, forming a cristobalite layer. Therefore, quartz glass core tubes are being put into practical use. However, if the quartz glass furnace core tube contains Cu or Fe, the chlorine-based gas in the dehydration treatment atmosphere will easily chemically react with the Cu or Fe, resulting in the formation of volatile chlorides as shown in the equation below. A new problem has also arisen in that the fibers penetrate into the porous matrix and significantly impair the loss characteristics of the fiber.

Cu O4Cut CA!2 CX、。Cu O4Cut CA! 2 CX,.

Fel 0B  −一一一一一〉Fe C11s更に、
炉心管が石英ガラスの単体である場合、高温下において
、Cuは容易に石英ガラス中に拡散する性質があるため
、炉本体や発熱体から揮散するCuが炉心管を透過し、
ガラス母材中に混入するという問題もある。
Fel 0B-11111〉Fe C11s Furthermore,
When the furnace core tube is made of quartz glass, Cu has the property of easily diffusing into the silica glass at high temperatures, so Cu volatilized from the furnace body and heating element passes through the furnace core tube.
There is also the problem that it gets mixed into the glass base material.

本発明は石英管がアルミナ管等に比べ稠密であり、しか
も熱膨張係数が小さいため耐久性に優れるという利点を
維持したまま、高温下における上記不純物の混入を確実
に防止した光フアイバ用母材の製造装置を提供すること
を目的とするものであって、その構成は加熱炉の炉心管
に多孔質母材を挿入し脱水焼結する装置において、加熱
炉の中央にカーボン管を設けると共に該カーボン管に石
英管を内装して炉心管を形成したことを特徴とする。
The present invention provides a base material for optical fibers that reliably prevents the contamination of the above-mentioned impurities at high temperatures while maintaining the advantages that quartz tubes are denser than alumina tubes and have a smaller coefficient of thermal expansion, making them excellent in durability. The purpose of this invention is to provide a manufacturing device for manufacturing a porous material by inserting a porous base material into a core tube of a heating furnace and dehydrating and sintering it. It is characterized by forming a furnace core tube by incorporating a quartz tube inside a carbon tube.

以下に本発明を図面に示す実施例に基づいて詳細に説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

本装置の概略構成を図に示す。加熱炉本体6の内側に発
熱体5が設けられると共に炉体中心に炉心管3が設けら
れる。該炉心管3は石英ガラス管3aの内周層とカーボ
ン管3bの外周層とから形成される。即ちカーボン管3
bが炉中心に嵌着される一方、該カーボン管3bの内周
の発熱体4近傍部分に石英管3aが内装されている。一
方、上記炉本体6の側端にはAr、N2等のシールドガ
スな導入する供給ロアが設けられる。又該炉心管3の下
端にはHe 、 Ar 、 C12等の処理用ガスを導
入する供給口8が設けられると共に該炉心管3の上方に
は支持棒2を介して多孔質ガラス母材1が吊り下げられ
ている。
The schematic configuration of this device is shown in the figure. A heating element 5 is provided inside the heating furnace body 6, and a furnace core tube 3 is provided at the center of the furnace body. The furnace core tube 3 is formed from an inner circumferential layer of a quartz glass tube 3a and an outer circumferential layer of a carbon tube 3b. That is, carbon tube 3
b is fitted in the center of the furnace, while a quartz tube 3a is installed inside the carbon tube 3b at a portion near the heating element 4 on its inner periphery. On the other hand, a supply lower for introducing shielding gas such as Ar or N2 is provided at the side end of the furnace body 6. Further, a supply port 8 for introducing processing gas such as He, Ar, C12, etc. is provided at the lower end of the furnace core tube 3, and a porous glass base material 1 is provided above the furnace core tube 3 via a support rod 2. It is suspended.

上記構成において、石英管はアルミナ管やカーボン管に
比べ稠密であり、しかも熱膨張係数が小さく熱履歴によ
る破壊の虞がなく耐久性に優れる。この場合、石英管自
体に含まれる不純物が揮散して母材に混入するのを防止
するため、石英管としては高純度で透明なものが望まし
い。
In the above structure, the quartz tube is denser than an alumina tube or a carbon tube, has a small coefficient of thermal expansion, and has excellent durability without fear of breakage due to thermal history. In this case, in order to prevent impurities contained in the quartz tube itself from being volatilized and mixed into the base material, it is desirable that the quartz tube be highly pure and transparent.

その程度としてはCuOが0.5ppm以下、Fe20
3が1%以下となるよう特に銅分を除去した透明石英管
が適している。尚、一般に石英管を1500℃以上に加
熱すると、石英管が引き伸びる現象がみられるが、肉厚
を5朋以上とすると1600℃でも引き伸びを生ぜず又
電気熔融法で製作した肉厚6 muの石英管では165
0℃でも引き伸びを生ずることはない。従って、これら
の石英管を使用すれば1δOO〜1600℃の焼結温、
度に対しても不都合は生じない。
As for the extent, CuO is 0.5 ppm or less, Fe20
A transparent quartz tube in which the copper content is particularly removed so that 3% is 1% or less is suitable. Generally, when a quartz tube is heated to 1,500°C or higher, a phenomenon of elongation is observed in the quartz tube, but if the wall thickness is 5 mm or higher, no elongation occurs even at 1,600°C. 165 for mu quartz tube
No stretching occurs even at 0°C. Therefore, if these quartz tubes are used, the sintering temperature will be between 1δOO and 1600°C.
There is no problem with respect to the degree.

また、一方Cu等の不純物はカーボン管を透過すること
ができない。本発明の装置は前述のように石英管の外周
にカーボン管が配設されているので、外部の炉本体6や
発熱体5から揮散きれるCu等の不純物はこのカーボン
管3bにより遮蔽され、炉心管3内部に侵入することか
ない。
On the other hand, impurities such as Cu cannot pass through the carbon tube. As mentioned above, in the device of the present invention, a carbon tube is arranged around the outer periphery of the quartz tube, so impurities such as Cu volatilized from the external furnace body 6 and heating element 5 are shielded by the carbon tube 3b, and the core There is no possibility of intrusion into the inside of pipe 3.

従つマ、多孔質ガラス母材に対する不純物の混入を確実
に防止することができる。
Therefore, it is possible to reliably prevent impurities from entering the porous glass base material.

実施例1 発熱体5で炉心管を1600℃に加熱し、該管内にC1
2を5 Q cc/分、Heを5n/分の割合で流し、
その中に多孔質母材lを下降速度2myv’分で挿入し
た。得られた透明ガラス母材を引き続きファイバに紡糸
したところ、7アイパの残留水分は0.01 ppmで
ありCuやFeに由来する吸収は全くみられなかった。
Example 1 A furnace core tube is heated to 1600°C with a heating element 5, and C1 is placed inside the tube.
2 at a rate of 5 Q cc/min and He at a rate of 5 n/min.
The porous base material 1 was inserted into it at a descending speed of 2 myv'. When the obtained transparent glass base material was subsequently spun into a fiber, the residual water content of 7 IPA was 0.01 ppm, and no absorption derived from Cu or Fe was observed.

実施例2 石英管、3aとして1 ppmのCuを含む石英管を使
用し、その他は実施例1と同じ条件でファイバを製造し
た。得られたファイバの残留水分は0.01 ppmで
あった。またCuに由来する吸収が〜1.30μm近傍
まで存在したが、この値は従前の吸収に比べると十分低
く2〜3dBであった。
Example 2 A fiber was manufactured under the same conditions as in Example 1 except that a quartz tube containing 1 ppm of Cu was used as the quartz tube 3a. The residual moisture in the obtained fiber was 0.01 ppm. Further, absorption originating from Cu existed up to approximately 1.30 μm, but this value was 2 to 3 dB, which was sufficiently low compared to the conventional absorption.

以上、実施例に基づいて具体的に説明したように本発明
は、不純物特にCuや水分の混入しない光フアイバ用母
材を製造でき、このため伝送損失の小さな光ファイバが
得られるようになった。尚、本発、明は炉心管としてカ
ーボン管の内側に石英管を内装しているので、カーボン
管の酸化消耗を防止でき、又石英管が短く交換が容易な
ため経済性に富むという利点もある。
As described above in detail based on the examples, the present invention can produce an optical fiber base material that does not contain impurities, particularly Cu and water, and thus can provide an optical fiber with low transmission loss. . In addition, since the present invention has a quartz tube inside the carbon tube as the furnace core tube, it is possible to prevent the carbon tube from being consumed by oxidation, and the quartz tube is short and easy to replace, so it has the advantage of being highly economical. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明にかかる光フアイバ用ガラス母材の製造装置
を示す概略構造図である。 図面中、 1は多孔質母材、 2は表才丹棒、 3は炉心管、 3aは石英管、 3bはカーボン管、 5は発熱体、 6は炉本体、 7.85併鈷口である。 特許出願人 住友電気工業株式会社 日本電信電話公社 代理人 弁理士 光石士部(他1名)
The figure is a schematic structural diagram showing an apparatus for manufacturing a glass preform for optical fiber according to the present invention. In the drawings, 1 is a porous base material, 2 is a bar, 3 is a furnace tube, 3a is a quartz tube, 3b is a carbon tube, 5 is a heating element, 6 is a furnace body, and 7.85 is a porthole. . Patent Applicant Sumitomo Electric Industries, Ltd. Nippon Telegraph and Telephone Public Corporation Representative Patent Attorney Shibe Mitsuishi (and 1 other person)

Claims (1)

【特許請求の範囲】 ■ 加熱炉の炉心管に多孔質ガラス母材を挿入し脱水焼
結する装置において、加熱炉の中央にカーボン僧・を設
けると共に該カーボン管に石英管を内装して炉心管を形
成したことを特徴とする光フアイバ用母材の製造装置。 ■ 特許請求の範囲第1項において、上記石英管は銅の
混入割合が0.5 ppm以下の高純度石英管であるこ
とを特徴とする光フアイバ用母材の製造装置。
[Claims] ■ In an apparatus for inserting a porous glass base material into a core tube of a heating furnace and dehydrating and sintering it, a carbon tube is provided in the center of the heating furnace, and a quartz tube is installed inside the carbon tube to form the core. An apparatus for manufacturing an optical fiber base material, characterized in that it is formed into a tube. (2) An apparatus for manufacturing an optical fiber base material according to claim 1, wherein the quartz tube is a high-purity quartz tube with a copper content of 0.5 ppm or less.
JP887883A 1983-01-22 1983-01-22 Manufacturing apparatus of base material for optical fiber Pending JPS59137334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP887883A JPS59137334A (en) 1983-01-22 1983-01-22 Manufacturing apparatus of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP887883A JPS59137334A (en) 1983-01-22 1983-01-22 Manufacturing apparatus of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS59137334A true JPS59137334A (en) 1984-08-07

Family

ID=11704930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP887883A Pending JPS59137334A (en) 1983-01-22 1983-01-22 Manufacturing apparatus of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS59137334A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136129A (en) * 1984-07-30 1986-02-20 Sumitomo Electric Ind Ltd Manufacture of glass preform for optical fiber
JPS62182128A (en) * 1986-02-06 1987-08-10 Shin Etsu Chem Co Ltd Production of optical fiber preform
JPS63201025A (en) * 1987-02-17 1988-08-19 Sumitomo Electric Ind Ltd Production of high-purity transparent glass
EP0542724A2 (en) * 1987-02-16 1993-05-19 Sumitomo Electric Industries Limited Furnace for heating glass preform for optical fiber and method for producing glass preform
WO2010059464A1 (en) * 2008-11-19 2010-05-27 Corning Incorporated Apparatus and method of sintering an optical fiber preform
JP2013032266A (en) * 2011-06-27 2013-02-14 Furukawa Electric Co Ltd:The Heat treatment apparatus for porous glass preform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645852U (en) * 1979-09-10 1981-04-24
JPS5717433A (en) * 1980-05-24 1982-01-29 Nippon Telegr & Teleph Corp <Ntt> Dehydrating and sintering method for porous base material for optical fiber with low loss

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645852U (en) * 1979-09-10 1981-04-24
JPS5717433A (en) * 1980-05-24 1982-01-29 Nippon Telegr & Teleph Corp <Ntt> Dehydrating and sintering method for porous base material for optical fiber with low loss

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136129A (en) * 1984-07-30 1986-02-20 Sumitomo Electric Ind Ltd Manufacture of glass preform for optical fiber
JPS62182128A (en) * 1986-02-06 1987-08-10 Shin Etsu Chem Co Ltd Production of optical fiber preform
JPH0565451B2 (en) * 1986-02-06 1993-09-17 Shinetsu Chem Ind Co
EP0542724A2 (en) * 1987-02-16 1993-05-19 Sumitomo Electric Industries Limited Furnace for heating glass preform for optical fiber and method for producing glass preform
JPS63201025A (en) * 1987-02-17 1988-08-19 Sumitomo Electric Ind Ltd Production of high-purity transparent glass
WO2010059464A1 (en) * 2008-11-19 2010-05-27 Corning Incorporated Apparatus and method of sintering an optical fiber preform
CN102216231A (en) * 2008-11-19 2011-10-12 康宁股份有限公司 Jewell john m [us]; leblond nicolas [us]; mahmoudi mehrdad [us]; wang ji
JP2013032266A (en) * 2011-06-27 2013-02-14 Furukawa Electric Co Ltd:The Heat treatment apparatus for porous glass preform

Similar Documents

Publication Publication Date Title
US4082420A (en) An optical transmission fiber containing fluorine
JPH0915464A (en) Single-mode optical transmission fiber and its manufacture
KR920010088B1 (en) Furnace for heating highly pure quartz preform for optical fiber
JP2004203736A (en) Method of manufacturing high purity fused silica
JP2000103628A (en) Treatment of silica granule using porous graphite crucible
US4295869A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
KR940011118B1 (en) Method of producing glass preform for optical fiber
JPH029727A (en) Production of optical fiber preform
KR890001123B1 (en) Method for crystalization of glass preform
JPS59137334A (en) Manufacturing apparatus of base material for optical fiber
KR940021444A (en) Manufacturing method of high quality optical fiber
JPS62275035A (en) Production of base material for optical fiber
JP2559395B2 (en) High-purity transparent glass manufacturing method and manufacturing apparatus
EP1405830A1 (en) Glass base material and method of manufacturing glass base material
JPH03109223A (en) Quartz glass and production thereof
JPH0436100B2 (en)
JPH0450130A (en) Production of preform for optical fiber
JPH0477327A (en) Production of optical fiber
JPS6234694B2 (en)
JPH01145346A (en) Production of optical fiber preform
JP2640745B2 (en) Method for manufacturing opaque glass preform
JPS62143834A (en) Production of preform for optical fiber
JPS5816161B2 (en) Optical transmission line and its manufacturing method
JPS60239339A (en) Preparation of parent material for optical fiber