JP2559395B2 - High-purity transparent glass manufacturing method and manufacturing apparatus - Google Patents

High-purity transparent glass manufacturing method and manufacturing apparatus

Info

Publication number
JP2559395B2
JP2559395B2 JP62032459A JP3245987A JP2559395B2 JP 2559395 B2 JP2559395 B2 JP 2559395B2 JP 62032459 A JP62032459 A JP 62032459A JP 3245987 A JP3245987 A JP 3245987A JP 2559395 B2 JP2559395 B2 JP 2559395B2
Authority
JP
Japan
Prior art keywords
pressure vessel
core tube
purity
transparent glass
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62032459A
Other languages
Japanese (ja)
Other versions
JPS63201025A (en
Inventor
洋一 石黒
章 浦野
倫久 京藤
一郎 土屋
俊一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62032459A priority Critical patent/JP2559395B2/en
Publication of JPS63201025A publication Critical patent/JPS63201025A/en
Application granted granted Critical
Publication of JP2559395B2 publication Critical patent/JP2559395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス微粒子が集合してなる多孔質体を加熱
して、緻密かつ高純度な透明ガラスを得る方法及び製造
装置に関する。本発明の方法で得られるガラスは高純度
であるので光フアイバ用のガラスとしての使用に適す
る。
TECHNICAL FIELD The present invention relates to a method and a manufacturing apparatus for obtaining a dense and high-purity transparent glass by heating a porous body composed of glass fine particles. Since the glass obtained by the method of the present invention has a high purity, it is suitable for use as a glass for optical fibers.

〔従来の技術〕[Conventional technology]

ガラス微粒子が集合してなる多孔質体(以下多孔質体
と略す)を加熱して、緻密な高純度透明ガラスを得る方
法に関する文献として、例えば研究実用化報告第29巻第
10号(1980)pp.1719〜1729に記載されるものがあり、
雰囲気ガスとしてHeを使うと、残留気泡が収縮消滅しや
すく、透明ガラス化に有利であることが述べられてい
る。また、上記文献では残留気泡が収縮・消滅するか否
かの限界値(臨界半径)が計算されている。該臨界半径
はHeを用いた場合では〜10-1cmであるのに対して他の不
活性ガス(N2,Ar)では〜10-4cmであり、約1000倍もの
違いがある。このような知見からも、従来の技術では、
透明ガラスを得るためには多孔質体の加熱をHe雰囲気中
で行うことが必須であつた。
As a literature relating to a method for heating a porous body (hereinafter abbreviated as a porous body) composed of glass fine particles to obtain dense high-purity transparent glass, for example, Research Practical Report Vol.
No. 10 (1980) pp.1719-1729,
It is described that when He is used as the atmosphere gas, residual bubbles tend to shrink and disappear, which is advantageous for transparent vitrification. Further, in the above-mentioned document, the limit value (critical radius) of whether or not the residual bubbles shrink or disappear is calculated. The critical radius is about 10 -1 cm when using He, whereas it is about 10 -4 cm for other inert gases (N 2 , Ar), which is about 1000 times different. Even from such knowledge, in the conventional technology,
In order to obtain transparent glass, it was essential to heat the porous body in He atmosphere.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の技術では、多孔質体から気泡を含まぬ透明ガラ
スを得るためには、多孔質体をHe雰囲気中で焼結するこ
とが必須であつたが、Heを使うことには、次の〜の
ような問題点があつた。
In the prior art, in order to obtain a transparent glass containing no bubbles from a porous body, it was essential to sinter the porous body in a He atmosphere. There was a problem like this.

Heは高価なガスであるため、加熱処理を低コストに
行うことが困難である。
Since He is an expensive gas, it is difficult to perform heat treatment at low cost.

Heガスを多量にかつ安定に入手することも困難であ
る。
It is also difficult to obtain a large amount of He gas in a stable manner.

多孔質体が大きいものになるに従つて、他のガスと
比較して臨界半径の大きいHeを用いても、やはり気泡が
残留するようになつてしまう。
As the porous body becomes larger, even if He, which has a larger critical radius than other gases, is used, bubbles still remain.

本発明は上記問題点に鑑みてなされたものであつて、
Heガスを用いずに多孔質体から緻密で気泡残留がなく高
品質で光フアイバ用ガラスとして好適な透明ガラスを得
る新規で経済的な方法及び製造装置を提案するものであ
る。
The present invention has been made in view of the above problems,
The present invention proposes a novel and economical method and manufacturing apparatus for obtaining a transparent glass that is dense, has no residual air bubbles, is high-quality, and is suitable as an optical fiber glass without using He gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガラス微粒子が集合してなる多孔質体を加熱
することにより透明ガラスを得る方法に於て、炉心管及
び該炉心管の外周を囲む加熱手段を圧力容器内部に、か
つ該炉心管内部及び該加熱手段内部を圧力容器内部に連
通させて設置し、上記多孔質体を該炉心管の中に保持
し、該圧力容器内全体を真空に保ちながら加熱すること
を特徴とする高純度透明ガラスの製造方法を提供する。
本発明の特に好ましい実施態様としては、炉心管として
高純度石英又は高純度カーボン製炉心管を用いて、多孔
質体の加熱処理に先だつて上記圧力容器内にCl2を含む
ガスを導入しつつ加熱(これを空焼きという)してお
き、続く該多孔質体の加熱処理の間は炉心管内部の雰囲
気を高純度不活性ガスで置換する方法が挙げられる。
The present invention relates to a method for obtaining transparent glass by heating a porous body composed of fine glass particles, in which a furnace core tube and heating means surrounding the outer periphery of the furnace core tube are provided inside the pressure vessel, and inside the furnace tube. And a high-purity transparent material characterized in that the inside of the heating means is placed in communication with the inside of the pressure vessel, the porous body is held in the core tube, and heating is performed while maintaining the entire inside of the pressure vessel in vacuum. A method for manufacturing glass is provided.
As a particularly preferred embodiment of the present invention, using a high-purity quartz or high-purity carbon core tube as the core tube, while introducing a gas containing Cl 2 into the pressure vessel prior to the heat treatment of the porous body. A method may be mentioned in which the atmosphere inside the furnace core tube is replaced with a high-purity inert gas during the subsequent heating treatment of the porous body.

また、本発明はガラス微粒子が集合してなる多孔質体
を炉心管中で加熱することにより透明ガラスを得る装置
であって、1)真空排気手段及びガス供給手段とを有す
る圧力容器、2)該圧力容器内部に設置されその内部が
圧力容器内部と連通する加熱手段、及び3)該加熱手段
内部に設置されその内部が加熱手段内部及び圧力容器内
部と連通する炉心管、を有してなる高純度透明ガラスの
製造装置を提供する。本発明の特に好ましい実施態様と
しては、上記ガス供給手段は圧力容器及び加熱手段を貫
通して炉心管下部に接続されてなることが挙げられる。
Further, the present invention is an apparatus for obtaining transparent glass by heating a porous body composed of glass fine particles in a furnace core tube, which is 1) a pressure vessel having a vacuum evacuation means and a gas supply means, 2). A heating means installed inside the pressure vessel and communicating with the inside of the pressure vessel; and 3) a core tube installed inside the heating means and communicating with the inside of the heating means and the inside of the pressure vessel. An apparatus for producing high-purity transparent glass is provided. In a particularly preferred embodiment of the present invention, the gas supply means is connected to the lower part of the core tube by penetrating the pressure vessel and the heating means.

以下図面を参照して本発明を具体的に説明する。第1
図は本発明を実施するため装置の一例を示すものであつ
て、この装置は圧力容器1、炉心管2、ヒータ3、断熱
材4、ガス導入口5、ガス排出口6、真空ポンプ7で構
成されている。
The present invention will be specifically described below with reference to the drawings. First
The figure shows an example of an apparatus for carrying out the present invention, which comprises a pressure vessel 1, a core tube 2, a heater 3, a heat insulating material 4, a gas inlet 5, a gas outlet 6, and a vacuum pump 7. It is configured.

多孔質体8を炉心管2中に保持して、該圧力容器1全
体を真空ポンプ7により排気して真空に保ちながら1600
℃以下に加熱する。またガス導入口5、排出口6、真空
ポンプ7により、必要に応じ各種ガスの圧力容器1内へ
の導入及び排気を行なう。本発明は真空中で加熱・透明
化することに特徴を有するが、このように真空中で加熱
・透明ガラス化した場合は臨界半径が非常に大きくなる
ため多孔質体中に気泡が残留することがない。
The porous body 8 is held in the core tube 2, and the entire pressure vessel 1 is evacuated by the vacuum pump 7 to maintain a vacuum of 1600.
Heat to below ℃. In addition, various gases are introduced into the pressure vessel 1 and exhausted by the gas introduction port 5, the discharge port 6, and the vacuum pump 7 as needed. The present invention is characterized in that it is heated and made transparent in a vacuum. However, when heated and made into a vitrified material in a vacuum as described above, the critical radius becomes very large, and therefore bubbles remain in the porous body. There is no.

ところで真空中で、ガラス微粒子が集合してなる多孔
質体を加熱し、緻密な高純度透明ガラスを得ようとする
時、加熱雰囲気の高純度化が問題となるが、本発明では
次のように解決されている。
By the way, in a vacuum, when heating a porous body formed by aggregating glass fine particles to obtain a dense high-purity transparent glass, a high-purity heating atmosphere becomes a problem. Has been resolved.

第1に圧力容器内に炉心管を設けたため雰囲気汚染の
主たる原因となると考えられる断熱材と加熱雰囲気が分
離された。炉心管の材料としては、耐熱性と不純物の放
出が少ないという点で高純度石英または密度の高い高純
度カーボンが適当である。ここで圧力容器全体を真空に
保つため、炉心管が変形または破壊することはない。
First, since the core tube was provided in the pressure vessel, the heat insulating material, which is considered to be the main cause of atmospheric pollution, was separated from the heating atmosphere. As a material for the core tube, high-purity quartz or high-density high-purity carbon is suitable in terms of heat resistance and low emission of impurities. Since the entire pressure vessel is kept vacuum here, the core tube is not deformed or broken.

ここで本明細書における高純度石英とは、Cuの含有量
が0.05ppm以下かつFeの含有量が1ppm以下のものを言
う。さらにそのOH基含有量も耐熱性向上のため1ppm以下
であることが好ましい。また高純度カーボンとは、Cu含
有量が0.05ppm以下でかつFe含有量が0.1ppm以下、全灰
分20ppm以下のものである。
Here, the high-purity quartz in the present specification refers to one having a Cu content of 0.05 ppm or less and an Fe content of 1 ppm or less. Further, its OH group content is also preferably 1 ppm or less in order to improve heat resistance. The high-purity carbon has a Cu content of 0.05 ppm or less, an Fe content of 0.1 ppm or less, and a total ash content of 20 ppm or less.

第2に、多孔質体の加熱処理に先だつて、圧力容器内
にCl2を含むガスを導入しつつ圧力容器内を加熱する
(空焼きを行なう)ことにより圧力容器内に存在する金
属(その大部分は、表面積の大きい断熱材に吸着してい
ると考えられる。)は、蒸気圧の高い塩化物となり圧力
容器外へ排出される。従つて引き続いて行なわれる多孔
質体の加熱処理はより高純度な雰囲気で行なえる。
Secondly, prior to the heat treatment of the porous body, the gas existing in the pressure vessel is heated by heating the interior of the pressure vessel while introducing a gas containing Cl 2 (air baking). It is thought that most of them are adsorbed on a heat insulating material having a large surface area.), Which becomes chloride with a high vapor pressure and is discharged to the outside of the pressure vessel. Accordingly, the subsequent heat treatment of the porous body can be performed in a higher purity atmosphere.

第3に多孔質体を加熱処理する工程中ずつと炉心管の
内部の雰囲気を高純度不活性ガス例えばAr又はN2(Heを
除く)で置換することにより、断熱材・ヒーター・炉心
管等から放出された不純物が、圧力容器内に滞ることな
く外部に排出される。この時、ガスの導入量をv(/
分)、圧力容器の容積をV()、圧力をP(torr)と
すると、ガス置換回数は、 で表わすことができるので、Pが小さい時は小量のガス
で効率よく圧力容器内を置換できる。なお、高純度不活
性ガスとは99.999%以上の純度のものをいう。
Thirdly, by replacing the atmosphere inside the core tube with the high-purity inert gas such as Ar or N 2 (excluding He) during each step of heat treatment of the porous body, heat insulating material, heater, core tube, etc. The impurities released from the inside of the pressure vessel are discharged outside without remaining in the pressure vessel. At this time, the amount of gas introduced is v (/
Min), the volume of the pressure vessel is V (), and the pressure is P (torr), the gas replacement frequency is Since it can be expressed by, when P is small, the inside of the pressure vessel can be efficiently replaced with a small amount of gas. The high-purity inert gas has a purity of 99.999% or more.

本発明に用いられる多孔質体としては、例えば公知の
VAD法またはOVD法のような火炎加水分解法でガラス微粒
子を堆積させて得たもの、高純度SiO2粉末を加圧成形し
たもの、ゾルゲル法によるもの等が挙げられる。またこ
れらの方法によるもの以外でも焼結中に石英ガラスが結
晶化しないような高純度多孔質ガラス体ならばいずれで
もよい。
Examples of the porous body used in the present invention include publicly known
Examples include those obtained by depositing glass fine particles by a flame hydrolysis method such as the VAD method or OVD method, those obtained by pressure molding high-purity SiO 2 powder, and those obtained by the sol-gel method. In addition to these methods, any high-purity porous glass body which does not crystallize quartz glass during sintering may be used.

本発明においては圧力容器内全体を真空にして加熱す
るが、このときの真空度は、N2またはArを吹き流しつつ
減圧にする場合は1torr未満にする必要がある。これは
1気圧のHe中での臨界半径と、10-4気圧(〜1torr)のN
2又はAr中での臨界半径がほぼ等しいからである。
In the present invention, the entire pressure vessel is evacuated and heated, but the degree of vacuum at this time needs to be less than 1 torr when the pressure is reduced while blowing N 2 or Ar. This is the critical radius in He of 1 atm and N of 10 -4 atm (~ 1 torr).
This is because the critical radii in 2 or Ar are almost equal.

N2またはAr等を吹き流さずに焼結・透明化する場合に
は、10-2torr以下にする必要がある。10-2torr以下とす
れば、N2やAr等を吹き流さずとも、不純物の濃度は十分
に減少する。
In the case of sintering and making transparent without blowing N 2 or Ar, it is necessary to make it 10 −2 torr or less. When it is 10 -2 torr or less, the concentration of impurities is sufficiently reduced without blowing N 2 or Ar.

加熱処理に先だち容器内に導入するCl2ガスは、例え
ばCl2 1〜5%、N2又はAr 99〜95%、全圧1気圧のもの
を用いる。
As the Cl 2 gas introduced into the container prior to the heat treatment, for example, Cl 2 1 to 5%, N 2 or Ar 99 to 95%, and a total pressure of 1 atm are used.

また本発明における加熱は1600℃以下で行なう。 The heating in the present invention is performed at 1600 ° C or lower.

〔実施例〕〔Example〕

実施例1 後に光フアイバのコアとなる部分を含む直径1.5cmの
ガラスロツドの周囲にCIP(冷間静圧ブレス)によりガ
ラス微粒子を加圧成形することにより固着させ、直径10
cmの多孔質ガラスとガラスロツドの複合体を作成した。
この複合体を第1図に示す圧力容器中に保持した。炉心
管2として、緻密な高純度カーボンを使用した。温度、
圧力を以下の表1のように調節しつつ加熱処理を行な
い、多孔質ガラス部分を緻密な透明ガラスとした。
Example 1 A glass rod having a diameter of 1.5 cm including a portion to be a core of an optical fiber afterward was fixed by press-molding glass fine particles by CIP (Cold Static Pressure Breathing) to a diameter of 10 cm.
A composite of cm porous glass and glass rod was prepared.
This composite was held in the pressure vessel shown in FIG. Dense high-purity carbon was used as the core tube 2. temperature,
A heat treatment was performed while adjusting the pressure as shown in Table 1 below, and the porous glass portion was made into a dense transparent glass.

得られた透明ガラスは表面一層が失透(結晶化)して
いたが、該表面を火炎研磨することにより簡単に除去で
きた。また、ガラスロツドとの界面、および新たに得ら
れた透明ガラスの内部に気泡は存在しなかつた。この透
明ガラスを紡糸したところ、1.3μでのロスが0.40dB/km
のフアイバが得られた。また、このフアイバの全長にわ
たり、700gの引張り力で破断する弱強度分布はなかつ
た。
The obtained transparent glass had one surface devitrified (crystallized), but could be easily removed by flame-polishing the surface. No bubbles were present at the interface with the glass rod or inside the newly obtained transparent glass. When spinning this transparent glass, the loss at 1.3μ is 0.40 dB / km
I was able to obtain In addition, there was no weak strength distribution over the entire length of this fiber, at which a tensile force of 700 g broke it.

実施例2 圧力容器の中へ緻密な高純度カーボン製炉心管をセツ
トし、圧力容器内を1500℃に加熱するとともに2%のCl
2を含む乾燥N2ガスを吹き流し、圧力容器内部の高純度
化を行なつた。別に実施例1と同じガラスロツド上にVA
D法でガラス微粒子を積層させ直径13cmの多孔質ガラス
とガラスロツドの複合体を作成した。上記により高純度
化された圧力容器内にてこの複合体を実施例1と同様に
加熱処理を行ない多孔質ガラス部分を緻密な透明ガラス
とした。
Example 2 A dense high-purity carbon furnace tube was set in a pressure vessel, the pressure vessel was heated to 1500 ° C., and 2% Cl was added.
Dry N 2 gas containing 2 windsock, the purity of inner pressure container rows Natsuta. Separately, on the same glass rod as in Example 1, VA
Glass fine particles were laminated by method D to form a composite of porous glass and glass rod having a diameter of 13 cm. The composite was heat-treated in the highly-purified pressure vessel in the same manner as in Example 1 to make the porous glass portion a dense transparent glass.

得られた透明ガラスの表面はなめらかで、またガラス
ロツドとの界面、および新たに得られた透明ガラスの内
部に気泡は存在しなかつた。この透明ガラスを紡糸した
ところ、1.3μでのロスが0.37dB/kmのフアイバが得られ
た。
The surface of the obtained transparent glass was smooth, and no bubbles were present at the interface with the glass rod and inside the newly obtained transparent glass. When this transparent glass was spun, a fiber with a loss at 1.3μ of 0.37 dB / km was obtained.

実施例3 VAD法で作成した中心部にGeO2を含む多孔質ガラスを
実施例2と同じ高純度化処理をした圧力容器内に保持
し、表2の条件で加熱処理を行なつた。
Example 3 A porous glass containing GeO 2 in the center portion prepared by the VAD method was held in a pressure vessel subjected to the same purification treatment as in Example 2, and heat treatment was performed under the conditions shown in Table 2.

得られた緻密な透明ガラスの表面はなめらかで、内部
に気泡は存在しなかつた。このガラスロツドの外周に、
光導波路のクラツドとなる部分を付加した後紡糸したと
ころ、0.35dB/kmのフアイバが得られた。
The surface of the obtained dense transparent glass was smooth, and no bubbles were present inside. On the periphery of this glass rod,
After adding the cladding portion of the optical waveguide and spinning, a fiber of 0.35 dB / km was obtained.

〔発明の効果〕〔The invention's effect〕

本発明は高価で、多量に入手することの難かしいHeを
使わずに、高純度の緻密なガラスを得ることができるに
加え、He中で焼結するよりも気泡が生じにくいので高品
質な透明ガラスを低コストにて得られる。さらに加熱処
理に先だつCl2ガス導入や加熱処理雰囲気置換によれ
ば、遷移金属等の光通信で使用する波長に吸収を持つ物
質をppbオーダーまで減少させることができるので、本
発明は光フアイバ用のガラスの製造法及び製造装置とし
て非常に有効である。
The present invention is expensive, it is possible to obtain a high-purity and dense glass without using He, which is difficult to obtain in large quantities, and since it is less likely to cause bubbles than sintering in He, it is of high quality. Transparent glass can be obtained at low cost. Further, by introducing a Cl 2 gas prior to the heat treatment or replacing the heat treatment atmosphere, substances such as transition metals having absorption at the wavelength used in optical communication can be reduced to the ppb order, so the present invention is for optical fibers. It is very effective as a glass manufacturing method and manufacturing apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様を説明する概略断面図であ
る。
FIG. 1 is a schematic sectional view illustrating an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 一郎 横浜市栄区田谷町1番地 住友電気工業 株式会社横浜製作所内 (72)発明者 水野 俊一 横浜市栄区田谷町1番地 住友電気工業 株式会社横浜製作所内 (56)参考文献 特開 昭56−63833(JP,A) 特開 昭59−137334(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Tsuchiya 1 Tayacho, Sakae-ku, Yokohama-shi Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Shunichi Mizuno 1 Taya-cho, Sakae-ku, Yokohama Sumitomo Electric Industries, Ltd. Yokohama Works (56) References JP-A-56-63833 (JP, A) JP-A-59-137334 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス微粒子が集合してなる多孔質体を加
熱することにより透明ガラスを得る方法に於て、炉心管
及び該炉心管の外周を囲む加熱手段を圧力容器内部に、
かつ該炉心管内部及び該加熱手段内部を圧力容器内部に
連通させて設置し、上記多孔質体を該炉心管の中に保持
し、該圧力容器内全体を真空に保ちながら加熱すること
を特徴とする高純度透明ガラスの製造方法。
1. A method for obtaining a transparent glass by heating a porous body composed of fine glass particles, wherein a furnace core tube and heating means surrounding the outer circumference of the furnace core tube are provided inside the pressure vessel.
Further, the inside of the furnace core tube and the inside of the heating means are placed in communication with the inside of the pressure vessel, the porous body is held in the furnace core tube, and heating is performed while maintaining the entire inside of the pressure vessel under vacuum. And a method for producing high-purity transparent glass.
【請求項2】該炉心管が高純度石英製又は高純度カーボ
ン製である特許請求の範囲第1項に記載される高純度透
明ガラスの製造方法。
2. The method for producing high-purity transparent glass according to claim 1, wherein the core tube is made of high-purity quartz or high-purity carbon.
【請求項3】該多孔質体の加熱処理に先立つて、該圧力
容器内にCl2を含むガスを導入しつつ、該圧力容器内全
体を加熱して高純度化しておく特許請求の範囲第1項に
記載される高純度透明ガラスの製造方法。
3. Prior to the heat treatment of the porous body, while introducing a gas containing Cl 2 into the pressure vessel, the entire pressure vessel is heated to be highly purified. Item 1. A method for producing a high-purity transparent glass according to item 1.
【請求項4】該炉心管の内部に直接高純度不活性ガス
(Heを除く)を導入して、該炉心管の中の雰囲気を置換
しつつ該多孔質体を加熱処理する特許請求の範囲第1項
に記載される高純度透明ガラスの製造方法。
4. A method of heat-treating the porous body while introducing a high-purity inert gas (excluding He) directly into the core tube to replace the atmosphere in the core tube. A method for producing a high-purity transparent glass according to item 1.
【請求項5】ガラス微粒子が集合してなる多孔質体を炉
心管中で加熱することにより透明ガラスを得る装置であ
って、1)真空排気手段及びガス供給手段とを有する圧
力容器、2)該圧力容器内部に設置されその内部が圧力
容器内部と連通する加熱手段、及び3)該加熱手段内部
に設置されその内部が加熱手段内部及び圧力容器内部と
連通する炉心管、を有してなる高純度透明ガラスの製造
装置。
5. An apparatus for obtaining transparent glass by heating a porous body, which is an aggregate of glass fine particles, in a furnace core tube, which is 1) a pressure vessel having a vacuum evacuation means and a gas supply means, 2). A heating means installed inside the pressure vessel and communicating with the inside of the pressure vessel; and 3) a core tube installed inside the heating means and communicating with the inside of the heating means and the inside of the pressure vessel. High-purity transparent glass manufacturing equipment.
【請求項6】上記ガス供給手段は圧力容器及び加熱手段
を貫通して炉心管下部に接続されてなることを特徴とす
る特許請求の範囲第5項に記載される高純度透明ガラス
の製造装置。
6. The apparatus for producing high-purity transparent glass according to claim 5, wherein the gas supply means penetrates the pressure vessel and the heating means and is connected to the lower part of the core tube. .
JP62032459A 1987-02-17 1987-02-17 High-purity transparent glass manufacturing method and manufacturing apparatus Expired - Lifetime JP2559395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032459A JP2559395B2 (en) 1987-02-17 1987-02-17 High-purity transparent glass manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032459A JP2559395B2 (en) 1987-02-17 1987-02-17 High-purity transparent glass manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS63201025A JPS63201025A (en) 1988-08-19
JP2559395B2 true JP2559395B2 (en) 1996-12-04

Family

ID=12359555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032459A Expired - Lifetime JP2559395B2 (en) 1987-02-17 1987-02-17 High-purity transparent glass manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2559395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789393B2 (en) 2004-11-29 2014-07-29 The Furukawa Electric Co., Ltd. Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260630A (en) * 1991-02-08 1992-09-16 Sumitomo Electric Ind Ltd Production of preform optical fiber
JPH05105455A (en) * 1991-06-25 1993-04-27 Sumitomo Electric Ind Ltd Production of glass article
AU653411B2 (en) * 1991-07-19 1994-09-29 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JP3175247B2 (en) * 1991-12-16 2001-06-11 住友電気工業株式会社 Heat clearing method for porous preform for optical fiber
JP2917729B2 (en) * 1993-03-03 1999-07-12 住友電気工業株式会社 Manufacturing method of optical fiber preform
JP5242006B2 (en) * 2004-12-16 2013-07-24 古河電気工業株式会社 Optical fiber preform manufacturing method and optical fiber manufacturing method
JP5242007B2 (en) * 2004-12-16 2013-07-24 古河電気工業株式会社 Optical fiber manufacturing method
JP4640293B2 (en) * 2006-08-24 2011-03-02 住友電気工業株式会社 Quartz glass body manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924742B2 (en) * 1979-10-25 1984-06-12 日本電信電話株式会社 Manufacturing method of glass material for optical fiber
JPS5924743B2 (en) * 1980-01-30 1984-06-12 日本電信電話株式会社 Manufacturing method of optical fiber base material
DE3017392C2 (en) * 1980-05-07 1982-09-23 Heraeus Quarzschmelze Gmbh, 6450 Hanau Method and device for the production of flat, transparent, low-bubble bodies made of quartz glass
JPS59137334A (en) * 1983-01-22 1984-08-07 Sumitomo Electric Ind Ltd Manufacturing apparatus of base material for optical fiber
JPS62123036A (en) * 1985-11-25 1987-06-04 Nippon Telegr & Teleph Corp <Ntt> Production of parent material for optical fiber and unit therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789393B2 (en) 2004-11-29 2014-07-29 The Furukawa Electric Co., Ltd. Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber

Also Published As

Publication number Publication date
JPS63201025A (en) 1988-08-19

Similar Documents

Publication Publication Date Title
EP0473104B1 (en) Method for manufacturing a silica glass base material
AU641859B2 (en) A method of manufacturing a silica glass preform
US4082420A (en) An optical transmission fiber containing fluorine
NO161730B (en) PROCEDURE FOR THE PREPARATION OF A GLASS ARTICLE, AT LEAST A PART IS DRUG WITH FLUOR.
US4648891A (en) Optical fiber
CA2116701C (en) Process for production of glass preform for optical fiber
JP3060782B2 (en) Manufacturing method of high purity transparent glass
JP2559395B2 (en) High-purity transparent glass manufacturing method and manufacturing apparatus
EP0348935B1 (en) Method for producing glass preform for optical fiber
US4295869A (en) Process for producing optical transmission fiber
EP0523692B2 (en) Method for producing glass preform for optical fiber
US4165152A (en) Process for producing optical transmission fiber
CA1287494C (en) Optical fiber and method for producing the same
EP0170249B1 (en) Method for producing glass preform for optical fiber
CA1266403A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JP2808857B2 (en) Heating furnace and manufacturing method of glass preform for optical fiber
GB1596088A (en) Method of making glass articles
US20060144094A1 (en) Method for the production of a hollow cylinder made of synthetic quartz glass with the aid of a holding device, and appropriate holding device for carrying out said method
JPS59137334A (en) Manufacturing apparatus of base material for optical fiber
JP2640745B2 (en) Method for manufacturing opaque glass preform
JP2551642B2 (en) Glass base material heating furnace for optical fiber
JPS63242938A (en) Storage of porous preform for optical fiber
JPS63151639A (en) Production of glass preformer for optical fiber
Yoshida et al. Fabrication of optical fiber preform by CIP forming technique
JPS63201029A (en) Production of optical fiber base material