JPS5910097B2 - Frequency control device at ground station - Google Patents

Frequency control device at ground station

Info

Publication number
JPS5910097B2
JPS5910097B2 JP50102714A JP10271475A JPS5910097B2 JP S5910097 B2 JPS5910097 B2 JP S5910097B2 JP 50102714 A JP50102714 A JP 50102714A JP 10271475 A JP10271475 A JP 10271475A JP S5910097 B2 JPS5910097 B2 JP S5910097B2
Authority
JP
Japan
Prior art keywords
station
frequency
signal
pilot
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50102714A
Other languages
Japanese (ja)
Other versions
JPS5227210A (en
Inventor
隆二 黒田
忠雄 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50102714A priority Critical patent/JPS5910097B2/en
Publication of JPS5227210A publication Critical patent/JPS5227210A/en
Publication of JPS5910097B2 publication Critical patent/JPS5910097B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/208Frequency-division multiple access [FDMA]

Description

【発明の詳細な説明】 本発明は、通信衛星上の中継器の回線を、各地球局が周
波数分割で使用する衛星通信方式における、特に、各局
に割当てられた周波数帯域巾が、地球局や衛星中継器の
局部発振器の周波数変動や衛星の漂動等によるドップラ
ー周波数遷移による周波数変動量に近い比較的狭い帯域
巾であるような通信系における周波数制御装置に関する
もので5 ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly applicable to a satellite communication system in which each earth station uses a repeater line on a communication satellite by frequency division. This invention relates to a frequency control device in a communication system with a relatively narrow bandwidth close to the amount of frequency fluctuation due to Doppler frequency transition due to frequency fluctuation of a local oscillator of a satellite repeater or drifting of a satellite.

先づ、通信衛星を介した多元通信系の構成時に各地球局
が、衛星の中継伝送帯域を周波数分割で使用する所謂周
波数分割多元接続方式(以後FDMA方式と呼ぶ)につ
いて説明する。
First, a so-called frequency division multiple access method (hereinafter referred to as FDMA method) in which each earth station uses the relay transmission band of the satellite by frequency division when configuring a multiple communication system via communication satellites will be described.

第1図10は、一般に衛星通信の概念図を示している。
第1図においては1は通信衛星、2、3および4は衛星
通信地球局を示す。FDMA方式では各局は衛星へ向け
て自局に予めまたはその都度割当てられた周波数帯を用
いて送信し、衛星は各局から送信15された信号を中継
して各地球局へ送信する。各地球局では、受信した信号
の中から交信する相手局に指定された周波数帯の信号を
とり出し検波再生する。情報信号を搬送波に乗せるため
の変調方式には、振巾変調、周波数変調等従来知られて
いる20種々の変調方式が適用出来るが、本発明は、変
調方式とは独立のものであるからここでは省略する。第
2図に1例として周波数配置の概念が示されている。f
oはパイロット信号の周波数であり、f1〜f4等は使
用する各周波数帯域の中心周波数25を示す。△fは各
チャンネルの占有帯域巾で一般には、各チャネルは異な
つた占有帯域巾をもつが本図では簡単のために各チャネ
ルは同じ占有帯域巾をもつ如く表現されている。△fg
は各チャネル間に設けられたガードパッドで、各局の送
信周30波数変動及び、各局から衛星へ向けての上り回
線で衛星の漂動によつて生ずるドップラー周波数変移の
量を考慮してチャネル間干渉が許容値以下になる如く設
定される。パイロット信号f。は通常特定の基準となる
地球局が送信し、その他の地球35局は受信信号の中か
らパイロット信号を検出し、そのレベルを基準として受
信機の自動利得制御(AGC)を行うと同時に下り回線
で生ずる周波数変動即ち、衛星中継器及び受信機の局部
発振器の周波数変動及び下り回線でのドツプラ一周波数
変移の影響を避けるためにこのパイロツト周波数によつ
て受信信号を周波数変換する如く用いられる。
FIG. 10 generally shows a conceptual diagram of satellite communications.
In FIG. 1, 1 is a communication satellite, and 2, 3, and 4 are satellite communication earth stations. In the FDMA system, each station transmits to a satellite using a frequency band assigned to it in advance or each time, and the satellite relays the signals transmitted from each station 15 and transmits them to each earth station. Each earth station extracts a signal in a frequency band specified by the other station from among the received signals and detects and reproduces it. As a modulation method for putting an information signal on a carrier wave, 20 different conventional modulation methods such as amplitude modulation and frequency modulation can be applied, but the present invention is independent of the modulation method, so it will not be described here. I will omit it here. FIG. 2 shows the concept of frequency allocation as an example. f
o is the frequency of the pilot signal, and f1 to f4, etc. indicate the center frequency 25 of each frequency band used. Δf is the occupied bandwidth of each channel. Generally, each channel has a different occupied bandwidth, but in this figure, for simplicity, each channel is represented as having the same occupied bandwidth. △fg
is a guard pad installed between each channel, taking into account the 30-wave number fluctuation of each station's transmission frequency and the amount of Doppler frequency shift caused by drifting of the satellite in the uplink from each station to the satellite. The settings are made so that the interference is below the allowable value. Pilot signal f. is usually transmitted by a specific reference earth station, and the other 35 earth stations detect the pilot signal from the received signal and perform automatic gain control (AGC) on the receiver using that level as a reference, while at the same time controlling the downlink. This pilot frequency is used to frequency convert the received signal in order to avoid the effects of frequency fluctuations caused by satellite transponders and receiver local oscillators, and Doppler frequency shifts in the downlink.

今、上述のような系で、非常に多数の局が、各各小容量
の伝送帯域を必要とする系を考えてみる。
Now, consider a system as described above in which a very large number of stations each require a small capacity transmission band.

各局が例えば、音声1チヤネルあるいはデータ信号1チ
ヤネルを必要とするとすれば、各チヤネルに必要な帯域
巾は、(変調方式によつて異なるが)4KH濃度あるい
は極端な場合は100Hz程度の場合もあり得る。この
ような場合は周波数帯域の有効利用の観点から、出来る
だけチヤネル間隔をつめて、衛星中継伝送帯域巾の中に
出来るだけ多くのチヤネルが設定されることが望ましい
。ところが前述した如く、各チヤネル間に設けねばなら
ないガードバンドは上り回線で生ずる周波数変動即ち、
各局の送信周波数変動及びドツプラ一周波数変移を考慮
して決定されねばならない。この量は例えば、上り回線
に6GHz帯を用いる場合、送信周波数安定度が±1X
10−7として、±60011z、ドツプラ一周波数変
移は通常±150Hz程度を見込む必要があるから少な
くとも合計±750Hzのガードバンドが必要である。
更にパイロツト信号が受けるドツプラ一周波数変移も考
慮すると少なくとも±1KHz以上のガードバンドが必
要となり、前述の各チヤネルが必要とする周波数帯域と
相等もしくはそれ以上の余分な周波数帯域が必要である
。即ち周波数帯域の利用効率は著るしく減少させられる
こととなるであろう。本発明の目的は、このような欠点
を取り除き伝送周波数帯域の利用効率を著るしく向上さ
せたFDMA衛星通信方式を提供することにある。
If each station requires, for example, one audio channel or one data signal channel, the required bandwidth for each channel may be 4KH density (depending on the modulation method) or, in extreme cases, about 100 Hz. obtain. In such a case, from the viewpoint of effective use of the frequency band, it is desirable to narrow the channel spacing as much as possible and set as many channels as possible within the satellite relay transmission bandwidth. However, as mentioned above, the guard band that must be provided between each channel prevents frequency fluctuations that occur in the uplink, that is,
It must be determined by taking into account transmission frequency fluctuations and Doppler frequency shifts of each station. For example, when using the 6 GHz band for uplink, this amount is determined by the fact that the transmission frequency stability is ±1X.
10-7, it is necessary to allow for ±60011 z and a Doppler frequency shift of about ±150 Hz, so a guard band of at least ±750 Hz in total is required.
Furthermore, considering the Doppler frequency shift that the pilot signal undergoes, a guard band of at least ±1 kHz or more is required, and an extra frequency band that is equal to or greater than the frequency band required by each of the channels described above is required. That is, the frequency band utilization efficiency will be significantly reduced. An object of the present invention is to provide an FDMA satellite communication system that eliminates such drawbacks and significantly improves the efficiency of use of the transmission frequency band.

第3図は、本発明におけるパイロツト信号の送出方法を
時系列的に示したものである。本図においてA,B,C
等は、各地球局の区別を示しており横軸は時間、縦軸は
周波数である。即ち本発明においては、各地球局は、各
々予め定められた誤差範囲にある周波数のパイロツト信
号を時分割で送出する。各地球局で受信されたパイロツ
ト信号は、A−B−C−A−B−・・・・・・の如き順
序で受信されるが、前述の周波数変動が存在するため、
FA,fB,fc(各々A,B,C局から送信されたパ
イロツト信号の受信周波数を示す)等は一致しない。そ
こで本発明においては、A局を基準局とすると、B局は
受信されたパイロツト信号時系列の中からA局からの信
号と自局からの信号をとり出し、その周波数即りFAと
FBとが一致するように自局パイロツト信号の送信周波
数を制御する。C局も同じ制御を行う。このように各局
は、1つの基準局から発信されたパイロツト信号の各局
における受信周波数と自局から発信されて衛星を介して
受信された自局のパイロツト信号の受信周波数とが一致
する様に各々の局のパイロツト信号の送信周波数を制御
する。その結果、受信パイロツト時系列中の各局の周波
数FA,fB,fC等は、基準局パイロツトの受信周波
数FAに厳密に一致する。第3図はこのような制御の初
期状態から次第に、各局の受信パイロツト周波数が一致
して行く様子をも示したものである。各地球局は、上述
の如き送信パイロツト周波数制御が終了して、受信パイ
ロツト信号時系列中で、基準局からのパイロツト周波数
と自局からのそれとが一致した事を確認した後、予め自
局に割当てられた周波数帯(パイロツト周波数を基準と
して指定される)を用いて情報信号を送出する。
FIG. 3 shows in chronological order the method for transmitting pilot signals according to the present invention. In this diagram, A, B, C
etc. indicate the distinction between each earth station, with the horizontal axis representing time and the vertical axis representing frequency. That is, in the present invention, each earth station transmits pilot signals of frequencies within predetermined error ranges in a time-division manner. The pilot signals received at each earth station are received in the order of A-B-C-A-B-..., but due to the frequency fluctuations mentioned above,
FA, fB, fc (indicating the receiving frequencies of pilot signals transmitted from stations A, B, and C, respectively), etc. do not match. Therefore, in the present invention, when station A is used as a reference station, station B extracts the signal from station A and the signal from its own station from the received pilot signal time series, and their frequencies, that is, FA and FB. Controls the transmission frequency of the own station pilot signal so that it matches. Station C also performs the same control. In this way, each station adjusts the reception frequency of the pilot signal transmitted from one reference station so that the reception frequency of the pilot signal transmitted from the own station and received via the satellite matches the reception frequency of the pilot signal transmitted from the own station and received via the satellite. Controls the station's pilot signal transmission frequency. As a result, the frequencies FA, fB, fC, etc. of each station in the reception pilot time series exactly match the reception frequency FA of the reference station pilot. FIG. 3 also shows how the reception pilot frequencies of each station gradually match from the initial state of such control. After completing the transmitting pilot frequency control as described above and confirming that the pilot frequency from the reference station matches that from the own station in the received pilot signal time series, each earth station assigns the frequency to the own station in advance. The information signal is transmitted using a designated frequency band (designated with the pilot frequency as a reference).

又、受信側では、基準局又は自局の受信パイロツト信号
を用いて受信信号を周波数変換し相手局の使用周波数帯
域をとり出し、情報信号を検波再生する。かくして本発
明によれは、上り回線の周波数変動による受信信号の周
波数配置の変動は、基準局パイロツト信号の周波数を基
準として完全に吸収されるので、周波数配置上、上り回
線の周波数変動を考慮する必要がなく、効率的に伝送周
波数帯を使用することが可能となる。上述の説明におい
て、下り回線での周波数変動については言及しなかつた
が、この変動がパイロツト周波数を基準とした周波数配
置に影響を与えないことは容易に理解されるであろう。
第4図は本発明の一実施例を示したものであつて、従局
における送受信装置の構成を示したものである。
On the receiving side, the received signal is frequency-converted using the received pilot signal of the reference station or the own station, the frequency band used by the other station is extracted, and the information signal is detected and reproduced. Thus, according to the present invention, fluctuations in the frequency allocation of the received signal due to frequency fluctuations in the uplink are completely absorbed using the frequency of the reference station pilot signal as a reference, so it is not necessary to consider the frequency fluctuation in the uplink in the frequency allocation. This makes it possible to use the transmission frequency band efficiently. In the above description, no mention was made of frequency fluctuations in the downlink, but it will be easily understood that these fluctuations do not affect the frequency allocation based on the pilot frequency.
FIG. 4 shows an embodiment of the present invention, and shows the configuration of a transmitting/receiving device in a slave station.

第4図において、5は受信RF信号入力端子、6は信号
分配回路、7はパイロツト信号受信器、8は局識別回路
、9は周波数差検出回路、10は電圧制御発振器、11
及び13はサンプルホールド回路、12はループフイル
タ、14は送信電圧制御発振器、15はゲート回路、1
6は送信周波数変換器、17は信号合成回路、18は受
信周波数変換回路、19は基準局用サンプル信号、20
は自局用サンプル信号、21は送信信号入力端子、22
は送信出力信号端子、および23は受信信号出力端子で
ある。通信衛星によつて中継されて従局において受信さ
れた信号は、受信RF信号入力端子5に加えられる。
In FIG. 4, 5 is a received RF signal input terminal, 6 is a signal distribution circuit, 7 is a pilot signal receiver, 8 is a station identification circuit, 9 is a frequency difference detection circuit, 10 is a voltage controlled oscillator, 11
and 13 is a sample hold circuit, 12 is a loop filter, 14 is a transmission voltage controlled oscillator, 15 is a gate circuit, 1
6 is a transmission frequency converter, 17 is a signal synthesis circuit, 18 is a reception frequency conversion circuit, 19 is a sample signal for reference station, 20
is the sample signal for own station, 21 is the transmission signal input terminal, 22
is a transmission output signal terminal, and 23 is a reception signal output terminal. The signal relayed by the communication satellite and received at the slave station is applied to the received RF signal input terminal 5.

よく知られているように、一般的には、受信信号は中間
周波数帯に変換され規定のレベルまで増巾された後(こ
の時、自動利得調整機能によつて受信レベルの変動に無
関係に一定の出力レベルに増巾される)復調回路に加え
られるが、ここでは、これらの機能は本発明の内容とは
直接関係がないので簡単のために省略してある。即ち、
入力端子5には一定レベルの信号が入力してくるものと
する。この入力は、第2図,第3図で示した如き信号構
成をもつ。RF受信信号は信号分配回路6で、2つに分
岐され、一方はパイロツト受信器7、他方は周波数変換
器18に入力される。
As is well known, the received signal is generally converted to an intermediate frequency band and amplified to a specified level (at this time, the automatic gain adjustment function maintains a constant level regardless of fluctuations in the received level). However, these functions are omitted here for the sake of brevity as they are not directly related to the content of the present invention. That is,
It is assumed that a signal at a constant level is input to the input terminal 5. This input has a signal configuration as shown in FIGS. 2 and 3. The RF received signal is branched into two by the signal distribution circuit 6, one of which is input to the pilot receiver 7 and the other to the frequency converter 18.

パイロツト受信器7は、受信信号の中から予め定められ
た周波数範囲にある基準局及び自局を含む他の従局から
時分割的に送信されたパイロツト信号を帯域淵波器によ
つて済波して出力する。このようにして取り出されたパ
イロツト信号は局識別回路8及び周波数差検出回路9に
加えられる。局識別回路8はパイロツト信号を検波して
、基準局及び自局のパイロツトバーストを検出し、後に
述べるサンプルホールド回路11及び13へサンプルパ
ルスを送出する。ここで、基準局パイロツトバーストは
、受信側で局識別を可能とするように何らかの変調がか
けれているものとする。この変調は例えは、特定の符号
系列をもつパルス信号によつて浅く振巾変調又は周波数
変調又は位相変調をかける方法でもよいし、又例えば、
他の従局バーストとは明らかに異なるバースト継続時間
をもつたものとしてもよいが、方式設計上検出速度が早
く、検出信頼度が高くかつ所要周波数帯域の出来るだけ
狭い方法であることが必要である。自局パイロツトバー
ストの検出は基準局と同様の方法でもよいが、1例とし
て基準局バーストを検出した時点を基準として自局送信
パイロツトバーストの送出時間を制御し予め知られてい
る衛星までの往復伝搬時間を考慮して、自局パイロツト
バーストの受信時間を知る方法も考えられる。いずれの
方法をとるかは、本発明の)本質とは関係なく、更にそ
れら各種の方法は従来の地上又は衛星通信方式において
既知の技術で充分に実現出来る。
The pilot receiver 7 uses a band divider to filter pilot signals transmitted in a time-division manner from the reference station and other slave stations, including the own station, within a predetermined frequency range from among the received signals. Output. The pilot signal thus extracted is applied to a station identification circuit 8 and a frequency difference detection circuit 9. The station identification circuit 8 detects the pilot signal, detects the pilot bursts of the reference station and the own station, and sends sample pulses to sample and hold circuits 11 and 13, which will be described later. Here, it is assumed that the reference station pilot burst is subjected to some kind of modulation to enable station identification on the receiving side. This modulation may be, for example, a method of applying shallow amplitude modulation, frequency modulation, or phase modulation using a pulse signal having a specific code sequence, or, for example,
It may be possible to have a burst duration that is clearly different from other slave bursts, but the method design requires that the detection speed is fast, the detection reliability is high, and the required frequency band is as narrow as possible. . The own station pilot burst may be detected using the same method as for the reference station, but as an example, the transmission time of the own station pilot burst is controlled based on the point in time when the reference station burst is detected, and the round trip propagation time to the satellite is known in advance. In consideration of this, a method of determining the reception time of the own station's pilot burst may also be considered. Which method is adopted is irrelevant to the essence of the present invention, and furthermore, these various methods can be fully realized using techniques known in conventional terrestrial or satellite communication systems.

このようにして、局識別回路8は受信パイロツト信号の
各バーストの中から基準局及び自局のパイロツトバース
トを検出し、受信時間位置を指定する信号19,20を
発生すると共に、基準局パイロツトバースト受信時点を
基準として自局パイロツトバーストを送出するためのゲ
ート信号をゲート回路15へ送出する。
In this way, the station identification circuit 8 detects the pilot bursts of the reference station and its own station from among the bursts of the received pilot signal, generates signals 19 and 20 specifying the reception time position, and also detects the reference station pilot burst reception time point. A gate signal for sending out a local pilot burst is sent to the gate circuit 15 based on the reference point.

一方周波数差検出回路9は、パイロツト受信器7及び電
圧制御発振器10からの出力信号を入力し両者の周波数
差を検出してその差に比例する直流信号をサンプルホー
ルド回路11及び13へ送出する。
On the other hand, the frequency difference detection circuit 9 inputs the output signals from the pilot receiver 7 and the voltage controlled oscillator 10, detects the frequency difference between the two, and sends a DC signal proportional to the difference to the sample and hold circuits 11 and 13.

この周波数差検出回路についても種々の方法が考えられ
るが既存の技術によつて充分可能である事は通信技術の
専門家によつては容易に理解出来る事であろう。サンプ
ルホールド回路11では、入力周波数差信号の中から基
準局に対応する時間位置に発生している信号をサンプル
パルス19によつてサンプルし、次のサンプル時点まで
保持する。その出力信号は、ルーブフイルタ12を通つ
て電圧制御発振器10の制御端子に加えられ、その結果
、電圧制御発振器10の出力周波数は基準局パイロツト
信号の受信周波数と一致するように制御される。一方サ
ンプルホールド回路13は自局パイロツトバースト信号
の受信位置に対応する時点で即ち、サンプルパルス20
により周波数差検出回路の出力信号をサンプルしこれを
保持する。その出力は電圧制御発振器14の制御端子に
加えられ、自局パイロツト信号の送信周波数を制御する
。かくして、電圧制御発振器14の出力周波数は、受信
基準局パイロツト周波数と受信自局パイロツト周波数と
が一致するように制御される。この信号はゲート回路1
5において、基準局パイロツト受信時間位置を基準とし
て局識別回路18で発生されたゲートパルスによりゲー
トされて、信号合成回路17へ導かれる。又同時にこの
信号は送信周波数変換器16に加えられ送信信号21を
Up−COnvertした後信号合成器によリパイロツ
トバースト信号を合成されて出力端子22より出力され
る。入力端子21に入力される信号は、第2図において
例えばF,−F。を中心周波数として、情報信号により
変調された信号であり、周波数F。をもつ電圧制御発振
器14の出力信号により周波数変換されて中心周波数f
1をもつ変調波となる。受信側では、これらの周波数は
、前述したように送信周波数とは異なる。
Various methods can be considered for this frequency difference detection circuit, but communication technology experts will easily understand that it is fully possible using existing technology. In the sample and hold circuit 11, a signal generated at a time position corresponding to the reference station from among the input frequency difference signals is sampled using a sample pulse 19, and held until the next sampling point. The output signal is applied to the control terminal of the voltage controlled oscillator 10 through the rube filter 12, so that the output frequency of the voltage controlled oscillator 10 is controlled to match the reception frequency of the reference station pilot signal. On the other hand, the sample and hold circuit 13 receives the sample pulse 20 at the time corresponding to the reception position of the pilot burst signal of its own station.
The output signal of the frequency difference detection circuit is sampled and held. Its output is applied to the control terminal of the voltage controlled oscillator 14 to control the transmission frequency of the own station pilot signal. In this way, the output frequency of the voltage controlled oscillator 14 is controlled so that the reception reference station pilot frequency and the reception own station pilot frequency match. This signal is gate circuit 1
5, the signal is gated by a gate pulse generated by the station identification circuit 18 with reference to the reference station pilot reception time position, and is guided to the signal synthesis circuit 17. At the same time, this signal is applied to the transmission frequency converter 16 to up-convert the transmission signal 21, and then synthesized into a repilot burst signal by the signal synthesizer, which is output from the output terminal 22. The signals input to the input terminal 21 are, for example, F and -F in FIG. It is a signal modulated by an information signal, with the center frequency being F. The frequency is converted by the output signal of the voltage controlled oscillator 14 having a center frequency f
It becomes a modulated wave with 1. On the receiving side, these frequencies are different from the transmitting frequencies as described above.

これらをF。′,F,′とすると、上述の如く受信点に
おいて基準局パイロツト信号と自局パイロツト信号の周
波数が一致するように制御しているので、f1′−FO
′=f1−FOとなる事は明らかである。即ち、受信信
号分配回路6で分岐された信号を、電圧制御発信器10
の出力によりDOwn−COnvertすることにより
中心周波数f1−FOをもつ信号を得ること力咄来る。
実際にはこの局では他の局から送信された信号を受信す
るわけであるが他の従局も同様の周波数制御を行つてい
るので前述の上り回線での周波数変動に起因する周波数
配置上の変動は全くなく、パイロツト周波数を基準とし
て厳密に固定されることになる。なお云うまでもないが
基準局は、一定の時間毎に所定の時間巾だけ自局の高安
定発振器によつてパイロツト信号を送出する。
F these. ′, F, ′, since the frequency of the reference station pilot signal and the local station pilot signal are controlled to match at the reception point as described above, f1′-FO
It is clear that '=f1-FO. That is, the signal branched by the received signal distribution circuit 6 is sent to the voltage controlled oscillator 10.
It is possible to obtain a signal having a center frequency f1-FO by performing a DOWN-CONVERT with the output of .
In reality, this station receives signals transmitted from other stations, but other slave stations also perform similar frequency control, so fluctuations in frequency allocation due to frequency fluctuations in the uplink mentioned above may occur. There is no frequency at all, and it is strictly fixed based on the pilot frequency. Needless to say, the reference station sends out a pilot signal for a predetermined period of time at regular intervals using its highly stable oscillator.

又、各従局が基準局からの受信クロツク信号と自局の受
信クロツク信号とを位相同期される方式については、時
分割多重多元接続方式(TDMA方式)において周知の
事実であり、各局が時分割的に送信するバースト信号を
受信して、周波数同期又は位相同期を行う方式そのもの
は本発明を実現するための一手段にすぎない。
Furthermore, it is a well-known fact in the time division multiple access system (TDMA system) that each slave station synchronizes the phase of the received clock signal from the reference station with the received clock signal of its own station. The method itself for performing frequency synchronization or phase synchronization by receiving a burst signal transmitted to a target is only one means for realizing the present invention.

本発明は、この技術をFDMA方式に適用して、各従局
のパイロット周波数を基準パイロツト周波数を基準とし
て制御し、衛星上での周波数配置が上り回線の周波数変
動に影響されないようにし、よつて伝送周波数帯域の有
効利用を可能とする事をもつて特徴とするものである。
以上説明して来た如く、本発明によれば、衛星への各局
からの上り回線で生ずる周波数変動差を吸収するための
ガードバンドは殆んど不要となり、限られた伝送帯域巾
を有効に利用する事が可能となる。
The present invention applies this technology to the FDMA system to control the pilot frequency of each slave station based on the reference pilot frequency, so that the frequency allocation on the satellite is not affected by uplink frequency fluctuations, and thus the transmission It is characterized by enabling effective use of frequency bands.
As explained above, according to the present invention, there is almost no need for a guard band to absorb the frequency fluctuation difference that occurs in the uplink from each station to the satellite, and the limited transmission bandwidth can be used effectively. It becomes possible to use it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、衛星通信方式の説明図、第2図はFDMA通
信方式における周波数配置の説明図、第3図は本発明に
おけるパイロツト信号の送出方法を示すタイムチヤート
、第4図は本発明の一実施例を示す。 1・・・・・・通信衛星;2,3,4・・・・・・衛星
通信地上局;5・・・・・・受信RF信号入力端子;6
・・・・・・信号分配回路;7・・・・・・パイロツト
信号受信器;8・・・・・・局識別回路;9・・・・・
・周波数差検出回路;10・・・・・・電圧制御発振器
;11,13・・・・・・サンプルホールド回路;12
・・・・・・ループフイルタ;14・・・・・・送信電
圧制御発振器;15・・・・・・ゲート回路;16・・
・・・・送信周波数変換器;17・・・・・・信号合成
回路;18・・・・・・受信周波数変換回路;19・・
・・・・基準局用サンプル信号;20・・・・・・自局
用サンブル信号;21・・・・・・送信信号入力端子;
22・・・・・・送信出力信号端子;23・・・・・・
受信信号出力端子。
FIG. 1 is an explanatory diagram of the satellite communication system, FIG. 2 is an explanatory diagram of frequency allocation in the FDMA communication system, FIG. 3 is a time chart showing the pilot signal sending method in the present invention, and FIG. An example is shown. 1... Communication satellite; 2, 3, 4... Satellite communication ground station; 5... Received RF signal input terminal; 6
...... Signal distribution circuit; 7... Pilot signal receiver; 8... Station identification circuit; 9...
・Frequency difference detection circuit; 10... Voltage controlled oscillator; 11, 13... Sample hold circuit; 12
...... Loop filter; 14... Transmission voltage controlled oscillator; 15... Gate circuit; 16...
...Transmission frequency converter; 17... Signal synthesis circuit; 18... Receiving frequency conversion circuit; 19...
... Sample signal for reference station; 20 ... Sample signal for own station; 21 ... Transmission signal input terminal;
22... Transmission output signal terminal; 23...
Received signal output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 通信衛星を介して複数の地上局が各々に割当てられ
た周波数帯を用いて交信する周波数分割多元接続衛星通
信方式において、自局からその局に割当てられた時間帯
に時分割的に送信された1つのパイロット信号と基準地
上局からその局に割当てられた時間帯に時分割的に送信
された1つのパイロット信号とを自局で受信し、その受
信信号から自局の受信パイロット信号と基準局からの受
信パイロット信号を分離しこれらの信号の周波数が一致
するように自局の送信パイロット信号の周波数を制御し
、この制御された周波数を基準として自局の送信または
受信搬送波周波数を設定することを特徴とする地上局に
おける周波数制御装置。
1 In a frequency division multiple access satellite communication system in which multiple ground stations communicate via a communication satellite using frequency bands assigned to each station, time-division transmission is performed from one station to the other in the time slot assigned to that station. The own station receives one pilot signal transmitted from the reference ground station in a time division manner during the time slot assigned to that station, and uses the received signals to determine the received pilot signal of the own station and the reference station. Separate the received pilot signal from the station, control the frequency of the transmitting pilot signal of the own station so that the frequencies of these signals match, and set the transmitting or receiving carrier frequency of the own station based on this controlled frequency. A frequency control device in a ground station characterized by:
JP50102714A 1975-08-25 1975-08-25 Frequency control device at ground station Expired JPS5910097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50102714A JPS5910097B2 (en) 1975-08-25 1975-08-25 Frequency control device at ground station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50102714A JPS5910097B2 (en) 1975-08-25 1975-08-25 Frequency control device at ground station

Publications (2)

Publication Number Publication Date
JPS5227210A JPS5227210A (en) 1977-03-01
JPS5910097B2 true JPS5910097B2 (en) 1984-03-07

Family

ID=14334924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50102714A Expired JPS5910097B2 (en) 1975-08-25 1975-08-25 Frequency control device at ground station

Country Status (1)

Country Link
JP (1) JPS5910097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862943A (en) * 1981-10-08 1983-04-14 Nec Corp Satellite communication system
JPS60185437A (en) * 1984-03-04 1985-09-20 Kokusai Denshin Denwa Co Ltd <Kdd> Frequency control method in regenerative relay satellite communication system
JP2770974B2 (en) * 1989-03-20 1998-07-02 沖電気工業株式会社 Wireless communication apparatus and method

Also Published As

Publication number Publication date
JPS5227210A (en) 1977-03-01

Similar Documents

Publication Publication Date Title
US3982075A (en) Synchronization system for time division multiple access relay communications system
CA2375846C (en) Method and apparatus for determining characteristics of components of a communication channel
US4019138A (en) Frequency synchronizing system for satellite communication
US4489413A (en) Apparatus for controlling the receive and transmit frequency of a transceiver
US4330859A (en) Automatic gain control circuit in multi-direction time division multiplex communication system
US3654395A (en) Synchronization of tdma space division satellite system
Sekimoto et al. A satellite time-division multiple-access experiment
US3530252A (en) Acquisition technique for time division multiple access satellite communication system
US4121159A (en) Method for the synchronization of a transmission path
US4191923A (en) Satellite communication systems
US3493866A (en) Frequency stepped phase shift keyed communication system
US4466130A (en) Two pilot frequency control for communication systems
JPS5910097B2 (en) Frequency control device at ground station
US4457003A (en) Time reference tracking loop for frequency hopping systems
US3551813A (en) Time division satellite communication system
Carter Survey of synchronization techniques for a TDMA satellite-switched system
JP2877177B2 (en) Receiver for frequency division multiple access communication system
JPS61163729A (en) Transmitting power monitoring and controlling system
JP3052518B2 (en) Demodulation control method for burst signal demodulator
US4470148A (en) Satellite-receiver time division multiple-access burst duration and guard space monitor
CA1037167A (en) Synchronisation system
JPS5847102B2 (en) Initial connection method for time division multiple access communication
JPS62120738A (en) Pilot signal transmission and reception equipment
JPS6011860B2 (en) Interference detection method in polyphase phase modulation same frequency band polarization shared communication
JPS634982B2 (en)