JPS5834399Y2 - heat treatment equipment - Google Patents

heat treatment equipment

Info

Publication number
JPS5834399Y2
JPS5834399Y2 JP4570179U JP4570179U JPS5834399Y2 JP S5834399 Y2 JPS5834399 Y2 JP S5834399Y2 JP 4570179 U JP4570179 U JP 4570179U JP 4570179 U JP4570179 U JP 4570179U JP S5834399 Y2 JPS5834399 Y2 JP S5834399Y2
Authority
JP
Japan
Prior art keywords
reaction tube
heat treatment
quartz reaction
sample
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4570179U
Other languages
Japanese (ja)
Other versions
JPS55144999U (en
Inventor
忠敏 野崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP4570179U priority Critical patent/JPS5834399Y2/en
Publication of JPS55144999U publication Critical patent/JPS55144999U/ja
Application granted granted Critical
Publication of JPS5834399Y2 publication Critical patent/JPS5834399Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)

Description

【考案の詳細な説明】 本考案はMOS 型電界効果トランジスタ(以下MO
3)ランジスタと言う)を構成要素とする半導体装置の
製造技術において酸化性の強い金属の熱処理を行なう熱
処理装置に関するものである。
[Detailed explanation of the invention] This invention is a MOS field effect transistor (hereinafter referred to as MOSFET).
3) The present invention relates to a heat treatment apparatus for heat-treating highly oxidizing metals in the manufacturing technology of semiconductor devices having transistors (referred to as transistors) as constituent elements.

MOS )ランジスタの製造においてゲート電極をマス
クとしイオン注入技術を用いてソース及びドレイン層を
自己整合的に形成する方法は周知である。
In manufacturing a MOS transistor, a method of forming source and drain layers in a self-aligned manner using an ion implantation technique using a gate electrode as a mask is well known.

この場合注入された不純物の電気的活性化を行なわしめ
るため高温熱処理が必要でありこの高温に耐え得る材料
がゲート電極として用いられる。
In this case, high temperature heat treatment is required to electrically activate the implanted impurities, and a material that can withstand this high temperature is used for the gate electrode.

例えば多結晶シリコンや高融点金属である。この場合高
融点金属は比抵抗値が小さいこと、粒径が小さいため微
細加工性にすぐれていることの大きな特長がありMOS
トランジスタを用いた集積回路の電気的特性の向上が期
待出来る事から注目をあびている。
Examples include polycrystalline silicon and high melting point metals. In this case, the high melting point metal has the major advantages of a low specific resistance value and excellent microfabriability due to its small particle size.
It is attracting attention because it is expected to improve the electrical characteristics of integrated circuits using transistors.

しかしながら高融点金属であるモノブデンやタングステ
ンは酸化性が強くこれ等高融点金属の酸化が生じない様
な熱処理法もしくは熱処理装置が必要とされる。
However, monobuten and tungsten, which are high melting point metals, have strong oxidizing properties and require a heat treatment method or heat treatment device that prevents oxidation of these high melting point metals.

第1図は従来の熱処理装置を模式的に示したもので、1
は発熱体、2は非酸化性ガス導入口4を有し他方の端面
が開放状の石英反応管、3はスカベンジャ、5は試料取
り出し口、6は試料台である。
Figure 1 schematically shows a conventional heat treatment apparatus.
2 is a heating element, 2 is a quartz reaction tube having a non-oxidizing gas inlet 4 and the other end is open, 3 is a scavenger, 5 is a sample outlet, and 6 is a sample stage.

この様な熱処理装置を用い金属表面層が露出した状態で
モリブチ゛ン等を熱処理すると熱処理後試料を試料取り
出し口近辺に引き出した時試料取り出し口からの空気中
の酸素の逆拡散が生ずる結果試料の表面が酸化されてし
まい、金属表面層の電気的特性等に悪影響が生ずる。
If such a heat treatment device is used to heat-treat molybutin, etc. with the metal surface layer exposed, when the sample is pulled out near the sample take-out port after heat treatment, back diffusion of oxygen in the air from the sample take-out port will occur, resulting in damage to the surface of the sample. is oxidized, which adversely affects the electrical properties of the metal surface layer.

この場合試料取り出し口を開放にせず第2図17に示す
様な石英反応管出口の面積をせばめ出口での導入ガスの
流速を増加せしめることを目的とした治具を石英反応管
出口に取り付けたとしても空気中の酸素の逆拡散は抑え
きれない。
In this case, the sample outlet was not left open, and a jig was attached to the quartz reaction tube outlet as shown in Figure 2 17 for the purpose of narrowing the area of the quartz reaction tube outlet and increasing the flow rate of the introduced gas at the outlet. However, back diffusion of oxygen in the air cannot be suppressed.

この様なモリブデン等の酸化を防ぐため内部に不活性ガ
スを密閉した熱処理装置を用い試料を冷却した後に取り
出す方法、あるいは真空中で熱処理し冷却後取り出す方
法が考えられるが生産性の観点から考えると実用に供し
得ない。
In order to prevent such oxidation of molybdenum, etc., it is possible to use a heat treatment device with an inert gas sealed inside and take the sample out after cooling it, or heat treat it in a vacuum and take it out after cooling, but consider this from the viewpoint of productivity. It cannot be put to practical use.

一方前原等が公開特許公報昭53−79389でMO8
熱処理装置を出願しているが以下述べる点で充分満足の
ゆくものではない。
On the other hand, Maehara et al.
Although an application has been filed for a heat treatment apparatus, it is not fully satisfactory in the following points.

第3図は前原等が用いた熱処理装置で第1図の従来の熱
処理装置に比べ石英反応管が延長されたこと及びこの延
長部分に7のガス吹込み口が設けられたこと及び試料台
6の管軸方向の両端に取り付けられた石英反応管2の内
径よりわずかに小さな外径を有するついたて8が設けら
れたことが特徴である。
Figure 3 shows the heat treatment equipment used by Maehara et al. Compared to the conventional heat treatment equipment shown in Figure 1, the quartz reaction tube was extended, a gas inlet 7 was provided in this extension, and the sample stage 6 The quartz reaction tube 2 is characterized in that the tube 8 is provided with a bar 8 having an outer diameter slightly smaller than the inner diameter of the quartz reaction tube 2 attached to both ends in the tube axis direction.

第3図においてその他の記号は第1図の場合と同じであ
る。
Other symbols in FIG. 3 are the same as in FIG. 1.

この熱処理装置では7から不活性ガスを導入すると試料
台6の試料取り出し口側のついたて8が石英反応管2の
内径側と十分接近していてすき間がほとんどないことか
ら7から吹こまれたガスはほとんど試料取り出し口5の
方向に流れ、試料取り出し口5からの酸素の逆拡散を抑
制することが出来る。
In this heat treatment apparatus, when inert gas is introduced from 7, the ridge 8 on the sample outlet side of the sample stage 6 is sufficiently close to the inner diameter side of the quartz reaction tube 2, and there is almost no gap, so the gas blown from 7 is Most of the oxygen flows in the direction of the sample take-out port 5, and back diffusion of oxygen from the sample take-out port 5 can be suppressed.

しかしながらこの熱処理装置は石英反応管及び試料台と
もに複雑な構造を有していることから石英反応管及び試
料台の洗浄を考えた場合これ等石英反応管もしくは試料
台の破損等の問題が生じやすく、また試料台の管軸方向
の両端に設けられたつい立ての外径が石英反応管の内径
より少し小さい程度であるから試料台を反応管から取り
出す時ガスの流れの上流側にあるつい立てが反応管と接
触しない様に注意深く取り出す必要があり時には破損に
至る恐れがある等欠点が多い、また熱処理装置の構造が
複雑であることから当然熱処理装置の整備に要する費用
が増大しこの点に関しても満足のゆくものではない。
However, since this heat treatment equipment has a complicated structure for both the quartz reaction tube and sample stage, problems such as damage to the quartz reaction tube or sample stage are likely to occur when cleaning the quartz reaction tube and sample stage. Also, since the outer diameter of the piers provided at both ends of the sample stage in the tube axis direction is slightly smaller than the inner diameter of the quartz reaction tube, when removing the sample stage from the reaction tube, the piers on the upstream side of the gas flow are There are many drawbacks, such as the need to carefully take out the heat treatment equipment so that it does not come into contact with the reaction tube, which can sometimes lead to damage, and the structure of the heat treatment equipment is complex, which naturally increases the cost of maintaining the heat treatment equipment. is also not satisfactory.

以上の背景から本考案は酸化性の強い金属の該金属の表
面が露出された状態での熱処理を行なう、簡単な構造を
有する熱処理装置を提供するものである。
Based on the above background, the present invention provides a heat treatment apparatus having a simple structure, which performs heat treatment on a highly oxidizing metal with the surface of the metal exposed.

即ち本考案では用いる石英反応管の出口が、発熱体のガ
スの流れに関して下流側に位置する発熱体の端から計っ
て80〜100cmの所に位置する様な従来用いられて
いる石英反応管に比べ全長の長い石英反応管を用い、か
つ反応管出口を反応管出口での面積を4〜6cm2にせ
ばめる様な治具を用いておおう、ことを特徴とした熱処
理装置を提供するものである。
That is, in the present invention, the outlet of the quartz reaction tube used in the present invention is located at a distance of 80 to 100 cm from the end of the heating element located on the downstream side with respect to the gas flow of the heating element. To provide a heat treatment apparatus characterized in that a quartz reaction tube having a longer overall length is used, and a jig is used to narrow the area of the reaction tube outlet to 4 to 6 cm2. .

以下本考案における熱処理装置を用いてモリブチ゛ン薄
膜をモリブデン薄膜表面が露出した状態で高温熱処理を
行なった結果について述べる。
The following describes the results of high-temperature heat treatment of a molybdenum thin film using the heat treatment apparatus of the present invention with the surface of the molybdenum thin film exposed.

第4図に用いた熱処理装置の模式図を示すが11は発熱
体、12は非酸化性ガス導入口14を有し、他端が開放
状の石英反応管、13はスカベンジャ、15は試料取り
出し口、16は試料台、17は石英反応管出口5の面積
を4〜6cm2にせばめる様な治具(以下キャップと言
う)で第2図に示す様な形状を有し反応管出口に容易に
脱着出来るものである。
Fig. 4 shows a schematic diagram of the heat treatment apparatus used. 11 is a heating element, 12 is a quartz reaction tube with a non-oxidizing gas inlet 14 and the other end is open, 13 is a scavenger, and 15 is a sample removal tube. 16 is a sample stage; 17 is a jig (hereinafter referred to as a cap) that narrows the area of the quartz reaction tube outlet 5 to 4 to 6 cm2; It can be attached and detached.

石英反応管は反応管出口が発熱体のガスの流れに関して
下流側に位置する発熱体の端から計って80 cmの所
に来るものを用いた。
The quartz reaction tube used was such that the reaction tube outlet was located 80 cm from the end of the heating element located on the downstream side with respect to the gas flow of the heating element.

石英反応管の内径は86mmで窒素ガスを5001/時
に選んで供給した。
The inner diameter of the quartz reaction tube was 86 mm, and nitrogen gas was supplied at a rate of 500 l/hr.

従って室温における反応管内の窒素ガスの流速は2.4
cm/seeとなる。
Therefore, the flow rate of nitrogen gas in the reaction tube at room temperature is 2.4
cm/see.

発熱体の設定温度を1000℃としシリコン酸化膜上3
000 Aの膜厚を有するモリブデン薄膜を形成したシ
リコン基板を用意し試料台にのせ試料台を反応管出口近
辺に挿入した後キャップを反応管出口にかぶせしかる後
試料台を1000℃の温度領域に挿入し20分間アニー
ルした。
Set the temperature of the heating element to 1000℃ and place it on the silicon oxide film 3.
Prepare a silicon substrate on which a thin molybdenum film with a thickness of 0.000 A is formed, place it on a sample stand, insert the sample stand near the outlet of the reaction tube, cover the outlet of the reaction tube with a cap, and then place the sample stand in a temperature range of 1000°C. It was inserted and annealed for 20 minutes.

アニール後第4図の模式図に示した様に反応管出口から
計って70 cm上流の位置に試料台を引き出しここで
10分間放置し、しかる後試料台を反応管出口まで引き
出しモリブチ゛ン薄膜の形成されたジノコン基板を取り
出した。
After annealing, as shown in the schematic diagram in Figure 4, the sample stage was pulled out to a position 70 cm upstream from the reaction tube outlet and left there for 10 minutes, and then the sample stage was pulled out to the reaction tube outlet to form a thin molybutin film. I took out the Zinocon board that had been removed.

この様にアニールしたモリブチ゛ン膜はアニール前と同
じ金属光沢を有しかつその膜厚のアニール前後での変化
は1000℃アニールによるモリブデン膜の収縮による
膜厚変化を除いて全く観測されなかった。
The molybdenum film annealed in this manner had the same metallic luster as before annealing, and no change in film thickness before and after annealing was observed, except for a change in film thickness due to shrinkage of the molybdenum film due to annealing at 1000°C.

また1、5μm幅に加工されたモリブデン配線の配線幅
のアニル前後での変化は測定誤差内で全く生じないこと
が確認された。
It was also confirmed that the wiring width of the molybdenum wiring processed to a width of 1.5 μm before and after annealing did not change at all within the measurement error.

またアニール前後におけるセリブチ゛ン膜のシート抵抗
値はそれぞれ3゜8g/口及び0.36Ω/口であり従
って1000℃20分アニール後でのモリブチ゛ン膜の
シート抵抗値から比抵抗値を求めると1.I X 1O
−5J77cmとなり例えば乱用等の応用物理第47巻
第3頁192〜209頁での報告モリブデン薄膜の性質
における結果と同一であり、本考案の熱処理装置を用い
てアニールされたモリブデン膜が電気的に何等の変質−
も生じていないことが確認された。
The sheet resistance values of the cellibutene film before and after annealing are 3.8 g/hole and 0.36 ohm/hole, respectively. Therefore, the specific resistance value is calculated from the sheet resistance value of the molybutene film after annealing at 1000°C for 20 minutes. I X 1O
-5J77cm, which is the same as the result regarding the properties of the molybdenum thin film reported in Applied Physics Vol. What kind of alteration?
It was confirmed that this did not occur.

上述の実施例では導入する窒素ガス流量として5001
/時を選んだが例えば30017時にすると試料を第4
図における試料台の位置に引き出した時にモリブチ゛ン
膜の酸化が生じ表面が茶色に変色した。
In the above example, the nitrogen gas flow rate to be introduced is 5001
For example, if you select 30017 o'clock, the sample will be placed at the 4th hour.
When the sample was pulled out to the position shown in the figure, the molybutin film was oxidized and the surface turned brown.

いくつかの実験から導入するガスの流量は石英反応管内
の室温での流速として2cm/sec以上が必要である
Some experiments have shown that the flow rate of the gas introduced at room temperature within the quartz reaction tube is required to be 2 cm/sec or more.

また石英反応管出口が発熱体のガスの流れに関して下流
側に位置する端から40cmの位置に来る様な石英管を
用いた時はキャップを用いたとしてもモリブチ゛ン膜の
酸化が生じた。
Furthermore, when a quartz tube was used in which the outlet of the quartz reaction tube was located 40 cm from the downstream end of the heating element with respect to the gas flow, oxidation of the molybutin film occurred even if a cap was used.

また上述の実施例で所定の温度領域でアニールした後試
料台を引き出し反応管出口から計って70cm上流の位
置に試料台を放置する時間として5分を用いると反応管
出口近辺に試料を引き出した時モリブデン膜の酸化が生
ずる。
In addition, in the above example, when the sample stage was pulled out after annealing in a predetermined temperature range and the sample stage was left at a position 70 cm upstream from the reaction tube outlet for 5 minutes, the sample was pulled out near the reaction tube outlet. Oxidation of the molybdenum film occurs.

従って少なくとも10分以上放置することが必要である
Therefore, it is necessary to leave it for at least 10 minutes.

さらに上述の実施例に用いた石英管を用いたとしてもキ
ャップ17を反応管出口にかぶせずアニールした時は、
やはりモリブチ゛ン膜の酸化が生じ、キャップを使用す
ることの重要性が確認された。
Furthermore, even if the quartz tube used in the above embodiment is used, when annealing is performed without covering the reaction tube outlet with the cap 17,
As expected, oxidation of the molybutin film occurred, confirming the importance of using a cap.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱処理装置の模式図で、第2図は石英反
応管出口を外気からしゃ断する目的で使用する治具で、
第3図は第1図に示したものを改良した特開昭53−7
9389号公報で示された熱処理装置の模式図で、第4
図が本考案が出願する熱処理装置の模式図である。 各記号の意味するところは以下の様である。 1;発熱体、2;石英反応管、3;スカベンジャ、4;
非酸化性ガス導入口、5;試料取り出し口、6;試料台
、7;ガス吹込み口、8;ついたて、11;発熱体、1
2:石英反応管、13:スカベンジャ、14;非酸化性
ガス導入口、15;試料取り出し口、16;試料台、1
7;キャップ。
Figure 1 is a schematic diagram of a conventional heat treatment apparatus, and Figure 2 is a jig used to isolate the outlet of a quartz reaction tube from outside air.
Figure 3 is an improved version of the one shown in Figure 1, JP-A-53-7.
This is a schematic diagram of the heat treatment apparatus shown in Publication No. 9389.
The figure is a schematic diagram of a heat treatment apparatus to which the present invention is applied. The meaning of each symbol is as follows. 1; heating element, 2; quartz reaction tube, 3; scavenger, 4;
Non-oxidizing gas inlet, 5; Sample outlet, 6; Sample stand, 7; Gas inlet, 8; Lighting, 11; Heating element, 1
2: Quartz reaction tube, 13: Scavenger, 14; Non-oxidizing gas inlet, 15; Sample take-out port, 16; Sample stand, 1
7; Cap.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 発熱体の中に円筒状の石英反応管を挿入し、所望の温度
に設定された発熱体の中に挿入された石英反応管内の、
この反応管内に導入される非酸化性ガス雰囲気中で熱処
理を行なう熱処理装置において、石英反応管出口が、発
熱体のガスの流れに関して下流側に位置する発熱体の端
から計って80〜100 cmの所に位置する様な石英
反応管を用い、石英反応管出口を反応管出口での面積を
4〜6cm2にせばめる様な治具を用いておおう、こと
を特徴とした熱処理装置。
A cylindrical quartz reaction tube is inserted into the heating element, and the temperature inside the quartz reaction tube inserted into the heating element is set to the desired temperature.
In this heat treatment apparatus that performs heat treatment in a non-oxidizing gas atmosphere introduced into the reaction tube, the quartz reaction tube outlet is 80 to 100 cm measured from the end of the heating element located downstream with respect to the gas flow of the heating element. A heat treatment apparatus characterized in that a quartz reaction tube is used, and a jig is used to narrow the area of the quartz reaction tube outlet to 4 to 6 cm2 at the reaction tube outlet.
JP4570179U 1979-04-06 1979-04-06 heat treatment equipment Expired JPS5834399Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4570179U JPS5834399Y2 (en) 1979-04-06 1979-04-06 heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4570179U JPS5834399Y2 (en) 1979-04-06 1979-04-06 heat treatment equipment

Publications (2)

Publication Number Publication Date
JPS55144999U JPS55144999U (en) 1980-10-17
JPS5834399Y2 true JPS5834399Y2 (en) 1983-08-02

Family

ID=28924475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4570179U Expired JPS5834399Y2 (en) 1979-04-06 1979-04-06 heat treatment equipment

Country Status (1)

Country Link
JP (1) JPS5834399Y2 (en)

Also Published As

Publication number Publication date
JPS55144999U (en) 1980-10-17

Similar Documents

Publication Publication Date Title
KR910007097B1 (en) Manufacturing method of semiconductor device
JPH06188413A (en) Manufacture of mos-type semiconductor device
JPH0380338B2 (en)
JPS5834399Y2 (en) heat treatment equipment
KR960000360B1 (en) Low contact resistance process
JPS5863165A (en) Semiconductor device having multilayer electrode structure
JPS6027129A (en) Method for annealing metallic film wiring
WO2012067030A1 (en) Electrode film, sputtering target, thin-film transistor, method for manufacturing thin-film transistor
JPS61216331A (en) Thermal oxidization of polycide substrate in dry oxygen atmosphere and semiconductor circuit manufactured thereby
JPS6327846B2 (en)
JPS59103375A (en) Manufacture for semiconductor device with shottky junction
JPS63128732A (en) Formation of metallic silicide film
JPH04242952A (en) Thin film forming equipment
JPH0391245A (en) Thin-film semiconductor device and manufacture thereof
JP3292154B2 (en) Method for manufacturing semiconductor device
JPH01120051A (en) Semiconductor device
TW410380B (en) Method of forming the gate oxide
JPS61256672A (en) Manufacture of semiconductor device
JPS63133622A (en) Manufacture of semiconductor device
JPS5935475A (en) Manufacture of semiconductor device
JPH01289165A (en) Manufacture of semiconductor device
JPH03266434A (en) Manufacture of semiconductor device
JPS63240017A (en) Manufacture of semiconductor device
JPS58162062A (en) Manufacture of semiconductor device
JPS592320A (en) Manufacture of semiconductor device