JPS5827608A - Body liquid filter - Google Patents

Body liquid filter

Info

Publication number
JPS5827608A
JPS5827608A JP56124468A JP12446881A JPS5827608A JP S5827608 A JPS5827608 A JP S5827608A JP 56124468 A JP56124468 A JP 56124468A JP 12446881 A JP12446881 A JP 12446881A JP S5827608 A JPS5827608 A JP S5827608A
Authority
JP
Japan
Prior art keywords
body fluid
flow path
membrane
plate
regulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56124468A
Other languages
Japanese (ja)
Inventor
Masaharu Watanabe
正春 渡辺
Akira Igari
猪狩 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56124468A priority Critical patent/JPS5827608A/en
Publication of JPS5827608A publication Critical patent/JPS5827608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To reduce the damage of a blood corpuscle at the surface of a membrane even if a microporous membrane is used, by supporting a filter membrane by a flow passage regulating plate having protrusions with a specific dimension provided at specific intervals. CONSTITUTION:This body liquid filter has such a structure that a filter membrane 2, a body liquid flow passage regulating plate 3 and a filtrate flow passage forming plate 4 are laminated to be accomodated in a housing. As the filter membrane 2, a flat microporous membrane having a pore size of about 0.05-1mu is effectively used. The body liquid flow passage regulating plate 3 formes flow passage between this plate and the filter membrane 2 and plural protrusions 35 are formed on the surface thereof. The height (h) of the protrusions is adjusted to 50-250mu and the distance therebetween is set to 100-1,500mu. By providing this dimension and the distance, the thickness of the flow passage can be adjusted in good preciseness and a filtering amount corresponding to the area of the membrane is obtained while the filter membrane can be economically used and the damage amount of a blood corpuscle can be reduced more efficiently.

Description

【発明の詳細な説明】 ■ 発明の背景 ム 技術分野 本発明は体液FjI器に関する。 更に詳しくは、平板
状の微細多孔膜また社限外−過膜にて、!l!LIl勢
の体液をp遇して、血けう分離器や濾過型人工前等とし
て用いる体液濾過器に関する。
DETAILED DESCRIPTION OF THE INVENTION ■ Background of the Invention Technical Field The present invention relates to a body fluid FJI device. For more details, please refer to the flat plate-shaped microporous membrane or the company's extra membrane! l! The present invention relates to a body fluid filter that handles the body fluids of LII and is used as a blood septic separator, a filtration type artificial front, etc.

B 先行技術 このような体液濾過器で社、平板状の濾過膜に1血液等
の体液を1XWiiとはぼ平行に流し、血液等を濾過す
るものである。 このような場合、血液等の流路厚を薄
くすればするはど、血流の圧力損失が減り、血流の剪断
速度が大きくなシ、濾過量が大きくなって、濾過効率が
向上する。
B. Prior Art In such a body fluid filter, body fluids such as blood are allowed to flow through a flat filtration membrane almost parallel to the 1XWii, and the blood, etc. is filtered. In such a case, if the thickness of the flow path for blood or the like is made thinner, the pressure loss of the blood flow will be reduced, the shear rate of the blood flow will be increased, the amount of filtration will be increased, and the filtration efficiency will be improved.

しかし、従来の体液濾過器では、in液勢の流路厚O規
制を、濾過層端部と、容器壁あるいは積層する濾過膜と
の間に、バッキング部材尋のスベーナーを、介在させる
ととKよって行っているが、P、4膜が変形し中すいた
め特に血液等の流路厚を薄くすると、流路厚が流路内で
均一とならず、又濾過膜を積層して複数om*勢の流路
とv液流路とを重層するときには、流路間で血液等の流
路厚が不均一となる。 このため、濾過量がばらつき、
*m、血液凝固をおζす。 また、濾過の処理効率を高
めるため、膜面積を増ヤし、流路を重層しても、流路内
および流路間に偏fi(チャンネリング)が生じ、膜面
積の増加にみあう効率の向上が図れない。 さらに、特
に微細多孔膜を濾過膜とし、血液をF遇するときに鉱、
このチャンネリングにより、膜間でのJllL球の損傷
が生じる。
However, in conventional body fluid filters, the flow path thickness of the in-fluid flow can be controlled by interposing a backing member thickener between the end of the filtration layer and the container wall or the laminated filtration membrane. Therefore, the P,4 membrane is deformed and becomes thinner, so if the thickness of the flow path is made thin especially for blood etc., the thickness of the flow path will not be uniform within the flow path, and the thickness of the flow path will not be uniform within the flow path. When the fluid flow path and the v-liquid flow path are layered, the thickness of the flow path for blood or the like becomes non-uniform between the flow paths. For this reason, the amount of filtration varies,
*m, prevents blood coagulation. In addition, even if the membrane area is increased and the flow channels are layered in order to increase the processing efficiency of filtration, unbalanced fi (channeling) occurs within the flow channels and between the channels, and the efficiency that matches the increase in the membrane area increases. cannot be improved. In addition, when a microporous membrane is used as a filtration membrane and blood is filtered, minerals,
This channeling causes damage to the JLL sphere between the membranes.

このような実状に鑑み、本I!it明者は、先に、濾過
膜を、多数の突部を表面に配置し死体液流路規制板で支
持する旨の提案を行っている。 このような体[濾過@
によれば、−過膜の変形が防止され、東部と突部との間
隔において所望の流路厚O血液等の流路が確保でき、所
望の濾過量が得られ、しかもその際のばらつきも小さい
In view of this actual situation, Book I! IT experts have previously proposed that a filtration membrane is provided with a large number of protrusions on its surface and supported by a corpse liquid flow path regulating plate. A body like this [filtration @
According to - it is possible to prevent deformation of the filtration membrane, to ensure a flow path for blood, etc. with a desired flow path thickness in the interval between the eastern part and the protrusion, to obtain the desired filtration amount, and to reduce the variation in filtration. small.

しかし、このような体液流路規制板を用いる場合も、%
に微細多孔膜を用−る場、合、溶血等の血球の損傷が大
きい。 血球の損傷を少なくするためには、流路厚を厚
くすればよいが、血球の損傷量を実用上満足できるはど
小さくしようとすると、濾過量が不十分となってしまい
、又濾過効率の低下をきたしてしまう。
However, even when using such a body fluid flow path regulating plate, the
If a microporous membrane is used for this purpose, damage to blood cells such as hemolysis may be significant. In order to reduce the damage to blood cells, it is possible to increase the thickness of the channel, but if we try to reduce the amount of damage to blood cells to a level that is practically satisfactory, the amount of filtration will be insufficient, and the filtration efficiency will be reduced. This will cause a decline.

1 発明の目的 本発明はこのような実状に鑑みなされたものであって、
その第1の目的は上記のような先の提案に係る突部を有
する体液流路規制板を改良して、チャンネリングの発生
を減少し、濾過効率がより高一体液濾過器を提供するに
ある。 また、その第2の目的は、特に血液を濾過する
場合、濾過量を多くとる場合も、血球の損傷量が少々い
体液濾過器を提供することにある。
1. Purpose of the invention The present invention was made in view of the above circumstances, and
The first purpose is to improve the body fluid flow path regulating plate having the protrusions proposed above, to reduce the occurrence of channeling, and to provide an integrated fluid filter with higher filtration efficiency. be. The second object is to provide a body fluid filter that causes less damage to blood cells, especially when filtering blood, even when a large amount of filtration is performed.

本発明者らは、このような目的につき鋭意研究を行なっ
たところ、チャンネリングの発生量が、突部の寸法およ
び間隔に依存していることを見出し、更に研究の結果、
チャンネリング発生をきわめて少なくする突部の最適寸
法と最適間隔を見出し、本発明をなすに至ったものであ
る。 すなわち本発明状、平板状の微細多孔膜または限
外濾過膜からなる体液の濾過膜と、当該濾過膜の一方の
面に設けられて、表面に一定の間隔で凸部を形成した合
成樹脂製の体液流路規制板と、当該濾過膜の他方の面に
設けられて、F液流路を形成するp液流路形成板とから
なシ、これらを体液流入口と体tlLrIL出口とp液
流出口とを有するハウジング内に収納し、上記体液流入
口から導入される体液が上記−過膜と上記体液流路規制
板との間隙を過ってP箪を分離したのち上記体液流出口
に至る体液経路と、上記濾過膜て分離された当l*ろ液
が上記Fil流路形成板を通ってF液流出口に至るF液
経路とをそれぞれ形成してなる体液F:iM器において
、上記突部の高さから濾過膜の厚さを差引いた値を50
〜250μとし、しかも上記突部の間隔を100〜!、
600μとし九ことを特徴とする体ip濾過器ある。
The inventors of the present invention conducted extensive research for this purpose and found that the amount of channeling that occurs depends on the dimensions and spacing of the protrusions, and as a result of further research,
The present invention was achieved by finding the optimum dimensions and optimum spacing of the protrusions that minimize the occurrence of channeling. That is, the present invention includes a body fluid filtration membrane consisting of a flat plate-shaped microporous membrane or an ultrafiltration membrane, and a synthetic resin-made membrane provided on one side of the filtration membrane with convex portions formed at regular intervals on the surface. body fluid flow path regulating plate and a p liquid flow path forming plate provided on the other side of the filtration membrane and forming an F liquid flow path, these are connected to the body fluid inlet, the body tlLrIL outlet, and the p liquid flow path. The housing is housed in a housing having an outflow port, and the body fluid introduced from the body fluid inlet passes through the gap between the membrane and the body fluid flow path regulating plate, separates the P-tub, and then flows into the body fluid outflow port. In a body fluid F:iM device, a body fluid F:iM device is formed by forming a body fluid path leading to a fluid F:iM device, and a fluid path F through which the filtrate separated by the filtration membrane passes through the F fluid flow path forming plate to the fluid F outlet, The value obtained by subtracting the thickness of the filtration membrane from the height of the protrusion above is 50
~250μ, and the distance between the protrusions is 100~! ,
There is a body IP filter characterized by 600μ and 9.

また、このような本発明の実施態様に訃いては、上記の
目的をよシ一層有効に実現する構成を提供することを主
たる目的とする。
Furthermore, the main object of the embodiments of the present invention is to provide a configuration that more effectively achieves the above object.

本発明の実施m様には以下のものがある。Examples of implementation of the present invention include the following.

1)突部底部の面積の平方根を、突起間隔で除した値が
、0.3ないしlである本発明の体液濾過器。
1) The body fluid filter of the present invention, wherein the value obtained by dividing the square root of the area of the bottom of the protrusions by the interval between the protrusions is 0.3 to 1.

++)突部底部の面積が、突部頂大部の面積と勢しいか
ま九はそれよシ大きい本発明または上記1)に記載の体
液濾過器。
++) The body fluid filter according to the present invention or 1) above, wherein the area of the bottom of the protrusion is larger than the area of the top of the protrusion.

111)突部のヤング率が1.0X10’ないし2X1
0”dyn /−であシ、シかも突部のショアーAii
!度が20々いし100である木兄BAまたは上記1)
もしくは上記1i)に記載の体液濾過器。
111) Young's modulus of the protrusion is 1.0X10' to 2X1
0”dyn /-Shore Aii of the protrusion
! Kien BA with a degree of 20 to 100 or 1) above
Or the body fluid filter described in 1i) above.

lv) 突部が血液流路規制板の片面または両面に形成
されている本発明また蝶上記1)ないし111)のいず
れかに記載の体液濾過器。
lv) The body fluid filter according to any one of 1) to 111) of the present invention, wherein the protrusions are formed on one or both sides of the blood flow path regulating plate.

V)  濾過膜が0.05〜1μの平均細孔径を有する
微細多孔層からなる木兄BAまたは上記i)ないしIV
)のいずれかに記載の体液F1a器。  v1)2枚の
濾過膜間に、両面に突部を形成した体液流路規制板を挿
入し、体液とp液が混合しないように当#2枚の濾過膜
間をシールし、これを網目状または多孔体のF液流路形
成板を介して積層してなる本発明または上記1)ないし
■)の体液−過器。
V) Kinoe BA or the above i) to IV in which the filtration membrane consists of a microporous layer having an average pore diameter of 0.05 to 1μ
) The body fluid F1a device according to any one of the above. v1) Insert a body fluid flow path regulating plate with protrusions on both sides between the two filtration membranes, seal the gap between the two filtration membranes to prevent body fluid and p-liquid from mixing, and connect this with a mesh. The present invention or the body fluid filtration device according to 1) to 2) above, which is formed by laminating layers with F liquid flow path forming plates in the form of a shaped or porous body interposed therebetween.

ViD  2枚の濾過膜間に、網目状または多孔体のp
液流路形成板を挿入し、体液と炉液が混合しなる本発明
または上記1)ないしvl)の体液濾過器。
ViD A mesh or porous p filter is placed between two filtration membranes.
The body fluid filter of the present invention or the above 1) to vl), in which a liquid flow path forming plate is inserted and body fluid and furnace fluid are mixed.

Vll+ )ハウジングを構成する上下2枚の板状体の
少なくとも一方を摺動可能とし、当#2枚の板状体間に
濾過膜、体v1.流路規制板およびP液流路形成板を収
納し、崩該2枚の板状体間を上下から抑圧可能とした木
兄8Aまたは上記1)ないしvll)のいずれかに記載
の体液濾過器。
Vll+) At least one of the two upper and lower plate-like bodies constituting the housing is made slidable, and a filter membrane and body v1. The body fluid filter according to Kinoe 8A or any one of 1) to vll) above, which houses a flow-path regulating plate and a P-liquid flow-path forming plate, and is capable of suppressing the space between the two collapsing plate-like bodies from above and below. .

■ 発明の具体的構成 以下本発明を実施例に従い詳細に説明する。■Specific structure of the invention The present invention will be described in detail below with reference to Examples.

第1図〜第3図には本発明の実施例が示される。Embodiments of the present invention are shown in FIGS. 1-3.

第1図において、本発明の体液濾過器は、ハウジング1
を具える。 図示の例において、ハウジングlは、体液
流入口11を有する側板101と、体液流出口12を有
する側板102と、Fl[流出口151を有する側板1
03と、V液流出口152を有する側板104と、上板
105と、下板106とから構成される。
In FIG. 1, the body fluid filter of the present invention includes a housing 1
Equipped with. In the illustrated example, the housing l includes a side plate 101 having a body fluid inlet 11, a side plate 102 having a body fluid outlet 12, and a side plate 101 having a body fluid outlet 151.
03, a side plate 104 having a V liquid outlet 152, an upper plate 105, and a lower plate 106.

側板101〜104、上板105、下板106は、それ
ぞれ、硬質プラスチック等から矩形状に形成され、側板
101〜104を角筒状に組み立て、上板105と下板
106とをその上面および下面に配し、内部を気密に保
持できるようにされる0 そして、側板101〜104
それぞれには、面の#普は中央部に透孔が形成され、こ
れに体液流入口11、体液流出口12、F液流出口15
1,152が付されている0 このようなハウジング1内には、Pma2、体液流路規
制板s、r*流路形成板4が積層されて収納されている
The side plates 101 to 104, the upper plate 105, and the lower plate 106 are each made of hard plastic or the like in a rectangular shape. The side plates 101 to 104 are arranged so that the inside can be kept airtight.
Each has a through hole formed in the center of the surface, which has a body fluid inlet 11, a body fluid outlet 12, and a fluid outlet 15.
1, 152 is attached 0 In such a housing 1, a Pma2, a body fluid flow path regulating plate s, and an r* flow path forming plate 4 are housed in a stacked manner.

この場合、濾過M2は、平膜状の限外P:A換または微
細多孔膜である。
In this case, the filtration M2 is a flat membrane-like ultra-P:A filter or a microporous membrane.

限外濾過膜としては、30〜100A程度以上O血球成
分やたん白質等を諌止するものであればよい。 また、
微細多孔膜としては、細孔径1fi徊度以下で、血球成
分と血しよう成分を効率よく分離できるものであればよ
い。
The ultrafiltration membrane may be any membrane as long as it stops O blood cell components, proteins, etc. at about 30 to 100 A or more. Also,
Any microporous membrane may be used as long as it has a pore diameter of 1 fi or less and can efficiently separate blood cell components and blood plasma components.

ただ、本発明に従い、血球の損傷がより顕著に減少する
という点では、P:A膜は、0.05〜1μ程toe紙
多孔膜であることが効果的である。 このような微細多
孔膜として、セルロースブチレート、酢識セルロース等
のセルロースやニトロセル党−スなどのセルロース誘尋
体のエステル、アルいはボリカーボネー) 、PMMA
 、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリ
スル7オ/、PVA等の合成樹NZ展であって、一般に
、30〜200声、8度の厚さをもち、公知のいわゆる
相分離法、抽出法、砥伸法、荷電粒子照射法等によって
、微細孔を設けたものは、いずれも好適である。
However, according to the present invention, it is effective that the P:A membrane is a porous paper membrane of about 0.05 to 1 μm in terms of more significantly reducing damage to blood cells. As such microporous membranes, esters of cellulose such as cellulose butyrate, acetic acid cellulose, cellulose derivatives such as nitrocellulose, alkaline or polycarbonate), PMMA, etc.
, polyvinyl chloride, polyester, polyamide, polysulfo/, PVA, and other synthetic resins, generally having a thickness of 30 to 200 degrees and 8 degrees, and using known so-called phase separation methods, extraction methods, Any material in which fine pores are provided by a grinding method, a charged particle irradiation method, or the like is suitable.

体11流路規制板3は、V過量2との閣で血液等O体液
の流路を形成するものであり、合成樹脂からな夛、11
12111に示されるように、平板状をなし、多数O央
部35がその表面に形成されている。
The body 11 flow path regulating plate 3 forms a flow path for O body fluids such as blood in conjunction with the V overload 2, and is made of synthetic resin.
As shown in 12111, it has a flat plate shape, and a plurality of center portions 35 are formed on its surface.

この場合、突部35絋、その片面にのみ形成されていて
も、を九両画に形成されていてもよく、その板厚は、突
部を除いて、500〜2,000声程度とされる。
In this case, the protrusion 35 may be formed only on one side or may be formed on a 9-sided plate, and the thickness of the plate, excluding the protrusion, is approximately 500 to 2,000. Ru.

体液流路規制板3に形成された突部35の寸法、配置等
には以下の制限がある。
The dimensions, arrangement, etc. of the protrusions 35 formed on the body fluid flow path regulating plate 3 are subject to the following limitations.

まず、第3図を参照して説明するならば、突部35の高
さbは、50〜250μである。 このように、突部の
寸法として、高さhを規制するのは以下の理由による。
First, referring to FIG. 3, the height b of the protrusion 35 is 50 to 250μ. The reason for regulating the height h as the dimension of the protrusion is as follows.

すなわち、体液流路規制板3は、通常、弾性を有する合
成樹脂から形成し、P過器を押圧して体液流路厚を狭め
ることができ、また抑圧を弛緩させて、流路が可逆的に
復元されるようにすることが好ましい。 従って、押圧
によって、流路厚を変化させるものであるが、非押圧時
の高さht−規制すれば、流路厚は容易に1tiIIl
できる。
That is, the body fluid flow path regulating plate 3 is usually made of elastic synthetic resin, and can compress the P filter to narrow the thickness of the body fluid flow path, and can also relax the pressure so that the flow path is reversible. It is preferable that it be restored to . Therefore, the channel thickness is changed by pressure, but if the height ht when not pressed is regulated, the channel thickness can be easily changed to 1tiIIl.
can.

本発明では、このように、高さhが50〜250μの範
囲にあるものである。 高さhが50μよシ小さくなる
と、突部35の製造自体が困難となシ、突部高りがばら
ついてしまったシ、流路厚をN直よく調節することが難
しくなったルする他、チャンネリング量が増大し、血球
損傷が避に太きくなシ、あるいはlXm積にみあうV過
量が得られなくなシ、濾過効率が低下する等の不都合が
生じる。
In the present invention, the height h is thus in the range of 50 to 250μ. When the height h becomes smaller than 50μ, it becomes difficult to manufacture the protrusion 35 itself, the height of the protrusion varies, and it becomes difficult to precisely adjust the channel thickness. , the amount of channeling increases, causing problems such as increased blood cell damage, failure to obtain a V excess amount that meets the lxm product, and decreased filtration efficiency.

また、hが150μを超えると、押圧して体液流路厚を
狭めようとすると流路厚の誤差を生じやすくなる。 ま
た、チャンネリング量が増大し、血液損傷が大きくなっ
てしまう上、−過量も低下し、テ過効率も低くなる。
Furthermore, if h exceeds 150μ, an error in the channel thickness is likely to occur when an attempt is made to narrow the body fluid channel thickness by pressing. In addition, the amount of channeling increases, causing greater blood damage, and the amount of overdose decreases, resulting in a lower efficiency of overdose.

また、突s35の間隔、よシ詳細には、突部頂部の中心
の間隔(383図茗示d)Fi、100〜L5・OO声
である。
Further, the spacing between the protrusions s35, more specifically, the spacing between the centers of the tops of the protrusions (Fig. 383, d) Fi, is 100 to L5·OO.

間隔dが100声未満となると、膜面積が減少し、圧力
損失が増大するため、濾過膜が!!済的に使えなくなる
上、F湯量が低下し、また、血液をFAするとき、血球
損傷が太きくなる。 これに対し間隔dが!、500声
を超えると、2通膜の変形量が大きくなjo、fij!
−厚がばらつき、またチャンネリング量が増大し、F:
A量を多くすると血球損傷がJ[lIとなる。
When the interval d is less than 100 voices, the membrane area decreases and pressure loss increases, so the filtration membrane! ! In addition to being economically unusable, the amount of F-water decreases, and when blood is FAed, the damage to blood cells increases. On the other hand, the interval d! , when the number of voices exceeds 500, the amount of deformation of the bimembrane becomes large. jo, fij!
-The thickness varies and the amount of channeling increases, F:
When the amount of A is increased, blood cell damage becomes J[lI.

さらに1突部底藝の形状は、円錐、角錐、円柱、角柱等
種々の形状であってよいが、その底部面積の平方根を、
上記の突部の間隔dで除した値轢、0.3〜lであるこ
とが好ましい。 このようにすることによシ、一定圧力
損失での抑圧下のV過量は増大し、そのときの血球損傷
量もよシ一層減少する。
Furthermore, the shape of the base of one protrusion may be various shapes such as a cone, a pyramid, a cylinder, a prism, etc., but the square root of the base area is
It is preferable that the value divided by the distance d between the protrusions is 0.3 to 1. By doing so, the V excess amount under suppression at a constant pressure loss is increased, and the amount of blood cell damage at that time is further reduced.

また、突部底sO面積は、突部頂SOW積と等しいか、
あるいはそれよシ大きいことが好ましい0突部頂5oi
isiを突部底部のそれより大とするときKFi、その
製造が難しくなる他、抑圧時OR路厚が不均一となシや
すいからである。
Also, is the protrusion bottom sO area equal to the protrusion top SOW product?
Or preferably larger than that 0 protrusion top 5 oi
This is because when isi is made larger than that of the bottom of the protrusion, it becomes difficult to manufacture KFi, and the thickness of the OR path during compression tends to become non-uniform.

加えて、突s35は上記のように弾性をもつことが好ま
しいが、突部のヤング率、すなわち通常、体液流路規制
板3全体のヤング率は、lXl0なないし2 X 10
” dyn/’s より好ましくatxxO@ないし2
 X I Qlod)’n /cjであることが好まし
い0また、突s35、すなわち体液流路規制板3のショ
アーh*lnz 20ないし100でおることが好まし
い。
In addition, although it is preferable that the protrusion s35 has elasticity as described above, the Young's modulus of the protrusion, that is, the Young's modulus of the entire body fluid flow path regulating plate 3 is usually between 1X10 and 2X10.
” dyn/'s is preferable atxxO@ or 2
X I Qlod)'n /cj is preferably 0. In addition, the shore h*lnz of the projection s35, that is, the body fluid flow path regulating plate 3 is preferably 20 to 100.

このようなりフグ率およびショアーA11I度をもつ合
成amとしてLl例えば低密度ポリエチレン、シリコー
ンゴム、イソプレンゴム、ブチルゴム、スチレン−ブタ
ジェンゴム(SBR)、ポリテトラフルオロエチレン(
PTFE)、エチレン酢酸ビニル^重合体樹脂(EVA
)等がある。
Such synthetic ams with blowfish ratio and Shore A11I degree include Ll such as low density polyethylene, silicone rubber, isoprene rubber, butyl rubber, styrene-butadiene rubber (SBR), polytetrafluoroethylene (
PTFE), ethylene vinyl acetate^ polymer resin (EVA)
) etc.

このようなりフグ率および表面硬度範囲においては、ヤ
ング率およびショアーム硬度が、lXl0’d7n/a
jおよび20未満のときと比較して、濾過膜を支持して
、その変形を防止する機能が向上し、また2 X 10
”d7n/Cj、100よシ大(例えばボリグ四ピレン
など)のときと比較して、抑圧にょる突部の弾性変形は
よシ容易となり、濾過量を多くとることができる。 こ
れに対し、柔軟すぎる材質であると、濾過膜の変形応力
に抗しきれず、硬すぎると押圧によ〕流路厚が変化しな
いことがある。
In this range of Fugu modulus and surface hardness, Young's modulus and Shorem hardness are lXl0'd7n/a
j and less than 20, the ability to support the filtration membrane and prevent its deformation is improved, and 2 x 10
"Compared to the case where d7n/Cj is larger than 100 (for example, Borig tetrapyrene), the elastic deformation of the protrusion due to compression is much easier, and the amount of filtration can be increased. On the other hand, If the material is too soft, it will not be able to withstand the deformation stress of the filtration membrane, and if it is too hard, the channel thickness may not change due to pressure.

なお、体液流路規制板3は、第2図勢に示されるように
両面に凸部35が形成されておらず、片面のみに突部3
5が形成されていてもよい。 また、両面に突部を設け
る場合、その内部には、硬質の板状体が補強用に挿入さ
れていてもよい。
Note that, as shown in the second figure, the body fluid flow path regulating plate 3 does not have the protrusions 35 formed on both sides, but has the protrusions 3 only on one side.
5 may be formed. Moreover, when providing protrusions on both sides, a hard plate-like body may be inserted inside the protrusions for reinforcement.

さらに、体液流路規制板3と、上述の濾過膜2および後
述のF液流路形成板4との積層のしかたには、上述した
先の提案で開示したように、種々の態様があシ、例えば
体液流路規制板3の端部には、積層にあたシ、バッキン
グ部材として機能する部分が形成されていてもよいO Pg流路形成板4は、図示の例では、網目状に、スクリ
ーンメツシュ等から形成され、概ね目開き80〜500
μ、また層厚80〜1.200μ程度とされる。 そし
て、このF液流路形成板4によシ、濾過Jl!I2を通
して濾過され九P1fLの流路厚が決定されるものであ
る。 この場合、目開きが小さすぎると、流路抵抗が大
きくな9、F液が流れにくくなり、逆に大きすぎると、
濾過膜が変形して、チャンネリングを生じ、溶血凝固を
生じる0 又、Fil流路形成板4は、網目状の他、上
記と同等の細孔をもつ多孔体とすることもできる。
Furthermore, as disclosed in the above-mentioned proposal, various aspects are available for laminating the body fluid flow path regulating plate 3, the above-mentioned filtration membrane 2, and the below-mentioned F liquid flow path forming plate 4. For example, the body fluid flow path regulating plate 3 may have a portion formed at its end to serve as a backing member for lamination. , screen mesh, etc., and has a mesh size of approximately 80 to 500.
μ, and the layer thickness is approximately 80 to 1.200 μ. Then, through this F liquid flow path forming plate 4, filtration Jl! It is filtered through I2 and the channel thickness of 9P1fL is determined. In this case, if the opening is too small, the flow path resistance will be large, making it difficult for the F liquid to flow, and conversely, if the opening is too large,
The filtration membrane is deformed, causing channeling, and hemolysis and coagulation.Furthermore, the Fil channel forming plate 4 may be formed into a porous body having pores similar to those described above, in addition to the mesh shape.

なお、先の提案において図示したように、このP′WL
流路形成板4には、必要に応じ、その端部に、以上詳述
したよりな濾過膜2、体液流路規制板3、F液流路形成
板4紘、濾過膜2の一方の面に体液流路規制板3を、ま
た他方の面にF液流路形成板4を接触させ、これを前記
ハウジング1内に収納する。 この場合、通常は、膜面
積を高めるため、V過jK2を被数枚積層し、各濾過[
12のそれぞれの面が体ta路規制板3とP液流路形成
板4とに!!するようKして、収納される。
Furthermore, as illustrated in the previous proposal, this P'WL
The flow path forming plate 4 has the above-described solid filtration membrane 2, the body fluid flow path regulating plate 3, the F liquid flow path forming plate 4, and one surface of the filtration membrane 2 at the end thereof, if necessary. The body fluid flow path regulating plate 3 is brought into contact with one surface, and the F fluid flow path forming plate 4 is brought into contact with the other surface, and these are housed in the housing 1. In this case, in order to increase the membrane area, usually several V filters are stacked and each filter [
Each surface of 12 is the body ta path regulating plate 3 and the P liquid flow path forming plate 4! ! K to do so, and it is stored.

ハウジングl内にこれらを収納する場合、血液等の体液
とF液との混合を(ロ)避するように、ハウジングlの
体液流入口11から導入される体液が、濾過、112と
体液流路規制板3との間隙を通って、P液を分離したの
ち、体液流出口12に至る体液経路と、濾過膜2で分離
されたF液がF液流路形成板4を通ってV液流出口15
1.152に至るろ液経路が形成される仁とが重要であ
る。
When these are housed in the housing l, the body fluid introduced from the body fluid inlet 11 of the housing l is filtered, After passing through the gap with the regulation plate 3 and separating the P liquid, there is a body fluid path leading to the body fluid outlet 12, and the F liquid separated by the filtration membrane 2 passes through the F liquid flow path forming plate 4 to form the V liquid flow. Exit 15
It is important that the filtrate path is formed to reach 1.152.

、このように構成するに鉱極々am様があル、そのIf
4は、上記した先の提案においても開示したとおりであ
る。
, if you configure it like this, it will be very similar to mine, if
4 is as disclosed in the above-mentioned earlier proposal.

ただ、その構造がよ〕簡易となるという点で線、例えば
第1図、第2図に示されるように、体液流路規制板30
両面に上記のとおシ突部35を形成し、これを2枚の濾
過膜2.2間に挿入し、体液とV液が混合しないように
2枚の濾過1[2,2の例えtfF液流出口151,1
5211端部間をシールし、これを例えば網目状のν液
流路形成板4を介して積層し、さらに積層体の綾部およ
び体液流出口および流入口151.152@端面を、例
えば接着剤5やシール部材を用いたシ、あるい線熱シー
ル等を施して、シールし、これを上板105、下板10
6と一体化して、ハウジングIP3に収納することが好
ましい。 仁のように構成し九とき、血液等の体液紘体
液流入口11を通シ、濾過膜亀2間の体液流路規制板3
の突部35間隔内を過)、体液流出口に至る。 ま九、
tPtIiLは、rPI液流液流路形管4って、F液流
出口151.152から排出される。
However, since the structure is much simpler, for example, as shown in FIGS. 1 and 2, the body fluid flow path regulating plate 30
The above-mentioned protrusions 35 are formed on both sides, and these are inserted between the two filtration membranes 2.2, and the two filtration membranes 1 [2, 2, for example, tfF liquid Outlet 151,1
5211 end portions are sealed, and these are laminated with, for example, a mesh-like ν liquid flow path forming plate 4 interposed therebetween, and further, the twill portion and body fluid outlet and inlet ports 151 and 152 @ end faces of the laminate are sealed with, for example, an adhesive 5. The upper plate 105 and the lower plate 10 are sealed using a sealing material or a wire heat seal.
6 and housed in the housing IP3. When the body fluid such as blood is passed through the body fluid inlet 11, the body fluid flow path regulating plate 3 between the filtration membrane turtle 2 is configured as shown in FIG.
(passes within the interval of the protrusions 35) and reaches the body fluid outlet. Maku,
The tPtIiL is discharged from the rPI liquid flow channel type tube 4 and the F liquid outlet 151 and 152.

第4図および第5図には、本発明の別の実施例が示され
る。
Another embodiment of the invention is shown in FIGS. 4 and 5.

同図においては、ハウジング1は体液流入口11と体@
に出口12を有し、下端が封止された円筒状のケース1
08と、P液流出口151.152を有する上板109
を0−リング17を介し連結してなシ、このハウジング
1の中に、ν過器2、体液流路規制板3およびF液流路
形成板4が重ね合わせられて収納されている。
In the same figure, the housing 1 has a body fluid inlet 11 and a body @
A cylindrical case 1 having an outlet 12 at the bottom and sealed at the lower end.
08 and an upper plate 109 having P liquid outlets 151 and 152.
are connected to each other via an O-ring 17, and a v filter 2, a body fluid flow path regulating plate 3, and an F liquid flow path forming plate 4 are housed in a stacked manner in this housing 1.

この場合には、体液流路規制板3は中はシ両面に突部3
5を有するものである。 そして、スクリーンメツシュ
等からなる網目状あるいは多孔体のF液流路形成板4を
挾装するように、上下2&の濾過膜A2を配し、その周
縁と中央−口%23の周縁をシールし、またp液通過孔
251.252の外周にシール材55を貼付しである。
In this case, the body fluid flow path regulating plate 3 has protrusions 3 on both sides inside and outside.
5. Then, the upper and lower filtration membranes A2 are arranged so as to sandwich the F liquid flow path forming plate 4, which is a mesh or porous material made of a screen mesh or the like, and the periphery of the filtration membrane A2 and the periphery of the center opening % 23 are sealed. In addition, a sealing material 55 is attached to the outer periphery of the p-liquid passage holes 251 and 252.

 そして、この濾過膜2.2の上下には、体液流路規制
板3が配設され、シール材55にて濾過M2.2と一体
的に接合し、これらを図示のように積層して、ハウジン
グ1内に収納している。
Body fluid flow path regulating plates 3 are disposed above and below this filtration membrane 2.2, and are integrally joined to the filtration M2.2 with a sealing material 55, and these are stacked as shown in the figure. It is housed in housing 1.

このような場合にも、構造はきわめて簡易となる0 ■ 発明の具体的作用効果 本発明の体液ν過器は、人体または血液ないし体液容器
から、例えばポンプ等の作用で、血液、血しよう等の体
液を排出し、これを轟該濾過器内に流入させ、血しよう
分離器、あるいはヂ過型人工腎等として使用される。
Even in such a case, the structure is extremely simple. 0 ■ Specific effects of the invention The body fluid evaporator of the present invention removes blood, blood, etc. from the human body or blood or body fluid container by the action of a pump or the like. body fluids are discharged and flowed into the filter, which is used as a blood separator or a diaphragm-type artificial kidney.

との場合、血液等の体液は、体液流入口11から流入し
、濾過膜2と体液流路規制板4との間を通シ、血球成分
ないしたん白質成分等の所定の成分よル小さい分子成分
をもつ血しよう成分をV液として分離し、残液が体液流
出口12を通シ排出され、所望の補液を加え、人体に戻
される。
In this case, body fluid such as blood flows in from the body fluid inlet 11, passes between the filtration membrane 2 and the body fluid flow path regulating plate 4, and collects molecules smaller than predetermined components such as blood cell components and protein components. The blood plasma component with its components is separated as a V fluid, and the remaining fluid is discharged through the body fluid outlet 12, added with a desired replacement fluid, and returned to the human body.

一方、V液は、F液流路形成板4を通シ、炉液排出口か
ら排出され、廃棄されるか、浄化し、補液として返還さ
れる。
On the other hand, the V liquid passes through the F liquid flow path forming plate 4 and is discharged from the furnace liquid outlet, and is either discarded or purified and returned as a replacement liquid.

このような使用に際して、平板状の濾過[12の面直角
方向に、コイルバネ、ネジ等によ)押圧力を加え、その
体液流路の圧力搗失を所望のごとく調節して使用するこ
とが好ましい。
In such use, it is preferable to apply a pressing force to the flat plate filtration (perpendicular to the plane of 12, using a coil spring, screw, etc.) and adjust the pressure drop in the body fluid flow path as desired. .

本発明によれば、濾過M2と、多数の突部35を有する
体液流路規制板3を重ね合わせて、体液流路を形成する
ことによシ、濾過膜2の変形はきわめて少なくな夛、突
部35の間隙において体液の均一な流路が形成される。
According to the present invention, by overlapping the filtration M2 and the body fluid flow path regulating plate 3 having a large number of protrusions 35 to form a body fluid flow path, deformation of the filtration membrane 2 is extremely small. A uniform flow path for body fluid is formed in the gap between the protrusions 35.

 また、押圧力を変えることにより、体液流路の厚さ社
可変となシ、これ拡圧力損失を指標として、数十ミクロ
ンのオーダーで精密に制御することができる。
Furthermore, by changing the pressing force, the thickness of the body fluid flow path can be varied, and this can be precisely controlled on the order of tens of microns using the expansion force loss as an index.

そして、突部35の寸法と配列を所定のように規制する
結果、チャンネリングが格段と減少し、濾過量が格段と
増加し、膜面積にみあう沖過量がえられ、濾過効率は格
段と向上する0 しかも、血液−過において、溶血等の
血球損傷が格段と少なくなシ、そのとき、濾過効率ない
し膜剤率はきわめて高い。
As a result of regulating the dimensions and arrangement of the protrusions 35 in a predetermined manner, channeling is significantly reduced, the amount of filtration is significantly increased, the amount of permeation commensurate with the membrane area is obtained, and the filtration efficiency is significantly increased. In addition, during blood filtration, damage to blood cells such as hemolysis is significantly reduced, and the filtration efficiency or membrane agent rate is extremely high.

この場合、上記実施態様1)またはiI)に従い、突部
底部の寸法と突部間隔との比や、突部の形状を所定のと
おル規制すれに1このような効果はさらにすぐれ友もの
となる。
In this case, according to the above-mentioned embodiment 1) or ii), such an effect becomes even better when the ratio between the dimension of the bottom of the protrusion and the interval between the protrusions and the shape of the protrusion are regulated to a predetermined value. Become.

また、上記実施態様111)に従い、突部のヤング率お
よび表III硬度を所定の範囲とすれば、体液流路厚の
変更はよシ精密に行うことができる。
Further, according to the above embodiment 111), if the Young's modulus and the Table III hardness of the protrusion are set within a predetermined range, the thickness of the body fluid flow path can be changed more precisely.

さらに、上記実施態様1v)に従い、濾過膜の平均細孔
径が0.05〜1μであるときには、このような効果は
よシーN顕著となる。
Further, according to the above-mentioned embodiment 1v), when the average pore diameter of the filtration membrane is 0.05 to 1 μ, such an effect becomes significantly more pronounced.

また、上記実施態様111)におけるように、体液流路
規制板3は、突部を片面または両面のいずれに形成され
ていてもよいが、その両面に突部が形成されたものを用
い、上記実施態様Vl)またはVll)に従い、2枚の
濾過M2間に体液流路規制板3またはF液流路形成板を
挾装して積層すれは、構造がきわめて簡易となシ、取シ
扱いが容易となる。
Further, as in the embodiment 111), the body fluid flow path regulating plate 3 may have protrusions formed on either one side or both sides. According to the embodiment Vl) or Vll), the body fluid flow path regulating plate 3 or the F liquid flow path forming plate is sandwiched between the two filtration sheets M2 and laminated, resulting in an extremely simple structure and easy handling. It becomes easier.

さらに、上記実kA態様V用)K従い、積層物を自在に
押圧すれは、圧力損失を指標として、簡易な制御システ
ムで、流路厚の変更を行うことができる0 本発明者らは、本発明の効果を確認するため種々実験を
行った。 以下にその1例を示す。
Furthermore, by freely pressing the laminate according to the above-mentioned Aspect V), the thickness of the flow path can be changed using a simple control system using the pressure loss as an index. Various experiments were conducted to confirm the effects of the present invention. An example is shown below.

実験例 111g4図および第5図に示されるような装置におい
て、濾過膜として、平均細孔径0.45μで、表1に示
されるような膜厚をもつセルロースアセテート製微細多
孔Mt−用い、また、体液流路規制板として、厚さ0.
7諺の低密度ポリエチレン(ヤング率2 X 10’ 
dyn/cIlsショアーA硬度64)製で表1に示さ
れるような高さb、間adおよび4/d(Sは凸部底部
断面積)の凸部をもつものを用い、本発明の体液濾過器
A1〜10と比較用の濾過器A11〜18を作製した。
Experimental Example 111g In the apparatus shown in Figures 4 and 5, a microporous Mt-made cellulose acetate membrane having an average pore diameter of 0.45 μm and a membrane thickness as shown in Table 1 was used as the filtration membrane, and As a body fluid flow path regulating plate, the thickness is 0.
7 proverbial low density polyethylene (Young's modulus 2 x 10'
The body fluid filtration method of the present invention is made of dyn/cIls (Shore A hardness: 64) and has convex portions of height b, distance ad, and 4/d (S is the cross-sectional area of the bottom of the convex portion) as shown in Table 1. Filters A1 to A10 and filters A11 to A18 for comparison were prepared.

また、参考のために、体液流路規制板を、リング状の表
1に示される厚さのものにかえ、濾過器ム19〜24を
作製し丸。
Also, for reference, the body fluid flow path regulating plate was replaced with a ring-shaped one having the thickness shown in Table 1, and filters 19 to 24 were made into circles.

これら濾過器AX〜24につき、表2に示される条件に
て、血液を流し、その際濾過器を押圧して、表2に示さ
れる圧力損失PD (mmHg )とし、そのときの計
算流路厚bCa+〕、実御」V過量Q F(2)〔1分
〕、実測血しよう遊離ヘモグロビン魚(V′dAlおよ
び膜効率を求めた。
Blood is passed through these filters AX~24 under the conditions shown in Table 2, and at that time the filters are pressed to obtain the pressure loss PD (mmHg) shown in Table 2, and the calculated flow path thickness at that time is bCa+], actual measurement of free hemoglobin (V'dAl and membrane efficiency).

この場合、計算流路*bは、下記式から求めた。In this case, the calculated flow path *b was determined from the following formula.

b”312QB ・fi ・Lt PD−@ −gにζ
に、QBは血流量C11分〕、μは血液粘度、瓢は血液
流路長(a+)、gcは重力係数(5I/set” )
である。
b"312QB ・fi ・Lt PD-@-g to ζ
, QB is the blood flow rate C11 minutes], μ is the blood viscosity, Gourd is the blood flow path length (a+), and gc is the gravity coefficient (5I/set")
It is.

また、血しよう遊離へモグpビン量は、コントロールを
0として、その差として表記した0さらに、膜効率は、
実測の濾過量Qr(2)(m/分〕と、下記計算値とし
ての濾過量QF(1)との比から求めた。
In addition, the amount of mogbin released into blood plasma is expressed as the difference between the control value and the membrane efficiency.
It was determined from the ratio between the actually measured filtration amount Qr(2) (m/min) and the filtration amount QF(1) as the calculated value below.

QF(1) = I X (?)’X a X Lt 
= 6Qn/ab” ここに、I、Jは用いるp過膜によって実験的に決定す
る係数であ夛、I = 1.4 X 10−’、J =
 0.8である0 また、tは血液流路長〔国〕である
QF(1) = I X (?)'X a X Lt
= 6Qn/ab" where I and J are coefficients determined experimentally depending on the p-layer film used, I = 1.4 x 10-', J =
0 which is 0.8 Also, t is the blood flow path length [country].

第1表に示される結果から本発明の効果が明らかである
The effects of the present invention are clear from the results shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を示す図であシ、
このうち第1図が分解斜視図、第2図が第1図の拡大分
解斜視図である。 第3図紘本発明の詳細な説明するた
めの端面図である。 第4図および第5図線本発明の他
の実施例を示す図であル、このうち第4図が分解斜視図
、第5図が断面図である。 1・・・ハウジング、11・・・体液流入口、12・・
・体液流出口、151.152・・・p過流出口、2・
・・V過膜、3・・・体液流路規制板、35・・・突部
、4・・・Ftfi路形成板 形成板願人   テルモ株式会社 代理人  弁理士 石 井 陽 − 牙2図 り 牙8図 牙4図
FIG. 1 and FIG. 2 are diagrams showing embodiments of the present invention.
1 is an exploded perspective view, and FIG. 2 is an enlarged exploded perspective view of FIG. 1. FIG. 3 is an end view for explaining the present invention in detail. 4 and 5 are diagrams showing other embodiments of the present invention, of which FIG. 4 is an exploded perspective view and FIG. 5 is a sectional view. 1... Housing, 11... Body fluid inlet, 12...
・Body fluid outflow port, 151.152...p excess outflow port, 2.
... V membrane, 3... Body fluid flow path regulating plate, 35... Protrusion, 4... Ftfi tract forming plate Applicant Terumo Corporation Representative Patent Attorney Yo Ishii - Fang 2 Tsuri Fang 8 illustration tusk 4 illustration

Claims (1)

【特許請求の範囲】 1、平板状の微細多孔膜または限外濾過膜からなる体液
のF’J換と、当該濾過膜の一方の面に設けられ【、表
Wk一定の間隔で突部を形成した合成樹脂製の体液流路
規制板と、当該−過膜の他方の藺に設けられて、ろ液流
路を形成するろ液流路形成板とからなり、これらを体液
流入口と体液流出口とF液流出口とを有するハウジング
内に収納し、上記体液流入口から導入される体液が上記
濾過膜と上記体液流路規制板との間隙を通ってp液を分
離したのち上記体液流出口に至る体液経路と、上記−過
膜で分離された当該F液が上記ろ液流路形成板を通って
ろ液流出口に至るFl’l!経路とをそれぞれ形成して
なる体液−過器において、上部央部の高さを50〜25
0 sとし、しかも上記突部の間隔を100−1,80
0μとしたことを特徴とする体*濾過器。 λ 突部底部の面積の平方根を、突部の間隔で除した値
が、0.3ないし1である特許請求の範囲第1項に記載
の体i[濾過器0 3、突部底部の面積が、突部頂部の面積と等しいかまた
はそれよ多大きい特許請求の範囲第1項または第2項に
記載の体液濾過器。 4、突部のヤング率が1.0X10’ないし2X10”
dyn/cjであ夛、しかも突部のショアーA硬度が2
0ないし100である特許請求の範囲第1項ないしjI
3項のいずれかに記載の体液濾過器05、央部が体液流
路規制板の片W1または両面に形成されている特許請求
の範囲第1項ないし第4項のいずれかに記載の体液f過
器。 6、  濾過膜が0.05〜1μの平均細孔径を有する
微細多孔膜からなる特許請求の範囲第1項ないし第5項
のいずれかに記載の体液濾過器07.2秋opag間に
、両面に突部を形成し死体液流路規制板を挿入し、体液
とPliが混合しないように尚該2枚のF−A膜間をシ
ールし、これを網目状また拡多孔体のFt流路形成板を
介して積層してなる特許請求の範囲第1項ないし第6項
に記載の体液−過器。 & 2枚の一過膜間k、網目状または多孔体のV液流路
形成板を挿入し、体液とF液が混合しないよ5に当m2
枚の一過膜間をシールし、これを両面に央部を形成した
体液流路規制板を介して積層してなる芳許請求の範囲第
1項ないし第6項記゛載の体液FM器。 張 ハウジングを構成する上下2枚の板状体の少なくと
も一方な摺動可能とし、当#2枚の板状体間KP濾過膜
体液流路規制板およびp液流路形成板を収納し、当該2
枚の板状体間を上下から抑圧可能とした特許請求の範囲
第1項ないし第8項のいずれかに′記載の体液−過器。
[Claims] 1. F'J exchange of bodily fluids consisting of a flat microporous membrane or an ultrafiltration membrane, and protrusions provided at regular intervals on one surface of the filtration membrane [, Table Wk] It consists of a body fluid flow path regulating plate made of synthetic resin and a filtrate flow path forming plate provided on the other side of the membrane to form a filtrate flow path, and these are connected to the body fluid inlet and body fluid flow path. The body fluid introduced from the body fluid inlet passes through the gap between the filtration membrane and the body fluid flow path regulating plate to separate the P fluid, and then the body fluid is A body fluid path leading to the outflow port, and a Fl'l! where the F fluid separated by the membrane passes through the filtrate flow path forming plate and reaches the filtrate outflow port. The height of the upper central part is 50 to 25 mm.
0 s, and the interval between the protrusions is 100-1,80
A body*filter characterized by having 0 μ. λ Body i [filter 03, area of the bottom of the protrusion] according to claim 1, wherein the value obtained by dividing the square root of the area of the bottom of the protrusion by the interval between the protrusions is 0.3 to 1. The body fluid filter according to claim 1 or 2, wherein the area is equal to or larger than the area of the top of the protrusion. 4. Young's modulus of the protrusion is 1.0X10' to 2X10''
It is dyn/cj, and the shore A hardness of the protrusion is 2.
0 to 100 of claims 1 to jI
The body fluid filter 05 according to any one of claims 3, the body fluid f according to any one of claims 1 to 4, wherein the center portion is formed on one piece W1 or both sides of the body fluid flow path regulating plate. Overage. 6. The body fluid filter according to any one of claims 1 to 5, wherein the filtration membrane is a microporous membrane having an average pore diameter of 0.05 to 1μ. A protrusion is formed in the cadaver fluid flow path regulating plate, and a seal is placed between the two F-A membranes so that the body fluid and Pli do not mix. A body fluid-transfer device according to any one of claims 1 to 6, which is laminated with forming plates interposed therebetween. & Insert a mesh or porous V liquid flow path forming plate between the two temporary membranes to prevent body fluid and F liquid from mixing.
A body fluid FM device according to claims 1 to 6, which is formed by sealing between two temporary membranes and stacking them with a body fluid flow path regulating plate having a central portion formed on both sides. . At least one of the upper and lower two plate-like bodies constituting the housing is slidable, and the KP filtration membrane body fluid flow path regulating plate and the p-liquid flow path forming plate are housed between the two plate-like bodies. 2
A body fluid evaporator according to any one of claims 1 to 8, wherein the space between the plate-shaped bodies can be suppressed from above and below.
JP56124468A 1981-08-08 1981-08-08 Body liquid filter Pending JPS5827608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124468A JPS5827608A (en) 1981-08-08 1981-08-08 Body liquid filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124468A JPS5827608A (en) 1981-08-08 1981-08-08 Body liquid filter

Publications (1)

Publication Number Publication Date
JPS5827608A true JPS5827608A (en) 1983-02-18

Family

ID=14886266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124468A Pending JPS5827608A (en) 1981-08-08 1981-08-08 Body liquid filter

Country Status (1)

Country Link
JP (1) JPS5827608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224016A (en) * 1988-03-03 1989-09-07 Terumo Corp Liquid filtration device
JPH04126728U (en) * 1991-05-03 1992-11-18 日東電工株式会社 Laminated fluid separation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141386A (en) * 1978-04-26 1979-11-02 Kuraray Co Ltd Flat membrane type fluid treating apparatus
JPS55109405A (en) * 1979-02-15 1980-08-22 Daicel Chem Ind Ltd Membrane element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141386A (en) * 1978-04-26 1979-11-02 Kuraray Co Ltd Flat membrane type fluid treating apparatus
JPS55109405A (en) * 1979-02-15 1980-08-22 Daicel Chem Ind Ltd Membrane element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224016A (en) * 1988-03-03 1989-09-07 Terumo Corp Liquid filtration device
JPH04126728U (en) * 1991-05-03 1992-11-18 日東電工株式会社 Laminated fluid separation device

Similar Documents

Publication Publication Date Title
EP0049055B1 (en) Apparatus for altering the concentration of a preselected component of a feedstock by filtration or ultrafiltration
EP0045073B1 (en) Body fluid filter device
US8007670B2 (en) Laminated cassette device and methods for making same
US5593580A (en) Filtration cassette article, and filter comprising same
EP0048901B1 (en) Plasma separator
EP0806475B1 (en) Method of separating cells from blood
WO1988009200A1 (en) Flat film permeative membrane having protrusions, its production , and bodily fluid filter
US4340475A (en) Membrane separation cell
JPS5827608A (en) Body liquid filter
AU2020214316B2 (en) Method of using track etched membranes for the filtration of biological fluids
RU2687921C1 (en) Filtering element for separation and concentration of liquid media
JPH0323181B2 (en)
JPH0299068A (en) Body fluid filtering apparatus
JPS5928966A (en) Serum separating apparatus
JP6637998B2 (en) Film-bound flat pack
JPH0245063A (en) Body fluid filter device
JPS6040304B2 (en) body fluid filtration device
JPS6316146B2 (en)
JPH05329206A (en) Filter device for liquid
JPH01148306A (en) Plate laminated filter cartridge
JPH04144569A (en) Blood plasma separator