JPS58223776A - Radiation monitoring device - Google Patents

Radiation monitoring device

Info

Publication number
JPS58223776A
JPS58223776A JP10680382A JP10680382A JPS58223776A JP S58223776 A JPS58223776 A JP S58223776A JP 10680382 A JP10680382 A JP 10680382A JP 10680382 A JP10680382 A JP 10680382A JP S58223776 A JPS58223776 A JP S58223776A
Authority
JP
Japan
Prior art keywords
radiation
dose rate
monitoring device
number counter
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10680382A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujiwara
洋 藤原
Takaaki Yamazaki
山崎 孝昭
Takehiro Mizuno
水野 雄弘
Takaaki Kai
甲斐 孝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP10680382A priority Critical patent/JPS58223776A/en
Publication of JPS58223776A publication Critical patent/JPS58223776A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector

Abstract

PURPOSE:To improve measurement precision and stability and improve a monitoring function, and to reduce the cost of cables, by measuring a radiation level digitally at a radiation measuring terminal station and transmitting the measurement result to a central monitor station in the form of a digital signal. CONSTITUTION:A dose in a radiation atmosphere is detected by a radiation detector 1 at the radiation measuring terminal station 31 and detection pulse are measured by a processing part 33 for a specific time to send the result to a processor 32. The processor 32 converts the counted value into a dose rate, which is stored in a memory 36. A transmission control part 35 sends an up-to- date dose rate to the central monitor station 41, which stores the input value in a memory 57 and displays and records it; and a processor 56 calculates an integral dose in every radiation atmosphere and an average value of the dose rate within a specific time.

Description

【発明の詳細な説明】 本発明は放射線監視装置に係シ、特に放射線作業管理区
域に適当な放射線監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation monitoring device, and more particularly to a radiation monitoring device suitable for radiation work control areas.

放射線監視装置としてはエリア放射線モニタが知られて
おり、第1図は従来のエリア放射線モニ   ゛りのシ
ステム構成を示す。このシステムは、放射線雰囲気下に
設置される放射線検出器11警報器3、アナンシェータ
4、線量率表示メーター2、中央監理室に設置される高
圧電源8、対数線量率計10、低圧電源9、トリップユ
ニット11から成るエリアモニタ盤13、記録計12、
各機器間を結ぶ高圧電源ライン5、低圧電源ライン6、
検出信号伝送ライン7、メーター用線量率信号ライン1
4、トリップ信号伝送ライン15、記録計用線量率信号
ライン15、記録計用線量率信号ライン16から構成さ
れる。
Area radiation monitors are known as radiation monitoring devices, and FIG. 1 shows the system configuration of a conventional area radiation monitor. This system consists of a radiation detector 11 installed in a radiation atmosphere, an alarm 3, an annunciator 4, a dose rate display meter 2, a high voltage power supply 8 installed in the central control room, a logarithmic dose rate meter 10, a low voltage power supply 9, and a trip Area monitor board 13 consisting of unit 11, recorder 12,
A high voltage power line 5, a low voltage power line 6, which connects each device.
Detection signal transmission line 7, meter dose rate signal line 1
4. It is composed of a trip signal transmission line 15, a dose rate signal line 15 for the recorder, and a dose rate signal line 16 for the recorder.

次にシステムの一連の動作について説明する。Next, a series of operations of the system will be explained.

放射線雰囲気下に設置された放射線検出器1よシ、出力
される検出信号が検出信号伝送ライン7を介して、対数
線量率計10へ送られ、対数線量率計10内部で検出信
号よシ線量率への変換を行う。
A detection signal output from the radiation detector 1 installed in a radiation atmosphere is sent to the logarithmic dose rate meter 10 via the detection signal transmission line 7, and the detection signal and the radiation dose are transmitted inside the logarithmic dose rate meter 10. Perform conversion to rate.

第2,3図にそのブロック図及び原理図を示す。Figures 2 and 3 show its block diagram and principle diagram.

第2図はアンプ18、波高選別部20、ノリツブフロツ
ブ回路52、から成るディスクリートユニット19、と
ポンプ回路21とアンプ18から成るレートメータユニ
ット22から構成される対数線量率計10を示す。第3
図はコンデンサC025、ダイオード26、抵抗R12
7、コンデンサCt28、OPアンプ29から構成され
るポンプ回路の原理を示す。パルス入力信号17の電圧
をV、とし、1秒間にn個のパルスが入力されると出力
電圧v、自  として線量率に圧倒したY@ m t 
= n V p Ce Rtが出力される。
FIG. 2 shows a logarithmic dose rate meter 10 comprising a discrete unit 19 comprising an amplifier 18, a wave height selection section 20, a Noritubflotub circuit 52, and a rate meter unit 22 comprising a pump circuit 21 and an amplifier 18. Third
The diagram shows capacitor C025, diode 26, and resistor R12.
7. The principle of a pump circuit composed of a capacitor Ct28 and an OP amplifier 29 is shown. Let the voltage of the pulse input signal 17 be V, and when n pulses are input in 1 second, the output voltage is v, and the dose rate is overpowered by Y@m t
= n V p Ce Rt is output.

対数線量率計10.よシ出力される線量率の値は、対数
線量率計10のメーターに指示され、記録計用線量率信
号ライン16を介して記録計12へ記録され、メーター
用線量率信号2イン14を介して放射線雰囲気下に設置
されるメーター2に出力される。又、放射線雰囲気下の
線量率値が異常になった場合、トリップユニット11よ
りトリップ信号ライン15を介して警報器3、アナンシ
ェータ4に出力される。従来の一般的なエリア放射線モ
ニタシステムとは以上に説明したようなものであシ、放
射線雰囲気内の放射線量の値を中央で監視できるととも
に上記雰囲気内の放射線量の値を中央で監視できるとと
もに上記雰囲気下に線量率値の指示及び警報を発するこ
とができるが、アナログレートメータを使用しているこ
とから、一般に使用する抵抗やコンデンサ等の回路素子
の定数ばらつきによシ、表示・する計数率に誤差が生じ
ゃすく、その誤差を補正するために可変抵抗器等による
調整を行なう必要があシ、しかも経時的変動も生ずるの
で一定時間毎に再調整する必要がある。
Logarithmic dose rate meter 10. The output dose rate value is indicated to the meter of the logarithmic dose rate meter 10, is recorded to the recorder 12 via the recorder dose rate signal line 16, and is transmitted via the meter dose rate signal 2 in 14. and is output to the meter 2 installed in a radiation atmosphere. Further, when the dose rate value under the radiation atmosphere becomes abnormal, it is output from the trip unit 11 to the alarm device 3 and the annunciator 4 via the trip signal line 15. The conventional general area radiation monitoring system is as described above, and it is capable of centrally monitoring the radiation dose value in the radiation atmosphere; Dose rate instructions and alarms can be issued in the above atmosphere, but since an analog rate meter is used, the numbers displayed and displayed may vary due to variations in the constants of commonly used circuit elements such as resistors and capacitors. There may be an error in the rate, and it is necessary to make adjustments using a variable resistor or the like to correct the error.Furthermore, since fluctuations occur over time, it is necessary to readjust at regular intervals.

また、低線量率時には入力パルスの発生間隔がまばらで
、特に測定結果に誤差を生じやすい。また、中央監視装
置と放射線雰囲気内に設置される複数の放射線検出器メ
ーター、警報器間を個別の伝送ラインでケーブリングを
行っている為、ケーブル布設コスト高、計測点の増設時
フレキシビリティの低下をきたしている。また、中央監
視装置においては監視盤に測定点の数だけメーターが必
要となシ、中央監視装置が極めて大型化するという欠点
がある。
Furthermore, at low dose rates, the input pulses are sparsely generated, which is particularly likely to cause errors in measurement results. In addition, separate transmission lines are used to cable between the central monitoring equipment and multiple radiation detector meters and alarms installed in the radiation atmosphere, resulting in high cable installation costs and reduced flexibility when adding measurement points. It has been declining. In addition, the central monitoring device requires as many meters as the number of measurement points on the monitoring panel, and has the disadvantage that the central monitoring device becomes extremely large.

本発明は、このような事情に鑑みてなされたものであり
、その目的とするところはプロセッサ部を有する放射線
計測端局で放射線レベルをディジタル的に計測し、中央
監視装置へ計測結果をディジタル信号にて伝送すること
によって、測定精度−)      および安定度に優
れ、ケーブルコストを削減し、監視機能に優れた放射線
監視装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to digitally measure radiation levels at a radiation measurement terminal station having a processor section, and to send the measurement results as digital signals to a central monitoring device. The object of the present invention is to provide a radiation monitoring device that has excellent measurement accuracy and stability, reduces cable costs, and has excellent monitoring functions.

本発明は、放射線雰囲気内にプロセッサ部を設は上位と
の伝送を行う放射線計測端局を設置し、放射線検出器よ
シ出力されるパルス信号をディジタル計数方式にてカウ
ントし、プロセッサ部の処理によシ線量率変換を行い、
中央監視装置へ演算結果をディジタル多重伝送を行うこ
とを特徴とする。
In the present invention, a processor section is installed in a radiation atmosphere, a radiation measurement terminal station is installed for transmission with a higher-level device, and the pulse signals output from the radiation detector are counted by a digital counting method, and the processing by the processor section is performed. Perform the dose rate conversion,
It is characterized by performing digital multiplex transmission of calculation results to a central monitoring device.

次に本発明の一実施例を図を用いて説明する。Next, one embodiment of the present invention will be described with reference to the drawings.

第4図は放射線雰囲気下に設置される、放射線計測端局
31を示す。第5図には遠隔に設置される中央管理局4
1と、上記端局とのシステム構成を示す。放射線計測端
局31は、放射線量を検出する放射線検出器1、前記検
出用の高電圧を供給する高圧電源8、検出信号増幅用の
低電圧を供給する低圧電源9、検出器パルス信号をカウ
ントする、パルス信号処理部33、パルス計数結果を演
算し、線量率へ変換するプロセッサ部32、演算18″
、11 データ、プログラム等を記憶するメモリ部36、上位と
の伝送を制御する伝送制御部35、線量率表示を行う、
表示部34、放射線雰囲気下の異常警報を行う警報器3
から構成され、中央管理局41は、上記端局との伝送を
制御する伝送制御部58、伝送されて来た線量率データ
、プログラム等を記憶するメモリ部57、検出器設置場
所の線量率を表示記録する、画面表示部39、記録部4
0、各放射線検出器設置場所の積算線量値を算出、一定
期間内の線量率の平均値の算出、線量率分布図等の作成
を行うプロセッサ部56、プロセッサ部56と画面表示
部39、記録部40のインターフェイスを行う入出力制
御部38から構成され、システムとしては中央管理局と
複数の放射線計測端局31が共通して中央管理局41に
接続される共通伝送路51から構成される。
FIG. 4 shows a radiation measurement terminal station 31 installed in a radiation atmosphere. Figure 5 shows the central control station 4 installed remotely.
1 and the above-mentioned terminal station. The radiation measurement terminal station 31 includes a radiation detector 1 that detects a radiation dose, a high voltage power supply 8 that supplies the high voltage for detection, a low voltage power supply 9 that supplies a low voltage for amplifying the detection signal, and counts detector pulse signals. , a pulse signal processing section 33, a processor section 32 that calculates the pulse counting result and converts it into a dose rate, and a calculation section 18''.
, 11 A memory section 36 that stores data, programs, etc., a transmission control section 35 that controls transmission with the upper level, and a dose rate display.
Display unit 34, alarm device 3 that issues an abnormality alarm in a radiation atmosphere
The central management station 41 includes a transmission control unit 58 that controls transmission with the terminal stations, a memory unit 57 that stores transmitted dose rate data, programs, etc., and a unit that records the dose rate at the location where the detector is installed. Screen display section 39 and recording section 4 for displaying and recording
0. A processor unit 56 that calculates the cumulative dose value of each radiation detector installation location, calculates the average value of the dose rate within a certain period, and creates a dose rate distribution map, etc.; the processor unit 56 and the screen display unit 39; The system includes an input/output control section 38 that interfaces with the section 40, and a common transmission path 51 through which a central management station and a plurality of radiation measurement terminal stations 31 are commonly connected to the central management station 41.

次に本発明における一実施例の動作を説明する。Next, the operation of one embodiment of the present invention will be explained.

第4図に示す放射線計測端局31においては、放射線検
出器1よシ放射線雰囲気下の線量を検出し、検出パルス
信号をパルス信号処理部33にて、検出パルス信号を一
定時間カウントし、プロセッサ部32ヘカウント値を送
出する。次にパルス数計数動作の詳細を第6図を用いて
説明する。第6図は、パルス信号処理部の詳細ブロック
図である。
In the radiation measurement terminal station 31 shown in FIG. 4, the radiation detector 1 detects the dose in the radiation atmosphere, and the pulse signal processing section 33 counts the detected pulse signals for a certain period of time. The count value is sent to section 32. Next, details of the pulse number counting operation will be explained using FIG. 6. FIG. 6 is a detailed block diagram of the pulse signal processing section.

検出器出力のノイズをカットする波高選別部20、ディ
ジタル回路への入力に適した入力レベル値の範囲を決め
る入力レベル変換器42、基本クロックを発生させる基
本クロック発生回路50、検出信号をカウントする検出
器出力パルス数カウンタ回路44、基本クロックをカウ
ントする基本パルス数カウンタ回路49、検出器からの
パルス入力信号17と上記基本クロックパルス数カウン
タ回路49から出力される基本クロックパルス数カウン
タオーバーフロー信号54と論理和をとる論理和回路4
3から構成され、計測前に事前にプロセッサ部32から
基本クロックパルス発生回路49と、−検出器出力パル
スカウンタ回路44クリアし、クリア解除後、基本クロ
ック発生回路50から出力される基本クロックパルス数
を基本クロックパルス数カウンタ回路49にて計数を開
始すると同時に検出器出力パルス数を検出器出力パルス
数カウンタ回路44にて計数を開始する。そして、基本
クロックパルス数カウンタ回路49の計数値がオーバー
フローした時に、基本クロックパルス数カウンタ回路4
9よシ割込信号として、基本クロック数カウンタオーバ
ーフロー信号54をプロセッサ部32へ送出すると同時
に上記論理和回路43にて検出器出力パルスの検出器出
力パルス数カウンタ回路44への入力を禁止し、上記割
込信号を受けたプロセッサ部32が検出器出力パルス数
カウンタ回路44のデータ出力部47よシ出力される計
数値を読みとるようになっている。第4図におけるプロ
セッサ部32は、検出パルス入力信号処理部33の計数
値を読み取った後、計数値よシ線量率への変換演算を行
い、線量率をメモリ部36へ格納する。伝送制御部35
は中央監理間41よシ線員率値送信の要求を受けると端
局内部バス37を介してプロセッサ部32へ割込信号を
送出し、最新の線量率量を共通伝送路51を介して中央
監理間41へ伝送する。第5図における中イ     
  央*m541−cu、放射線計測m局31x′)f
flaされて来た線量率値をメモリ部57へ記憶すると
ともに表示、記録を行い、プロセッサ部56において各
放射線雰囲気内の積算線量の算出、一定期閣内の線量率
の平均値算出等を行う。又、放射線計測端局31は各々
アドレスを持ち、中央監理間41からの上記端局31の
アドレスを指定して伝送指令を行うので一致したアドレ
スを持つ放射線計測端局31のみが中央監理間41へ伝
送を行うようになっている。
A wave height selection unit 20 that cuts noise in the detector output, an input level converter 42 that determines a range of input level values suitable for input to a digital circuit, a basic clock generation circuit 50 that generates a basic clock, and a detection signal count. A detector output pulse number counter circuit 44, a basic pulse number counter circuit 49 that counts the basic clock, a pulse input signal 17 from the detector and a basic clock pulse number counter overflow signal 54 output from the basic clock pulse number counter circuit 49. Logical sum circuit 4 that calculates logical sum with
3, the processor section 32 clears the basic clock pulse generation circuit 49 and -detector output pulse counter circuit 44 in advance before measurement, and after the clearing is released, the basic clock pulse number output from the basic clock generation circuit 50. The basic clock pulse number counter circuit 49 starts counting, and at the same time, the detector output pulse number counter circuit 44 starts counting the number of detector output pulses. Then, when the count value of the basic clock pulse number counter circuit 49 overflows, the basic clock pulse number counter circuit 4
9, sends a basic clock number counter overflow signal 54 to the processor section 32 as an interrupt signal, and at the same time prohibits input of the detector output pulse to the detector output pulse number counter circuit 44 in the OR circuit 43; The processor section 32 receiving the interrupt signal reads the count value output from the data output section 47 of the detector output pulse number counter circuit 44. After reading the count value of the detection pulse input signal processing unit 33, the processor unit 32 in FIG. 4 performs a calculation to convert the count value into a dose rate, and stores the dose rate in the memory unit 36. Transmission control section 35
When receiving a request to send the personnel rate value from the central supervisory station 41, it sends an interrupt signal to the processor section 32 via the terminal internal bus 37, and sends the latest dose rate amount to the central station via the common transmission line 51. It is transmitted to the supervisory room 41. Middle A in Figure 5
Center*m541-cu, radiation measurement m station 31x')f
The flaned dose rate values are stored in the memory section 57, displayed and recorded, and the processor section 56 calculates the cumulative dose in each radiation atmosphere, calculates the average value of the dose rate within a certain period, etc. In addition, each radiation measurement terminal station 31 has an address, and since a transmission command is issued by specifying the address of the terminal station 31 from the central supervision station 41, only the radiation measurement terminal station 31 with the matching address is sent to the central supervision station 41. It is now possible to transmit data to

以上述べた如く、本発明の一実施例によれば、放射線計
測端局31と中央監理間41にプロセッサ部32.56
を有し、上記放射線計測端局31内で放射線検出器1よ
シ出力されるパルス信号をディジタル計数方式によpカ
ウントし、ソフト処理で線量率変換を行い中央管理局4
1との時分割多重伝送ができるために、従来のアナログ
レートメーターを用いた装置よシ精度の優れた放射線量
率の計測が可能となシ、積算線量の表示、平均値の表示
等監視機能の向上に優れた放射線監視装置を実現できる
As described above, according to one embodiment of the present invention, the processor section 32.
The radiation measurement terminal station 31 counts pulse signals output from the radiation detector 1 using a digital counting method, converts the dose rate using software processing, and sends it to the central management station 4.
1, it is possible to measure radiation dose rates with greater accuracy than devices using conventional analog rate meters.It also has monitoring functions such as cumulative dose display and average value display. It is possible to realize a radiation monitoring device with excellent improvement in radiation.

本発明による放射線監視装置を用いることによって、測
定精度および安定度、監視機能が優れ、又中央監視装置
のフロアスペースの削減、ケーブル布設コストの低減、
計測点増設時の7レキシビリテイの向上といった効果が
ある。
By using the radiation monitoring device according to the present invention, measurement accuracy, stability, and monitoring function are excellent, and the floor space of the central monitoring device is reduced, cable installation costs are reduced,
This has the effect of improving flexibility when adding measurement points.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放射線監視装置のシステム構成図、第2
図は対数線量率針のブロック図、第3図はポンプ回路の
原理図、第4図は放射線計測端局の内部構成図、第5図
は本発明の放射線監視装置のシステム構成図、第6図は
パルス信号処理部の詳細ブロック図、第7図は本発明の
放射線監視装置の放射線計測端局内の処理フ四−を表わ
す図である。 1・・・放射線検出器、2・・・メーター、3・・・警
報器、4・・・アナンシェータ、5・・・高圧電源ライ
ン、6・・・低圧電源ライン、7・・・検出信号伝送ラ
イン、8・・・高圧電源、9・・・低圧電源、10・・
・対数線量率計、11・・・トリップユニット、12・
・・記録計、13・・・エリアモニタ盤、14・・・メ
ーター用線量率信号ライン、15・・・トリップ信号伝
送ライン1.16・・・記録計用線量率信号ライン、1
7・・・パルス入力信号、18・・・アンプ、19・・
・ディスクリートユニット、20・・・波形選別部、2
1・・・ボンピング回路、22・・・レートメータユニ
ット、23・・・線量率信号、24・・・矩形波入力、
25・・・コンデンサC1,26・・・ダイオード、2
7・・・抵抗Ri128・・・コンデンサCt、29・
・・OPアーンプ、30・・・出力電圧■2.31・・
・放射線計測端局、32・・・プロセッサ部、33・・
・パルス信号処理部、34・・・表示部、35・・・伝
送制御部、36・・・メモリ部、37・・・端局内部バ
ス、38・・・入出力制御部、39・・・画面表示部、
40・・・記録部、41・・・中央監理間、42・・・
レベル変換器、43・・・論理和回路、44・・・検出
器出力パルス数カウンタ回路、45・・・波高選別後パ
ルス入力信号、46・・・レベル変換後パルス入力信号
、47・・・パルス数カウンタ入力信号、48・・・パ
ルス数計数値データ、49・・・基本パルス数カウンタ
回路、50・・・基本クロック発生回路、51・・・共
通伝送路、52・・・クリップフロップ回路、53・・
・カウンタクリア信号、54・・・基本クロック数カウ
ンタオーバーフロー信号、55・・・中央管理局内部バ
ス、56・・・プロセッサ部、57・・・メモリ部、5
8・・・伝第 4 図 31 1   567 第 5 図 蔦 6 図 ¥]  7 図
Figure 1 is a system configuration diagram of a conventional radiation monitoring device;
The figure is a block diagram of the logarithmic dose rate needle, Figure 3 is a principle diagram of the pump circuit, Figure 4 is an internal configuration diagram of the radiation measurement terminal, Figure 5 is a system configuration diagram of the radiation monitoring device of the present invention, and Figure 6 is a diagram of the system configuration of the radiation monitoring device of the present invention. The figure is a detailed block diagram of the pulse signal processing section, and FIG. 7 is a diagram showing the processing steps in the radiation measurement terminal station of the radiation monitoring apparatus of the present invention. 1... Radiation detector, 2... Meter, 3... Alarm, 4... Annunciator, 5... High voltage power line, 6... Low voltage power line, 7... Detection signal transmission Line, 8...High voltage power supply, 9...Low voltage power supply, 10...
・Logarithmic dose rate meter, 11...Trip unit, 12・
...Recorder, 13...Area monitor board, 14...Dose rate signal line for meter, 15...Trip signal transmission line 1.16...Dose rate signal line for recorder, 1
7...Pulse input signal, 18...Amplifier, 19...
・Discrete unit, 20... Waveform sorting section, 2
DESCRIPTION OF SYMBOLS 1... Bumping circuit, 22... Rate meter unit, 23... Dose rate signal, 24... Rectangular wave input,
25... Capacitor C1, 26... Diode, 2
7...Resistor Ri128...Capacitor Ct, 29.
・・OP amp, 30... Output voltage ■2.31...
・Radiation measurement terminal station, 32... Processor section, 33...
- Pulse signal processing section, 34... Display section, 35... Transmission control section, 36... Memory section, 37... Terminal internal bus, 38... Input/output control section, 39... screen display section,
40...Recording department, 41...Central supervision room, 42...
Level converter, 43... OR circuit, 44... Detector output pulse number counter circuit, 45... Pulse input signal after pulse height selection, 46... Pulse input signal after level conversion, 47... Pulse number counter input signal, 48... Pulse number count value data, 49... Basic pulse number counter circuit, 50... Basic clock generation circuit, 51... Common transmission path, 52... Clip-flop circuit , 53...
- Counter clear signal, 54... Basic clock number counter overflow signal, 55... Central management station internal bus, 56... Processor section, 57... Memory section, 5
8...Eden No. 4 Figure 31 1 567 Figure 5 Ivy 6 Figure ¥] 7 Figure

Claims (1)

【特許請求の範囲】 1、パルス信号を出力する放射線検出器とプロセッサ部
と伝送制御部とメモリ部とパルス信号処理部とを有し放
射線雰囲気下に設置される放射線計測端局と伝送制御部
とプロセッサ部とメモリ部と表示手段と記録手段とを有
し遠隔に設置される少なくとも1つの中央管理局と両局
間の伝送を行うための伝送路からなり、上記放射線端局
内で上記放射線検出器パルス出力信号を上記信号処理部
にてディジタル計数方式でカウントし、上記プロセッサ
部とメモリ部によシ放射線線量率への変換演算処理を行
い演算結果を上記中央管理局へ上記伝送路を介してディ
ジタル信号で伝送し、送られてきた線量率値を中央管理
局に表示し、記録することを特徴とする放射線監視装置
。 2、特許請求の範囲第1項記載の放射線監視装置−にお
いて、上記伝送路を複数め放射線計測端局が共通して接
続される共通伝送路にて構成し、上記放射線線量率の演
算結果を共通伝送路を介して時分割多重伝送によって中
央管理局へ伝送することを特徴とする放射線監視装置。 3、%許請求の範囲第1項記載の放射線監視装置におい
て、上記放射線計測端局内に表示手段を設け、線量率を
表示することを特徴とする放射線監視装置。 4、特許請求の範囲第1項記載の放射線監視装置におい
て、放射線計測端局に警報器を設け、上記中央管理局か
ら放射線計測端局に、線量率警報レベル設定値を伝送し
放射線計測端局での線量率計測値が、線量率警報レベル
設定値以上に達した時、警報を発生すること特徴とする
放射線監視装置。 5、特許請求の範囲第1項記載の放射線監視装置におい
て、中央監理局で各放射線検出器設置場所の積算線量率
値を表示および記録することを特徴とする放射線監視装
置。 6、特許請求の範囲第1項記載の放射線監視装置におい
て一定期間内の放射線計測端局の線量率の平均値の算出
と、算出結果を表示および記録することを特徴とする放
射線監視装置。 7.特許請求の範囲第1項記載の放射線監視装置におい
て、中央監理局に設けた表示手段を用いて放射線計測地
域の線量率分布図を表示し、中央管理局に設けた記録手
段を用いて記録することを特徴とする放射線監視装置。 8、特許請求の範囲第1項記載の監視装置において、上
記パルス信号処理部に基本クロックパルス発生回路と基
本クロックパルス数カウンタ回路、上記基本クロックパ
ルス数カウンタ回路から出力される設定値オーバーフロ
ー信号と検出器出力パルスとの論理和をとる論理和回路
と上記論理和回路から出力されるパルス数を計数する検
出器出力パルス数カウンタ回路とを有し、プロセッサ部
が計測前に予め上記基本クロックパルス発生回路μ検出
器出力パルス数カウンタ回路をクリアし、り?    
   リア解除後基本クロックパルス発生回路から出力
される基本クロックパルス数を基本クロック数カウンタ
回路にて計数を開始し、同時に検出器出力パルス数を検
出器出力パルス数カウンタ回路にて計数を開始し、上記
基本クロックパルス数カウンタ回路よシ割込信号をプロ
セッサ部へ送出し、同時に上記論理和回路にて検出器出
力パルスの検出器出力パルス数カウンタ回路への入力を
禁止し、上記割込信号を受けたプロセッサ部が検出器出
力/ パルス数カウンタ回路の計数値を読み取ることによって
、放射線線量率の計測を行うことを特徴とする放射線監
視装置。
[Claims] 1. A radiation measurement terminal station and a transmission control unit that are installed in a radiation atmosphere and include a radiation detector that outputs pulse signals, a processor section, a transmission control section, a memory section, and a pulse signal processing section. and at least one central control station installed remotely, which has a processor section, a memory section, a display means, and a recording means, and a transmission path for transmitting data between the two stations, and the radiation detection terminal station is configured to detect radiation within the radiation terminal station. The pulse output signal of the device is counted by the signal processing section using a digital counting method, and the processor section and the memory section perform calculation processing to convert it into a radiation dose rate, and the calculation result is sent to the central control station via the transmission line. A radiation monitoring device characterized by transmitting the received dose rate value as a digital signal and displaying and recording the received dose rate value at a central control station. 2. In the radiation monitoring device according to claim 1, the transmission line is configured as a common transmission line to which a plurality of radiation measurement terminals are commonly connected, and the calculation result of the radiation dose rate is A radiation monitoring device characterized in that it transmits to a central control station by time division multiplexing transmission via a common transmission path. 3. Permissible Range of Claims 1. The radiation monitoring apparatus according to claim 1, wherein a display means is provided in the radiation measurement terminal station to display the dose rate. 4. In the radiation monitoring apparatus according to claim 1, the radiation measurement terminal station is provided with an alarm, and the radiation measurement terminal station transmits the dose rate alarm level set value from the central management station to the radiation measurement terminal station. A radiation monitoring device that generates an alarm when a dose rate measurement value reaches a dose rate alarm level setting value or more. 5. The radiation monitoring device according to claim 1, wherein the integrated dose rate value of each radiation detector installation location is displayed and recorded at the central monitoring station. 6. A radiation monitoring device according to claim 1, characterized in that the radiation monitoring device calculates an average value of the dose rate of a radiation measurement terminal station within a certain period of time, and displays and records the calculation results. 7. In the radiation monitoring device according to claim 1, the dose rate distribution map of the radiation measurement area is displayed using a display means provided at the central control station, and recorded using a recording means provided at the central control station. A radiation monitoring device characterized by: 8. The monitoring device according to claim 1, wherein the pulse signal processing section includes a basic clock pulse generation circuit, a basic clock pulse number counter circuit, and a set value overflow signal output from the basic clock pulse number counter circuit. It has an OR circuit that performs an OR with the detector output pulse, and a detector output pulse number counter circuit that counts the number of pulses output from the OR circuit, and the processor section calculates the basic clock pulse in advance before measurement. Clear the generation circuit μ detector output pulse number counter circuit and
After the rear release, the basic clock pulse number output from the basic clock pulse generation circuit is started to be counted by the basic clock number counter circuit, and at the same time, the detector output pulse number is started to be counted by the detector output pulse number counter circuit, The above-mentioned basic clock pulse number counter circuit sends an interrupt signal to the processor section, and at the same time, the above-mentioned OR circuit prohibits input of the detector output pulse to the detector output pulse number counter circuit, and the above-mentioned interrupt signal is A radiation monitoring device characterized in that a processor unit receiving the radiation measures the radiation dose rate by reading the detector output/count value of the pulse number counter circuit.
JP10680382A 1982-06-23 1982-06-23 Radiation monitoring device Pending JPS58223776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10680382A JPS58223776A (en) 1982-06-23 1982-06-23 Radiation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10680382A JPS58223776A (en) 1982-06-23 1982-06-23 Radiation monitoring device

Publications (1)

Publication Number Publication Date
JPS58223776A true JPS58223776A (en) 1983-12-26

Family

ID=14443019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10680382A Pending JPS58223776A (en) 1982-06-23 1982-06-23 Radiation monitoring device

Country Status (1)

Country Link
JP (1) JPS58223776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161080A (en) * 1984-08-31 1986-03-28 Toshiba Corp Radiation monitor device
JPS6161079A (en) * 1984-08-31 1986-03-28 Toshiba Corp Radiation monitoring device
JP2014130092A (en) * 2012-12-28 2014-07-10 Toshiba Corp Digital counting rate measuring device and radiation monitoring system employing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161080A (en) * 1984-08-31 1986-03-28 Toshiba Corp Radiation monitor device
JPS6161079A (en) * 1984-08-31 1986-03-28 Toshiba Corp Radiation monitoring device
JP2014130092A (en) * 2012-12-28 2014-07-10 Toshiba Corp Digital counting rate measuring device and radiation monitoring system employing the same

Similar Documents

Publication Publication Date Title
US4186048A (en) Neutron flux monitoring system
US4437065A (en) Arrangement for monitoring cathodically protected structures
JPS58223776A (en) Radiation monitoring device
JPS59218979A (en) Monitoring device of radiant ray level
JPS5984177A (en) Radioactive rays monitoring device
JP2951674B2 (en) Radiation monitoring method and device
JPS6117209B2 (en)
JPS59157583A (en) Radioactive rays monitoring system
US4277308A (en) Count-doubling time safety circuit
JPS5847281A (en) Monitoring device for radiation
JPS603573A (en) Area radiation monitoring system
JPH0562711B2 (en)
JPH0371656B2 (en)
JPS58223774A (en) Radiation monitoring device
Bernard Leq, SEL: When? Why? How?
JP3879352B2 (en) Radiation monitoring system
JPH0648791B2 (en) Device for collecting monitoring information in transmission device
JP2555395B2 (en) Partial discharge diagnostic device
JPS5960273A (en) Monitoring of radiation
Union et al. Microprocessor-based radiation monitoring systems
JPH0697265B2 (en) Digital radiation monitor
JPH0577277B2 (en)
JPH0575075B2 (en)
JPH05215862A (en) Radiation measuring device and radiation energy level setting confirming method
JPS58182591A (en) Wide range neutron flux monitoring device