JPS58207029A - All solid-state type electrochromic display - Google Patents

All solid-state type electrochromic display

Info

Publication number
JPS58207029A
JPS58207029A JP57090112A JP9011282A JPS58207029A JP S58207029 A JPS58207029 A JP S58207029A JP 57090112 A JP57090112 A JP 57090112A JP 9011282 A JP9011282 A JP 9011282A JP S58207029 A JPS58207029 A JP S58207029A
Authority
JP
Japan
Prior art keywords
display
active material
layer
material layer
colored active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57090112A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hirai
良彦 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57090112A priority Critical patent/JPS58207029A/en
Publication of JPS58207029A publication Critical patent/JPS58207029A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To produce a titled EC display which is fast in response, permits multi- color display, has high resistance to environment and has a long life by using prescribed polymer films in forming the constituting layers of the display except the transparent electrode, display electrode and counter electrode thereof. CONSTITUTION:A colored active material layer is formed of the film of a polymer (e.g; acrylic resin, fluororesin) containing (A) an organic EC material (e.g; viologen, diphthalocyanine) incorporated therein, (B) an ion donating and accepting material (e.g; lead halide, pyridine halide) and (C) a cross-linking material (e.g.; the compds. expressed by the formula I , the formula II) incorporated therein. More specifically, a transparent display elctrode (e.g.; tin oxide film) 2 is provided on a transparent substrate (e.g.; glass plate) 1 and further the above-described colored active material layer 7 and counter electrode 5 are provided thereon, whereby the EC display is produced (a symbol 6 is a sealing layer using an epoxy resin or the like). Since the above-mentioned display has the colored active material layer which is three-dimensionally crosslinked by the crosslinking agent, the device has particularly high resistance to environment.

Description

【発明の詳細な説明】 本発明は、エレクトロクロミック表示装置(以下ECD
と記す)の構造に関するものであり、特に全固体型EO
Dに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochromic display device (hereinafter referred to as ECD).
), especially all-solid-state EO
This is related to D.

EODとは、電気を通電することにより、容易に酸化又
は還元され、かつその際可視域の吸収スペクトルに大き
な変化の起こる物質(以下、このような物質をエレクト
ロクロミック材とよび、EC材と略す)を表示材料とし
て用いた表示装置のことであるONO材は大別して、無
機材料、有機材料(これには有機金属材料を含む。)の
2種に分けられる。これらの代表的な例をあげると、無
機材料は酸化遷移金属化合物であり、有機材料は芳香族
及び複素環化合物、又はこれらの化合物と遷移金属との
配位化合物(即ち、有機金属材料)である。又、有機材
料は無機材料に比べて多様な色をだすことができる。と
いう点で優れている。
EOD is a substance that is easily oxidized or reduced when electricity is applied, and that causes a large change in the absorption spectrum in the visible region (hereinafter, such substances are called electrochromic materials, abbreviated as EC materials). ) ONO materials, which refer to display devices using ONO materials as display materials, can be roughly divided into two types: inorganic materials and organic materials (this includes organic metal materials). To give typical examples of these, inorganic materials are oxidized transition metal compounds, and organic materials are aromatic and heterocyclic compounds, or coordination compounds of these compounds and transition metals (i.e., organometallic materials). be. Furthermore, organic materials can produce a wider variety of colors than inorganic materials. It is excellent in that respect.

ECDは、上記のEC材の他に、電解質、表示電極と対
向電極から基本的には構成され、構造上、電解質に液体
(即ち、電解液)を用いる液体型と電解質に固体を用い
る全固体型の2つのタイプに大別される。これまでに発
表され九EODにおいては、液体型の構造を有するもの
が多いが、液体型は常に電解液の熱膨張等による液漏れ
の危険を有しており、液漏れ時には他の電子部品に対し
て被害を及ぼす等の危険が生じる。又、電解液が密閉で
きるセルを構成し、それに電解液を注入する、という工
数の多い工程を省略することができない。
In addition to the above-mentioned EC materials, ECDs basically consist of an electrolyte, a display electrode, and a counter electrode.Due to their structure, ECDs can be of the liquid type, which uses a liquid (i.e., electrolyte) as the electrolyte, or the all-solid type, which uses a solid electrolyte. It is roughly divided into two types. Most of the nine EODs announced so far have a liquid type structure, but liquid types always have the risk of leakage due to thermal expansion of the electrolyte, and when liquid leaks, it may damage other electronic components. There is a risk of causing damage to the person. Further, it is not possible to omit the process of constructing a cell that can be sealed with an electrolytic solution and injecting the electrolytic solution into the cell, which requires a large number of steps.

固体の電解質を用いた全固体型BCDには、このような
液漏れの危険は全く無く、製造時の工数も低減でき、又
、電子部品の固体化、という点からも優れているが未だ
性能的に十分なものができていない。従来の全固体型E
ODの基本的な構造の一例を第1図に示す。これ線透明
基板1の上に透明な表示電極2、エレクトロクロミック
層(以下EC層と記す)3、固体電解層4、対向電極5
、シール層6を順次形成した構造である。この従来のI
C0Dの構造においては、10層3に酸化タングステン
薄膜、等の無機のEC材を用いており、固体電解層に8
i 0. OaF: 、λIgF、%の絶縁材又はL 
i s N 、β−AJ20 s等のLi+、Na″イ
オン伝導材を用いている。このような構造のIODにお
いては、10層及び固体電解層に起因する次のような欠
点を有している。第1に10層に無機のFiC材を用い
ているために、表示色が濃青系と限られ、多様な表示を
出すことは困難である、という欠点を有する。次に、固
体電解層に絶縁材を用いた型のICDにおいては、10
材の酸化還元が絶縁材に吸着されている水分によって起
こるため、EODの特性が周囲の環境、特に湿度の影響
を強く受け、且つ水の分解による気泡も発生するので、
信頼性に著しく欠、ける。又、固体電解層にLi+又は
Na+イオンの伝導材を用いた型のEODにおいては、
イオンの移動度が小なることから、応答が遅い、EC層
又は電極と固体電解層との界面の密着性が十分なく、又
その界面で反応が生じやすく特命が短い、等の欠点を有
している。
All-solid-state BCDs that use a solid electrolyte have no risk of liquid leakage, can reduce the number of man-hours during manufacturing, and are superior in that they can solidify electronic components, but their performance is still limited. Not enough has been done. Conventional all-solid type E
An example of the basic structure of OD is shown in FIG. On this line transparent substrate 1, a transparent display electrode 2, an electrochromic layer (hereinafter referred to as EC layer) 3, a solid electrolyte layer 4, and a counter electrode 5
, a sealing layer 6 is formed in sequence. This conventional I
In the C0D structure, an inorganic EC material such as a tungsten oxide thin film is used for the 10 layer 3, and an 8 layer is used for the solid electrolyte layer.
i0. OaF: , λIgF, % insulation or L
Li+, Na'' ion conductive materials such as i s N and β-AJ20 s are used.IODs with this structure have the following drawbacks due to the 10 layers and solid electrolyte layer. Firstly, because the 10th layer uses an inorganic FiC material, the display color is limited to deep blue, making it difficult to provide a variety of displays.Secondly, the solid electrolyte layer In a type of ICD using an insulating material, 10
Since the oxidation-reduction of the material is caused by the moisture adsorbed in the insulation material, the characteristics of EOD are strongly affected by the surrounding environment, especially humidity, and bubbles are also generated due to the decomposition of water.
Significant lack of reliability. In addition, in a type of EOD that uses a Li+ or Na+ ion conductive material for the solid electrolyte layer,
Due to the low mobility of ions, it has drawbacks such as slow response, insufficient adhesion at the interface between the EC layer or electrode and the solid electrolyte layer, and reactions tend to occur at the interface, resulting in a short period of time. ing.

又、第2図に示したように、本発明によるECDと同じ
構造(第1図の10層3と電解層4に替えて着色活物質
層を用いている)をもつEODとして、着色活物質層7
にリンタングステン酸n、po、・(WO,)、2・n
 H,0(以下PWAと略す)を用い九EODが知られ
ているが、これは、(1)青色しか出せない。即ち多色
化の可能性が全くない。(2) PWAの含んでいる水
が着消色に関与しているので、10Dの性能が周囲の環
境に左右されやすく、又劣化も速い。(3) P Wム
は電極とのコンタクトがとりに〈〈1特性のバラツキや
初期劣化を起こしている。等の欠点を有している。した
がってPWAを用いたl1ODは実用的なデバイスでは
なく、又仮に実用化できたとしてもコストの高いものに
なる0 ここで′EC層と着色活物質層との違いについて述べる
。従来のEODにおいては、既に述べたようにEC層と
電解液又は固体電解質とが接しており、その両者のイオ
ンの授受によって10層の着消色が起こるが、第2図に
示した構造において社、着色活物質層中にEC材とイオ
ン授受材とを含むため、着色活物質層中のイオンの授受
によって着色活物質層の着消色は起こる。
Furthermore, as shown in FIG. 2, as an EOD having the same structure as the ECD according to the present invention (a colored active material layer is used in place of the 10 layers 3 and electrolytic layer 4 in FIG. 1), a colored active material layer 7
phosphotungstic acid n,po,・(WO,),2・n
Nine EODs using H,0 (hereinafter abbreviated as PWA) are known, but these (1) can only produce blue color. That is, there is no possibility of multicoloring. (2) Since the water contained in PWA is involved in coloring and decoloring, the performance of 10D is easily influenced by the surrounding environment, and it also deteriorates quickly. (3) In the case of PWM, the contact with the electrode is the main cause of variation in characteristics and initial deterioration. It has the following drawbacks. Therefore, the 11OD using PWA is not a practical device, and even if it could be put into practical use, it would be expensive. Here, the difference between the EC layer and the colored active material layer will be described. In conventional EOD, as mentioned above, the EC layer is in contact with the electrolytic solution or the solid electrolyte, and the exchange of ions between the two causes coloring and decoloring of the 10 layers, but in the structure shown in Figure 2, Since the colored active material layer contains an EC material and an ion exchange material, coloring and decoloring of the colored active material layer occurs due to the exchange of ions in the colored active material layer.

有機材料のEC材(以下、有機EC材と略す)は、その
末端基を種々の官能基に代える等の方法により非常に多
くの種類のものが見出されており、表示色も種々のもの
があるが、このような有ff1E。
Many types of organic EC materials (hereinafter abbreviated as organic EC materials) have been discovered by replacing their terminal groups with various functional groups, and they also come in a variety of display colors. There is such a ff1E.

材を用い九EODの公知の構造は全て電解液を用いたも
ので、有機EC材を用いた全固体型のECDは未だ知ら
れていない。
All of the known structures of nine EODs using electrolytes use electrolytes, and all solid-state ECDs using organic EC materials are not yet known.

本発明の目的は、耐環境性が高く、長寿命で多色表示が
できる低コストの全固体型エレクトロクロミック表示装
置を提供することにある。
An object of the present invention is to provide a low-cost all-solid-state electrochromic display device that has high environmental resistance, long life, and can display multiple colors.

本発明の全固体型エレクトロクロミック表示装置は、透
明基板上に、表示!極、着色活物質層、対向型様が順次
積層された構造の全固体W−rレクトロクロミンク表示
装置において、着色活物質層が少なくとも、1種以上の
エレクトロクロミック材と1種以上のエレクトロクロミ
ック材と1種以上のイオン授受材と1種以上の架橋材と
を含む高分子膜であることを特徴とし5ている。
The all-solid-state electrochromic display device of the present invention displays on a transparent substrate! In an all-solid-state W-r electrochromic display device having a structure in which a pole, a colored active material layer, and a facing type are sequentially stacked, the colored active material layer includes at least one type of electrochromic material and one or more types of electrochromic material. The present invention is characterized in that it is a polymer membrane containing a material, one or more types of ion exchange materials, and one or more types of crosslinking materials.

本発明の特徴の1つけ、透明基板、表示!極、対向[&
を除いた他の層が高分子の層でまる、という点である。
One of the features of this invention is transparent substrate and display! pole, opposite [&
The other layer is made up of polymer layers.

この高分子のm類は表示性能という点からはある程度限
定されたものになるか、単に電圧の印加によって着消色
が起きるというエレクトロクロミック現象が起きるだけ
ならばg形成能のみが問題になるので、はとんど全ての
高分子を用いることができる。
This m-class polymer is limited to some extent in terms of display performance, or if the electrochromic phenomenon of coloring and fading occurs simply by applying a voltage, only the g-forming ability becomes a problem. , almost any polymer can be used.

本発明のECDの基本的な構造の−・例を第2図に示す
ように、透明基板1上に表示電極2、着色活物質層7、
対向電極5が順次積層され、この積層構造をシールする
ようにしてシール層6が形成されている。以下、各構成
要素について詳説する。
An example of the basic structure of the ECD of the present invention is shown in FIG. 2, as shown in FIG.
The counter electrodes 5 are sequentially laminated, and a sealing layer 6 is formed to seal this laminated structure. Each component will be explained in detail below.

透明基板1にはガラス又はプラスチック板等透明な材料
が用いられ、透明表表示電極2には、酸化スズ(8nO
2)膜又は酸化インジウム−酸化スズ(ITO)膜等の
透明な電導体が用いられる。表示電極は普通真空蒸着法
で形成されるが、スプレー法、OV’D法、析出法等の
方法も使われる。
A transparent material such as glass or a plastic plate is used for the transparent substrate 1, and the transparent surface display electrode 2 is made of tin oxide (8nO
2) A transparent conductor such as a film or an indium oxide-tin oxide (ITO) film is used. Display electrodes are usually formed by vacuum deposition, but methods such as spraying, OV'D, and precipitation can also be used.

本発明の着色活物質層7は、1種以上のEC材及び1種
以上のイオン授受材を含む高分子膜であり、さらに詳し
く述べると、高分子膜中にNo材及びイオン授受材が分
散した膵(以下、10分散膜と記す)又は高分子のEC
材(以下、EC高分子と記す)中にイオン授受材が分散
した膜又は。
The colored active material layer 7 of the present invention is a polymer film containing one or more types of EC material and one or more types of ion transfer material, and more specifically, the No material and the ion transfer material are dispersed in the polymer film. pancreas (hereinafter referred to as 10-dispersed membrane) or polymeric EC
A membrane or membrane in which an ion exchange material is dispersed in a material (hereinafter referred to as EC polymer).

高分子のイオン授受材(以下、イオン授受高分子と記す
)中にEC材が分散した膜、又はEC高分子とイオン授
受高分子とが混合した膜である。イオン授受材とは、前
述のEC材とイオンを授受し得る物質のことで、通常の
イオン伝導材、もしくは、イオン導電体はもちろんのこ
と、導電率が低く、イオン伝導材としては用いられない
ものも含んでいる。
It is a membrane in which an EC material is dispersed in a polymeric ion exchange material (hereinafter referred to as an ion exchange polymer), or a membrane in which an EC polymer and an ion exchange polymer are mixed. Ion exchange materials are substances that can exchange ions with the EC material mentioned above, and are not only ordinary ion conductive materials or ion conductors, but also have low conductivity and cannot be used as ion conductive materials. It also includes things.

分散させるEC材には、前に述べた有機のEC材の全て
を用いることができ、特に本発明に特有のものではない
。例えば、ビオロゲン、テトラチアフルバレン、アリル
ピラゾリン、フルオレン。
The EC material to be dispersed can be any of the organic EC materials mentioned above and is not particularly unique to the present invention. For example, viologen, tetrathiafulvalene, allylpyrazoline, fluorene.

アントラキノン、ピリリウム、ピリジウム、メチレンブ
ルー等の芳香族又は複素環化合物並びにそレラの誘導体
、及び、フェロイン、7エロセン、シフタロジアニン等
の有機金属化合物がある。
These include aromatic or heterocyclic compounds such as anthraquinone, pyrylium, pyridium, and methylene blue, and derivatives of solera, and organometallic compounds such as ferroin, 7-erocene, and siphthalodianine.

イオン授受材には、例えば、ハロゲン化鉛、ハロゲン化
アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン
化希土類金属、ハロゲン化アルキルアンモニウム塩、及
びこれらの固溶体又はハロゲン化アルカリ金属のクラウ
ンエーテルとの錯体、ヨウ化1−n−ブチルピリジニウ
ム等のハロゲン化ピリジン、プロトン伝導材である醜及
びその水和物並ひにイオン交換樹脂、アルカリ金属伝導
材である遷移金属酸化物、アルカリ金属、ハロゲン化ア
ルカリ金属、過塩素酸アルカリ金属、テトラフルオロホ
ウ酸アルカリ金属MBF4(以下Mはアルカリ金属をあ
られす)やフルオロリン酸アルカリ金属MPFe= L
lsNやチオシア/酸アルカリ金属M8ONやトリフル
オロ酢酸アルカリ金属等のアルカリ金属化合物、MI4
 Zn (GaO2)at MsL M−β−アルミナ
、鎖伝導材であるノ10ゲン化銀及び調伏導材であるハ
ロゲン化鋼、等を用いることができ、又、稽々の表面活
性剤等も用いることができる。
Ion exchange materials include, for example, lead halides, alkali metal halides, alkaline earth metal halides, rare earth metal halides, alkylammonium halides, solid solutions thereof, or complexes of alkali metal halides with crown ethers. , halogenated pyridine such as 1-n-butylpyridinium iodide, proton conductive materials such as Ugly and its hydrates, ion exchange resins, alkali metal conductive materials such as transition metal oxides, alkali metals, and alkali halides. Metal, alkali metal perchlorate, alkali metal tetrafluoroborate MBF4 (hereinafter M stands for alkali metal), alkali metal fluorophosphate MPFe=L
Alkali metal compounds such as lsN, thiocyanate/acid alkali metal M8ON, and alkali metal trifluoroacetate, MI4
Zn (GaO2) at MsL M-β-alumina, silver decagenide as a chain conductive material, halogenated steel as a damping conductive material, etc. can be used, and a surface active agent etc. can also be used. be able to.

イオン授受材、又はFiO材を分散させる高分子として
は1例えば、メラミン樹脂、ケイ素樹脂、キシレン樹脂
、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体樹
脂、ポリカーボネート樹脂、繊維素誘導体樹脂、ポリビ
ニルカルノ(ゾール樹脂、ポリエチレンオキシド、ポリ
プロピレンオキシト。
Examples of polymers for dispersing ion exchange materials or FiO materials include melamine resins, silicon resins, xylene resins, vinyl acetate resins, vinyl chloride-vinyl acetate copolymer resins, polycarbonate resins, cellulose derivative resins, and polyvinyl carboxylic acid. (Sole resin, polyethylene oxide, polypropylene oxide.

等のポリエーテル樹脂、ポリアクリロニトリル、ポリア
クリロニトリル等のアクリル系樹脂、ポリフッ化ビニリ
デン等のフッ素系樹脂等、分針媒としての働きをするも
のであれば、どのような高分子でも用いることができる
が、アクリル系樹脂やフッ素系樹脂のごとく、極性の強
い官能基を有するものが望ましい。
Any polymer can be used as long as it functions as a needle medium, such as polyether resins such as polyacrylonitrile, acrylic resins such as polyacrylonitrile, fluorine resins such as polyvinylidene fluoride, etc. , those having highly polar functional groups, such as acrylic resins and fluororesins, are desirable.

me高分子には、有機材料、有機金属材料のl!i。Me polymers include l! of organic materials and organometallic materials. i.

材の分子同士を共有結合で結合した積層型高分子やEC
分散膜に用いる合成高分子として前で列挙した高分子及
びその誘導体とIC材とを共有結合で結合したペンダン
ト型高分子を用いることができる。又、イオン授受高分
子には、EC高分子と同様ニ、クラウン・エーテル等、
イオン授受材の分子同士を共有結合で結合した積層型高
分子、や10分散膜に用いる合成高分子として既に列挙
した高分子及びその誘導体とイオン授受材とを共有結合
で結合したペンダント型高分子を用いることができる。
Laminated polymers and EC that bond material molecules together with covalent bonds
As the synthetic polymer used for the dispersion membrane, a pendant polymer in which the polymers listed above or their derivatives and an IC material are covalently bonded can be used. In addition, similar to EC polymers, ion transfer polymers include crown ether, etc.
Laminated polymers in which the molecules of ion transfer materials are bonded together by covalent bonds, and pendant polymers in which the polymers and derivatives thereof already listed as synthetic polymers used in 10-dispersion membranes are bonded to ion transfer materials by covalent bonds. can be used.

着色活物質層7には、以上の物質の他に架橋材が含まれ
ているが、これは着色活物質層形成用のコーティング溶
液に含有させておき5着色活物質層形成後、光又は熱に
よって鎖状の合成高分子の分子間に架橋結合をつくるこ
とにより、着色活物質層の安定性、機械的強度、基板と
の付着力ゝを増加させるものである。本発明に用いられ
る架橋材には、既に高分子化学や顔料捺染やフォトレジ
ストの分野で知られている架橋材の多くを用いることが
でき、その構造は、X−R−Y又はx−4Yの構造であ
る。ここで、x、y、zは光又は熱の作用により高分子
の分子と反応できる官能基であり、図に示した如く、酸
素、イオウ、窒素、ハロゲン等を含む官能基である。R
はそれらの官能基をつなぐ有機化合物であり、主として
炭化水素鎖である。熱および光架橋材としては、下記に
示したような化学式をもつものが 〔熱架橋材の例〕 イ)  0H3N(OH20Ht 01 )を口)  
8 (OHt OHt OJ ) tへ)  OH3s
o、(OHt )n038G)H3))  OH,=O
H−80,−0H=OH。
The colored active material layer 7 contains a crosslinking material in addition to the above-mentioned substances, and this is included in the coating solution for forming the colored active material layer. By creating crosslinks between molecules of chain-like synthetic polymers, the stability, mechanical strength, and adhesion to the substrate of the colored active material layer are increased. As the crosslinking material used in the present invention, many of the crosslinking materials already known in the fields of polymer chemistry, pigment printing, and photoresists can be used, and the structure thereof is X-R-Y or x-4Y. The structure is Here, x, y, and z are functional groups that can react with polymer molecules by the action of light or heat, and as shown in the figure, are functional groups containing oxygen, sulfur, nitrogen, halogen, etc. R
is an organic compound that connects these functional groups, and is primarily a hydrocarbon chain. As thermal and photocrosslinking materials, those having the chemical formula shown below are used (Examples of thermal crosslinking materials).
8 (OHt OHt OJ ) to t) OH3s
o, (OHt )n038G)H3)) OH,=O
H-80, -0H=OH.

す)  CICjHt O(OH2)nooo  CI
ヌ)  CI  Cjoo<CHt )n000 01
〔光架橋材の例〕 4.4′〜ジアジドカルコン 2.6−ジー(4′〜アジドベンジリデン)シクロヘキ
サノン0H。
) CICjHt O(OH2)nooo CI
) CI Cjoo<CHt ) n000 01
[Example of photocrosslinking material] 4.4'~Diazidochalcone 2.6-di(4'~azidobenzylidene)cyclohexanone 0H.

2.6−ジー(41−アジドベンジリデン)−4−メチ
ルシクロヘキサノンOH 26ロージー(4′−アジヒくンジリデン)−1プイト
bオキシシクロヘキサノン知られており、光架橋材には
ビスアジド系がよく用いられる。
2.6-di(41-azidobenzylidene)-4-methylcyclohexanone OH 26-di(4'-azidobenzylidene)-1-oxycyclohexanone is known, and bisazide type is often used as a photocrosslinking material.

対向゛電極5に°は、金、銀、銅、炭素(無定形も黒船
も含む)及び前述の透明電極等、導電性のものなら、い
かなるものも用いることができる。
For the counter electrode 5, any conductive material can be used, such as gold, silver, copper, carbon (including amorphous and black metal), and the above-mentioned transparent electrode.

シール層6には、エポキシ樹脂等の有機接着剤や低融点
ガラス、ICのモールド材、等、密閉効果のある材料な
らいかなるものも使える。又、第2図に示す如く、ガラ
ス、金属、プラスチック等の基板をシール層の代わりに
用いることもできる。
For the sealing layer 6, any material can be used as long as it has a sealing effect, such as an organic adhesive such as epoxy resin, low melting point glass, and an IC molding material. Further, as shown in FIG. 2, a substrate made of glass, metal, plastic, etc. can be used instead of the sealing layer.

その場合、シール層の材料はシール層の材料として一ヒ
d己したものを用いる。
In that case, the material for the sealing layer is one that is unique to the material for the sealing layer.

基本的な構成要件ではないが、着色活物質層7にアルミ
ナhltos、又は酸化チタン’I’i 0.等の白色
微粉末を混合することにより、白色背景0ECDを得る
ことができる。又、有色の微粉末を白色微粉末の代わり
に用いれば、有色の背景を得ることができる。
Although not a basic constituent requirement, the colored active material layer 7 is made of alumina HLTOS or titanium oxide 'I'i0. A white background of 0ECD can be obtained by mixing white fine powders such as Furthermore, if a colored fine powder is used instead of a white fine powder, a colored background can be obtained.

又、着色活物質層7に、可塑材を含ませることン酸のエ
ステル等の一般に可塑剤として知られているものはもち
ろん用いることができ、又、プロピレンカーボネート、
エチレンカーボネート、γ−ブチロラクトン等の高誘電
率化合物や通常液晶として知られている有機化合物も用
いることができる。このような可塑材により着色活物質
層中のイオンの導電率を増加できた。
In addition, it is possible to include a plasticizer in the colored active material layer 7. Generally known plasticizers such as esters of phosphoric acid can be used, and propylene carbonate, propylene carbonate, etc.
High dielectric constant compounds such as ethylene carbonate and γ-butyrolactone and organic compounds commonly known as liquid crystals can also be used. Such a plasticizer made it possible to increase the ionic conductivity in the colored active material layer.

又、通常の、高分子の安定剤、抗酸化剤、紫外線吸収剤
として用いられている物質を着色活物質層に含ませ、l
!:CDの安定性を増加させることができた。
In addition, the colored active material layer contains substances that are commonly used as polymeric stabilizers, antioxidants, and ultraviolet absorbers.
! : CD stability could be increased.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例 1゜ 第2図のごとく、透明ガラス基板1の上ンこ真空蒸着法
によりITO透明電極を表示電極2として設けた。この
表示電極2の上に下記処方に基づき、着色活物質層7を
形成した。EC材としてテトラチアフルバレン(T’I
’F)0.1モル/11イオン授受材として過塩素酸リ
チウム(Li010. ) 0.2モル/〆、 架II
材としてメチレンビスアクリルアミド001モル/1.
合成高分子としてポリメタクリロニトリル0.75モル
/l、白色微粉末としてアルミナAl2O5を等重量台
むシクロヘキサノン溶液を着色活物質層コーティング溶
液7としてこれを表示電極2の上に膜厚が1μmになる
ようにスピナーコートし、N2雰囲気中80℃に均一加
熱されたオーブン中に2時間おいて完全に乾燥させ、着
色活物質層7とした。(ポリメタクリロニトリ゛ル等の
合成高分子のモル数は、モノマーのモル数に換算して記
した。)この基板に出力3kWの水銀ランプから出る紫
外線を照射し、架橋させた。
Example 1 As shown in FIG. 2, ITO transparent electrodes were provided as display electrodes 2 on a transparent glass substrate 1 by vacuum evaporation. A colored active material layer 7 was formed on the display electrode 2 based on the following recipe. Tetrathiafulvalene (T'I) is used as an EC material.
'F) 0.1 mol/11 Lithium perchlorate (Li010.) 0.2 mol/〆 as ion transfer material, Folding II
Methylenebisacrylamide 001 mol/1.
A cyclohexanone solution containing 0.75 mol/l of polymethacrylonitrile as a synthetic polymer and an equal weight of alumina Al2O5 as a white fine powder was applied as a colored active material layer coating solution 7 on the display electrode 2 to a film thickness of 1 μm. The colored active material layer 7 was spinner-coated and placed in an oven uniformly heated to 80° C. for 2 hours in an N2 atmosphere to dry completely. (The number of moles of synthetic polymers such as polymethacrylonitrile is expressed in terms of the number of moles of monomer.) This substrate was crosslinked by irradiating ultraviolet light emitted from a mercury lamp with an output of 3 kW.

照射時の素子温度は60〜70℃とした。更にこの着色
活物質層3の上に金を30001真空蒸着し対向電極5
とした。更に以上の積層構造の周囲をエポキシ樹脂のシ
ール層6で覆うことにより信頼性の高いECDを製作で
きた。
The element temperature during irradiation was 60 to 70°C. Furthermore, gold 30001 is vacuum-deposited on this colored active material layer 3, and a counter electrode 5 is formed.
And so. Furthermore, by covering the periphery of the above laminated structure with a sealing layer 6 of epoxy resin, a highly reliable ECD could be manufactured.

このようにして製作し九EODにおいて、対向電極5に
対して表示電極2に正の電圧を印加すると、濃赤色の表
示があられれ、負の電圧を印加すると消えた。実用的に
は一+3Vの印加電圧により約150m5ecで白色コ
ントラストが4:1になり、白色を背景に高コントラス
トの赤色表示が得られ、次いで逆極性の一3Vの電圧を
印加すると、200m5ecで完全に色が消えた。更に
f 3 V 150 m5ec。
In the nine EODs manufactured in this way, when a positive voltage was applied to the display electrode 2 with respect to the counter electrode 5, a dark red display appeared, and when a negative voltage was applied, it disappeared. Practically speaking, by applying a voltage of +3V, the white contrast becomes 4:1 in about 150 m5ec, and a red display with high contrast against a white background is obtained, and then by applying a voltage of -3V with the opposite polarity, the white contrast becomes complete in 200 m5ec. The color disappeared. Furthermore f 3 V 150 m5ec.

−3V200msec印加のパルス電圧を印加して寿命
試験を試みたところ、5X106回の着消色を経ても着
色活物質層7、及びそれと電極2.5との各々の界面に
おいて劣化現象はみられなかった。
When a life test was performed by applying a pulse voltage of -3V for 200 msec, no deterioration phenomenon was observed in the colored active material layer 7 and each interface between it and the electrode 2.5 even after 5 x 106 times of coloring and decoloring. Ta.

本実施例によるECDを温度30℃、相対湿度100%
の雰囲気中で上記の駆動条件下で、寿命試験を行ったと
ころ%110’回の着消色を経ても何の劣化現象も見ら
れなかった。
The ECD according to this example was carried out at a temperature of 30°C and a relative humidity of 100%.
When a life test was conducted under the above-mentioned driving conditions in an atmosphere of

実施例 2゜ 着色活物質層コーティング溶液として、ブチルアントラ
キノン付加ポリスチレン0.1モル/Lツン LiC1−クラy寸エーテルポリマーM体0.1モル/
l、 ジ(クロロ70ビル)−メチルアンモニアOHs
 N (OHt OHt C6)t O,02モル/l
、アルミナ等重量を含むシクロへギサノン溶液を用い、
コーティング、乾燥後、120℃で3時間加熱により架
橋させた他は実施例1と同じ方法により素子を製作した
Example 2 As a colored active material layer coating solution, 0.1 mol of butyl anthraquinone-adducted polystyrene/L 0.1 mol of LiCl-crystalline ether polymer M body/
l, di(chloro70vir)-methylammonia OHs
N (OHt OHt C6)t O, 02 mol/l
, using a cyclohegisanone solution containing an equal weight of alumina,
After coating and drying, a device was manufactured in the same manner as in Example 1, except that it was crosslinked by heating at 120° C. for 3 hours.

このrCDは−2,5vの印加電圧により約50m5e
cで白色コントラスト4:1の赤色表示が得られ、+2
.5V、70m5ec電圧印加で完全に色が消えた。温
度30℃、相対湿度ioo%の雰囲気中で106回着消
色を経ても何の劣化現象も見られなか−)だ。
This rCD is approximately 50m5e with an applied voltage of -2.5v.
At c, a red display with a white contrast of 4:1 is obtained, and +2
.. The color completely disappeared by applying a voltage of 5V and 70m5ec. No deterioration was observed even after coloring and decoloring 106 times in an atmosphere with a temperature of 30°C and a relative humidity of 10%.

以上の実施例中においては、高分子の層のコーティング
法にスピナー法のみをあげたが、前に述べた実施例と同
じ組成のコーティング溶液を用いてスクリーン印刷法又
はドクターブレード法ヲ用いてコーティングし、上記実
施例と同様のEODを製作したところ、同じ性能が得ら
れた。このように本発明によるECDの性能は高分子の
コーチインク法に依らず、いかなるコーティング法モ本
EODの製作Vこ用いることができる。
In the above examples, only the spinner method was used as a coating method for the polymer layer, but coating using a screen printing method or a doctor blade method using a coating solution with the same composition as in the previous example was also used. However, when an EOD similar to the above example was manufactured, the same performance was obtained. Thus, the performance of the ECD according to the present invention does not depend on the polymeric coach ink method, and any coating method can be used to fabricate the EOD.

本発明の全固体型EODは、液漏れの危険が全く無い、
薄型化が容易、製造コストが低い、等の点で液体型EC
Dよりも優れているのは当然のことであり、かつ次の点
で従来の全固体型RODに比べて優れている。(1)本
発明のEODにおいては、エレクトロクロミック層、固
体電解層の両方に高分子を用いているが、高分子の高成
形性により電極との密着性がよく、又、高分子でエレク
トロクロミック材及びイオン授受材が周囲の環境、特に
湿気から保護されている、等の理由により、本発明のF
iODは長寿命で耐環境性が高い。(2)高分子は大量
生産に向いている素材であるので、高い生産性で製作す
ることができ、従って低価格の[Dを提供することがで
きる。(3)高分子中に分散できるものならば、如何な
るものでも、エレクトロクロミック材として用いること
ができるので、種々の夜の表示が可能である。(4)着
色活物質層が架橋材により三次元的に架橋されているこ
とにより着消色寿命、耐環境性の向上が図れた。
The all-solid-state EOD of the present invention has no risk of liquid leakage.
Liquid type EC is easy to make thin and has low manufacturing cost.
It is a matter of course that it is superior to D, and it is also superior to conventional all-solid-state RODs in the following respects. (1) In the EOD of the present invention, a polymer is used for both the electrochromic layer and the solid electrolyte layer. F of the present invention is protected from the surrounding environment, especially moisture, because the material and the ion exchange material are protected from the surrounding environment, especially moisture.
iOD has a long life and high environmental resistance. (2) Since polymer is a material suitable for mass production, it can be manufactured with high productivity, and therefore it is possible to provide [D] at a low price. (3) Any material that can be dispersed in a polymer can be used as an electrochromic material, so various nighttime displays are possible. (4) Since the colored active material layer is three-dimensionally crosslinked with a crosslinking material, the coloring/decoloring life and environmental resistance can be improved.

1:、 、1 以上の種々の要因から、本発明により寿命が長く、応答
の速い、実用的なEODを提供することができた。
1:, , 1 Due to the above various factors, the present invention has been able to provide a practical EOD with a long life and quick response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の全固体型EODの一例を示す断面図であ
り、第2図は本発明によって得られる全固体型E C,
Dの一例を示す断面図である。 図において、1.透明基板、25表示電極、3、 エレ
クトロクロミック層、4.固体電解層、5、対向電極、
6.  シール層、7.yk色色物物質層代−人弁壇士
内原  !
FIG. 1 is a sectional view showing an example of a conventional all-solid-state EOD, and FIG. 2 is a cross-sectional view of an all-solid-state EOD obtained by the present invention.
It is a sectional view showing an example of D. In the figure, 1. Transparent substrate, 25 display electrodes, 3. Electrochromic layer, 4. solid electrolyte layer, 5, counter electrode,
6. Seal layer, 7. YK Colored Materials Layer - Hitoben Danshi Uchihara!

Claims (1)

【特許請求の範囲】[Claims] 透明基板上に、表示電極、着色活物質層、対向電極が順
次積層された構造の全固体型エレクトロクロミック表示
装置において、着色活物質層が少なくとも、1種以上の
エレクトロクロミック材と1種以上のイオン授受材と1
種以上の架橋材とを含む高分子膜であることを特徴とす
る全固体型エレクトロクロミック表示装置。
In an all-solid-state electrochromic display device having a structure in which a display electrode, a colored active material layer, and a counter electrode are sequentially laminated on a transparent substrate, the colored active material layer includes at least one type of electrochromic material and one or more types of electrochromic material. Ion transfer material and 1
An all-solid-state electrochromic display device characterized by being a polymer film containing at least one crosslinking material.
JP57090112A 1982-05-27 1982-05-27 All solid-state type electrochromic display Pending JPS58207029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57090112A JPS58207029A (en) 1982-05-27 1982-05-27 All solid-state type electrochromic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090112A JPS58207029A (en) 1982-05-27 1982-05-27 All solid-state type electrochromic display

Publications (1)

Publication Number Publication Date
JPS58207029A true JPS58207029A (en) 1983-12-02

Family

ID=13989430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090112A Pending JPS58207029A (en) 1982-05-27 1982-05-27 All solid-state type electrochromic display

Country Status (1)

Country Link
JP (1) JPS58207029A (en)

Similar Documents

Publication Publication Date Title
US4550982A (en) All-solid-state display including an organic electrochromic layer with ion donor/acceptor
JP6318633B2 (en) Electrochromic display device and manufacturing method thereof
US4750817A (en) Multi-color electrochromic cells having solid polymer electrolyte layer with organic electrochromic material dissolved therein
US7626748B2 (en) Gel polymers containing ionic liquids
US7586663B1 (en) Gel polymer electrolytes
JP6624206B2 (en) Electrochromic device
US4807977A (en) Multi-color electrochromic cells having solid polymer electrolytes and a distinct electrochromic layer
JP2017009995A (en) Electrochromic device, display device and method of driving the same
JP2016105150A (en) Electrochromic device and manufacturing method of the same
JP6064761B2 (en) Electrochromic device and manufacturing method thereof
JP2017026750A (en) Electrochromic device, light control glasses, and method for manufacturing the electrochromic device
JPS63106731A (en) Dimmer body
JPH0217093B2 (en)
CN108251099A (en) Under a kind of illumination can gelation and selfreparing electrochromic solutions and its application
JP6848505B2 (en) Electrochromic element
Meng Organic Electronics for Electrochromic Materials and Devices
JPS59113422A (en) Total solid-state electrochromic display
CN108251100A (en) It is a kind of at room temperature can gelation and selfreparing electrochromic solutions and its application
JPS58207029A (en) All solid-state type electrochromic display
JP2003161963A (en) Electrochromic element
JP5445338B2 (en) Method for manufacturing electrochromic display element
JPS58207027A (en) All solid-state type electrochromic display
JPH0145895B2 (en)
JP5526887B2 (en) Electrochromic display device
JPH05313211A (en) Electrochromic element