JPS58169056A - Detection of internal information of solid sample by photo-acoustic method - Google Patents

Detection of internal information of solid sample by photo-acoustic method

Info

Publication number
JPS58169056A
JPS58169056A JP57053414A JP5341482A JPS58169056A JP S58169056 A JPS58169056 A JP S58169056A JP 57053414 A JP57053414 A JP 57053414A JP 5341482 A JP5341482 A JP 5341482A JP S58169056 A JPS58169056 A JP S58169056A
Authority
JP
Japan
Prior art keywords
signal
sample
solid sample
frequency
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57053414A
Other languages
Japanese (ja)
Other versions
JPH0410024B2 (en
Inventor
Masahide Ito
雅英 伊藤
Toyohiko Yatagai
豊彦 矢田貝
Makoto Hino
真 日野
Hiroyoshi Saito
斉藤 弘義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP57053414A priority Critical patent/JPS58169056A/en
Publication of JPS58169056A publication Critical patent/JPS58169056A/en
Publication of JPH0410024B2 publication Critical patent/JPH0410024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics

Abstract

PURPOSE:To detect photo-acoustic (PA) signals in all frequency areas at one time by Fourier transformation of PA signal obtained when a mono pulse laser beam irradiates a solid sample. CONSTITUTION:The laser beam 2 from a pulse laser sorce 1 irradiates a solid sample 8 arranged in a cell 7 through lenses 3 and 4, a mirror 5 and a lens 6 and PA signal is detected with a detector 9 such as microphone. This detected PA signal is once recorded in a wave memory 10 and undergoes Fourier transformation with a Fourier transforming device 11 and then a frequency-dependent characteristics of the amplitude and phase of the PA signal are indicated on a display unit 12 such as X-Y plotter. Depthwise optical and thermal distribution inside the sample are obtained from these dependent characteristics to find optical, thermal and physical natures of the sample.

Description

【発明の詳細な説明】 本発明はyt、1t41法による固体試料の内部情報の
検出力法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting internal information of a solid sample using the yt, 1t41 method.

光音*法は、特定の周波数で強度変調さnた光(IIr
続光)を固体試料に照射し、得ら1.る光音響信号(以
下、rPA信号」という。)から固体試料の内部情報ケ
検出する方法であって、従来の光学的測定でに得られな
かった固体試料の光学的ψ熱的性債會尚感度で検出でき
るので、開発研究が盛んVCすすめられている。
The photoacoustic* method uses light (IIr) whose intensity is modulated at a specific frequency.
A solid sample is irradiated with 1. This is a method for detecting internal information of a solid sample from a photoacoustic signal (hereinafter referred to as rPA signal), and it is a method for detecting optical ψ thermal characteristics of a solid sample that could not be obtained by conventional optical measurement. Since it can be detected with high sensitivity, development research is active and VC is being promoted.

断続光ケ固体賦科に照射すると、試料の光学的性質(光
吸収率)に比例した発熱が起る。その熱iJ 試料の熱
的・物理的性It(熱拡散率、比熱、密腋)vtシたが
って拡散し、試料の表面温fを上昇させる。試料をセル
内に密閉しておけは表面温度の断続変化による試料表面
の気体のJll張・収縮によってセル内の圧力が変化す
る。その圧力変化iPA@号としてマイクロフォンで検
出しbP1g号の振−又は位相の入射光変調周波数に対
する依存特性を解析することにより、 glfIFの微
細な組成むらや欠陥など試料内部の情報會検出すること
ができる。父、V:、科にピエゾ電歪素子(pzv)k
貼りつけ試料内の熱歪波管PA信号として検出して同様
な解析會行うことによシ、試料の内部情報ケ検出するこ
とができる。
When a solid material is irradiated with intermittent light, heat is generated that is proportional to the optical properties (light absorption rate) of the sample. The heat iJ and the thermal and physical properties of the sample It (thermal diffusivity, specific heat, dense axilla) vt are therefore diffused, raising the surface temperature f of the sample. When a sample is sealed in a cell, the pressure inside the cell changes due to the expansion and contraction of the gas on the sample surface due to intermittent changes in surface temperature. By detecting the pressure change iPA@ with a microphone and analyzing the dependence of the amplitude or phase of bP1g on the incident light modulation frequency, it is possible to detect information inside the sample such as minute compositional unevenness and defects in glfIF. can. Father, V:, piezo electrostrictive element (pzv) k
Internal information of the sample can be detected by detecting it as a thermal strain wave tube PA signal within the pasted sample and conducting a similar analysis.

つまり、PA侶号は固体試料の光学的・熱的・物理的性
質ケ担っているので、信号の振幅又は位相の入射光変調
周波数に対する依存特性ケ検出することにより、試料内
部の深さ方向の光学的・熱的分布が得ら11.これから
前記したような試料の内部悄at知ることができる。
In other words, PA is responsible for the optical, thermal, and physical properties of a solid sample, so by detecting the dependence of the signal amplitude or phase on the incident light modulation frequency, it is possible to detect the dependence of the signal amplitude or phase on the incident light modulation frequency. Optical/thermal distribution obtained 11. From this, it is possible to know the internal vibrations of the sample as described above.

ところで、PA信信号積検出る際Kfiも有効な・ヤラ
メーターは入射光vlITaする周波数である。
By the way, when detecting the product of the PA signal, Kfi is also effective and the frequency meter is the frequency of the incident light vlITa.

従来の光音智法に、レーザー光tチョッノJl −−(
・断続させ1周波数?少しづつ変化させなからP^侶号
の振幅又は位相會ロックインアンプで検出する方法であ
るため、低周波VCなるほど、積分時間ケ長くする必要
かあり、父、n鼓も上らない。例えば/θHz  の断
続レーザー光の場*、60秒根度の時間klk’する。
In addition to the conventional optical sound wisdom method, laser light
・One frequency intermittently? Since the method uses a lock-in amplifier to detect the amplitude or phase of the P^2 signal instead of changing it little by little, the lower the frequency VC, the longer the integration time is required, which is difficult to achieve. For example, a field of intermittent laser light of /θHz *, a period of 60 seconds klk'.

したかつて、/Hz〜 100Hz  杵胤の周波数領
域のPA信信号積検出処理るたl〕には数時間ケ要する
欠虞があった。
In the past, the PA signal product detection process in the frequency range from /Hz to 100Hz had the drawback of requiring several hours.

本発明は上記に鑑みなさn5たものであって、単一のノ
9ルスレーザー光が多くの周波数の合成で成り立ってい
るの管片11用して、固体試料に単一のパルスレーザ−
光ケ照射しh得らn、るPA伯号ケフーリエIllする
ことVCよシ、全周波領域のPA信号ケ一度に検出する
本のであって、極めて高能率に試料内部の情1iitk
憎出することができる。
The present invention has been developed in view of the above, and uses a tube piece 11 in which a single pulsed laser beam is composed of a combination of many frequencies to produce a single pulsed laser beam on a solid sample.
This is a book that detects PA signals in the entire frequency range at once by irradiating the light and then performing a PA signal at once.
You can hate it.

″(なわち、レーデノにルスの時間−が知りたいPA佃
信号最尚周波数の逆数より十分短かい場合(7にHz 
 iでのPA信号會得る場合に/ms  より知力・い
)は、PA倍信号フーリエ侯換はそのままノ!ルスPA
信号の振幅又は位相の周波数依存特性ケ示(ことになる
。したがって、単一)母ルスレーず一光ケ用いれは、数
ns〜数μS程度のパルス時間幅が侍ら1.るので、全
く支障がない。
'' (In other words, if the period of time between redeno and rus is sufficiently shorter than the reciprocal of the highest frequency of the PA signal that you want to know (7 Hz
If you get a PA signal at i, /ms is more intelligent), the PA double signal Fourier conversion is as it is! Rus PA
The frequency-dependent characteristic of the amplitude or phase of a signal is shown (therefore, it is a single beam).In the case of a single optical fiber without Rousselet, the pulse time width of several ns to several μS is used. Therefore, there is no problem at all.

L:*’)ように本発明の利点は、単一のパルスレー 
3ザー九r用いるので検出時間が短かいこと、また試料
(li龜嵐上昇が小さいことである。その反面、入射光
1を出力PA侶号が比例する線型の範囲でしか使えない
ため、非線型性が生じないように入射光量會制限する会
費がある。なお、入射レーザー光がインノ母ルスと見な
せず南限の幅をもっていたとしても、レーザーノ臂ルス
の時間変化(波杉)がわかっていれば、パルスPA信号
のフーリエ変換ケ、入射し−ザーパルスOフーリエ&換
で除算することにより正しい周波数依存特性kmること
ができる。
L:*') The advantage of the present invention is that a single pulse
Since three lasers are used, the detection time is short, and the rise in the sample temperature is small.On the other hand, since the incident light 1 can only be used within a linear range in which the output PA There is a fee to limit the amount of incident light so that linearity does not occur.Also, even if the incident laser beam is not considered to be an innocent laser beam and has the width of the southern limit, the time change (Hasugi) of the laser beam can be seen. If it is, the correct frequency dependence characteristic km can be obtained by dividing the Fourier transform of the pulsed PA signal by the Fourier transformation of the input signal.

以下、実施例により本発明會詳しく駅、明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第7図は本発明ケ実施するための検出系の一例ケ示すブ
ロック図である。パルスレーデ−源lからの・ヤルスレ
ーザー光1mレンズ8.4.−ミラー5−レンズfl介
してセル?内に配置した固体試料8に照射し1発生する
PA信号會マイクロフォンなどの検出器9で検出して、
この検出PAgI号ケ一旦ウェーブメモリーlOに記録
し、マづクロコンピユータ−などのフーリエ変換装fi
lll”eフーリエに侯し、X−Y7’l:Iツタ−な
どの表示装置12にP^侶号の振幅又は位相の胸技数依
存叫性ケ表示〜する。図中18は窓、14はX−Yステ
ージ會そ才1ぞれ示す。なお、図示していないが。
FIG. 7 is a block diagram showing an example of a detection system for implementing the present invention. Jarls laser beam from pulsed radar source 1m lens 8.4. -Mirror 5-cell through lens fl? A PA signal is generated by irradiating a solid sample 8 placed inside the chamber, and is detected by a detector 9 such as a microphone.
This detected PAgI number is once recorded in the wave memory lO, and then transferred to a Fourier transform device such as a microcomputer.
ll'e Fourier, the amplitude or phase of the P^^ number depending on the number of chest movements is displayed on a display device 12 such as an X-Y7'l:I tube. 1 shows the X-Y stage assembly, although not shown.

K料表面VC検出器として直接ピエゾ電歪素子(pzv
)y貼り付ける場合には、セルフは不要となりIW1様
な検W糸でPA信信号積検出処理ることかできる。
Direct piezo electrostrictive element (pzv
) When pasting y, the self is not necessary and the PA signal product detection process can be performed using a test W thread like IW1.

実施例]/ 第2図に示すように、深さ51幅3■の溝21會設けた
アルミニウム基板22表面にコ0Irnのアルミニウム
族2B’に接合したもの會試料24として、第1図の検
出系によりPA倍信号絢波数依存特性ケ調べた。ノやル
スレーザー源1には波長s b b n′rn のヤグ
・レーザーケ用い、/Qns  の単一・にルスレーザ
ー光會試料に照射して実施した。
Example] / As shown in FIG. 2, an aluminum substrate 22 having grooves 21 with a depth of 51 and a width of 3 cm bonded to an aluminum group 2B' of 0Irn was used as a specimen 24 for the detection shown in FIG. The wave number dependence characteristics of the PA multiplied signal were investigated using the system. A Yag laser beam with a wavelength of s b n'rn was used as the laser source 1, and the sample was irradiated with a single laser beam of /Qns.

第3しIり傅られたPA倍信号振幅又は位相の周波1依
存特性會示すグラフである。^は溝のない1囚hケ1日
は溝のある個所會そj、ぞ1.照射したときに侍らII
だグラフである。8肢鰺か約70θHzのところで特性
が劣れ曲り変化しており、@cy>存&r慣知1−ゐこ
とができる。すなわち、試料内部にあわなどの空洞や、
不純物など欠陥がある場合VCに、PA傷号のM1波数
依存特性の傾きの変化として検出できるので、そのとき
の網波数の読み取り力・らどの深さに欠陥があるかt検
知することができる。
3 is a graph showing frequency 1 dependence characteristics of the amplitude or phase of the PA multiplied signal, which was determined according to the third embodiment; ^ is one prisoner without a groove, and one day is a place with a groove, so 1. Samurai II when irradiated
This is a graph. The characteristics of the eight-limbed horse mackerel deteriorate and change at about 70θHz, which can be confirmed. In other words, there are cavities such as bubbles inside the sample,
If there is a defect such as an impurity in the VC, it can be detected as a change in the slope of the M1 wave number dependent characteristic of the PA flaw signal, so it is possible to detect whether there is a defect at the reading power of the network wave number at that time and at which depth. .

このような検知は、単一パルスレーザ−光管照射して発
生するPA信号ケフーリエf換して竹うので、極めて短
時間に行うことができる。
Such detection can be performed in an extremely short time because the PA signal generated by irradiation with a single pulse laser light tube is converted into a signal.

実施例コ 一辺20簡の立方体の塩化カリウム(にCg )試料に
PZTlに貼り付け、第7図の検出系ケ用いて実施した
。ノ臂ルスレーザー源lとして波長l006μmのCO
2レーザーケ用い、 /、msO単一ノ量ルスレーザー
光r照射し1行った。
EXAMPLE A cubic potassium chloride (Cg) sample of 20 cubes on each side was attached to PZTl, and the detection system shown in FIG. 7 was used. CO with a wavelength of 1006 μm as a nose laser source
Two laser beams were used, and a single dose of msO was used for irradiation.

第4図は得られたPA優号の振幅又は位相の鵬波数依存
特性t7r−すグラフである。PA伯号の伽I−又に位
相tゴ拳きが−7,5乗であるので1周波数の一/、S
米に比例していることケ示す。図中。
FIG. 4 is a graph of the wave number dependence characteristic t7r of the amplitude or phase of the obtained PA signal. Since the phase of PA Hakugo is -7,5th power, one frequency is 1/, S
It shows that it is proportional to rice. In the figure.

点#はit與Vこよって求められたPA侶号のJ11d
波数依存特性であって、い)に試料&thにのみ吸収か
ある場合葡、(8)は試料内部にのみ吸収がある場合ケ
示’f−o得らjるPA化号の周波数依存特性の傾きが
、(A)父(S)のどちらに近すくかによって試料の表
面又は内部での吸収の胤合?検知することかできる。
Point # is J11d of the PA number requested by IT.
If the wave number dependent characteristic is ``f-o'', if there is absorption only in the sample &th, then (8) is the frequency-dependent characteristic of the PA signal obtained when there is absorption only inside the sample. Depending on whether the slope is closer to (A) or father (S), is it a result of absorption on the surface or inside the sample? Can be detected.

このような検知rJ、賽施ψ11/と同様に極めて短時
間f(析うことができるので、周波数を少しづつ変化し
て行う従来法では長時間ケ帯して支障ケきたすような場
も、例λば試料の表面状態が時間と共に変化する賜金で
も検出できる利点がある。
Similar to the detection rJ and the application ψ11/, it can be analyzed for an extremely short period of time (f), so it can be used for situations where the conventional method, which involves changing the frequency little by little, would require a long period of time and cause problems. For example, it has the advantage of being able to detect particles whose surface condition changes over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ケ実施するために用いる検出糸の一世1
ボすブロック図、第2図は本発明の実施例に用いた試料
ケ1血で示す側面図、第3図と第9区に本発明の実施例
で傅ら1−だPA倍信号振幅又は位相の胸波数依存特性
會示すグラフ。 図中の符号: l・・・パルスレープ−源、2・・・)9ルスレーザー
光、7・・・セル、8.24・・・Ell、9・・・検
出器、10・・・ウェーブメモリー、11・・・フーリ
エi侠i*。 1B・・・表示装置。 特許出願人: 理化学研電所 同遣牧 (Hz) 第4図 I′l渫抜(Hz)
Figure 1 shows the first generation of the detection thread used to carry out the present invention.
Fig. 2 is a side view of the sample used in the embodiment of the present invention. Graph showing the chest wave number dependence characteristics of the phase. Symbols in the figure: l...Pulse laser beam, 2...)9 pulse laser beam, 7...Cell, 8.24...Ell, 9...Detector, 10...Wave memory , 11...Fourier i chivalry i*. 1B...Display device. Patent applicant: RIKEN Electrical Research Institute (Hz) Figure 4 I'l removal (Hz)

Claims (1)

【特許請求の範囲】 +I+  単一のノ母ルスレーデー光會固体試料に照射
し、発生する音書信号倉7−リエ変換することにより、
得らnる光音響信号の振幅又は位相の周波数依存特性か
ら固体試料の内部情報を検出する方法。 (2り  前記の音響信号のフーリエ変換會前記のパル
スレーザ−光のフーリエi!!!で除算することt%徴
とする特許請求の範囲第01項に記載の方法。 (3)  前記の光音醤信号會ウェーブメモリーで記録
・続出してからフーリエ変換することを特徴とする特許
請求の範囲第(11及び第121項に記載の方法。 (4)  前記の光音響信号管マイクロフォン又はピエ
ゾ電歪素子で検出することt%徴とする!#許梢求の範
囲第(11〜第(31項に記載の方法。
[Claims] +I+ By irradiating a single matrix solid sample and converting the generated phonetic signal,
A method for detecting internal information of a solid sample from the frequency-dependent characteristics of the amplitude or phase of an obtained photoacoustic signal. (2) The method according to claim 01, wherein dividing the Fourier transform of the acoustic signal by the Fourier i of the pulsed laser light is defined as t%. (3) The light A method according to claims 11 and 121, characterized in that the sound signal is recorded and output in a wave memory and then subjected to Fourier transformation. (4) The photoacoustic signal tube microphone or the piezoelectric It is assumed that the t% characteristic is detected by the strain element!
JP57053414A 1982-03-31 1982-03-31 Detection of internal information of solid sample by photo-acoustic method Granted JPS58169056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053414A JPS58169056A (en) 1982-03-31 1982-03-31 Detection of internal information of solid sample by photo-acoustic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053414A JPS58169056A (en) 1982-03-31 1982-03-31 Detection of internal information of solid sample by photo-acoustic method

Publications (2)

Publication Number Publication Date
JPS58169056A true JPS58169056A (en) 1983-10-05
JPH0410024B2 JPH0410024B2 (en) 1992-02-24

Family

ID=12942168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053414A Granted JPS58169056A (en) 1982-03-31 1982-03-31 Detection of internal information of solid sample by photo-acoustic method

Country Status (1)

Country Link
JP (1) JPS58169056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283481A (en) * 1988-09-21 1990-03-23 Agency Of Ind Science & Technol Optoacoustic imaging method by multiple modulation frequency
KR100679082B1 (en) * 1999-09-08 2007-02-05 주식회사 포스코 Apparatus for inner defect detection using laser-ultrasonic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210383U (en) * 1975-07-10 1977-01-25
JPS53110589A (en) * 1977-03-05 1978-09-27 Krautkraemer Gmbh Method and apparatus for generation of supersonic waves in articles
JPS55163453A (en) * 1979-06-06 1980-12-19 Kobe Steel Ltd Quality discriminating method of cast metal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210383B2 (en) * 1973-02-06 1977-03-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210383U (en) * 1975-07-10 1977-01-25
JPS53110589A (en) * 1977-03-05 1978-09-27 Krautkraemer Gmbh Method and apparatus for generation of supersonic waves in articles
JPS55163453A (en) * 1979-06-06 1980-12-19 Kobe Steel Ltd Quality discriminating method of cast metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283481A (en) * 1988-09-21 1990-03-23 Agency Of Ind Science & Technol Optoacoustic imaging method by multiple modulation frequency
KR100679082B1 (en) * 1999-09-08 2007-02-05 주식회사 포스코 Apparatus for inner defect detection using laser-ultrasonic

Also Published As

Publication number Publication date
JPH0410024B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
US4267732A (en) Acoustic microscope and method
Patel et al. Pulsed optoacoustic spectroscopy of condensed matter
US4255971A (en) Thermoacoustic microscopy
Perondi et al. Minimal‐volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending
US4683750A (en) Thermal acoustic probe
Bertolotti et al. A note on the history of photoacoustic, thermal lensing, and photothermal deflection techniques
Adler et al. Determination of the Nonlinearity Parameter B/A for Water and m‐Xylene
US4276780A (en) Optoacoustic spectroscopy of thin layers
Berthelot Thermoacoustic generation of narrow‐band signals with high repetition rate pulsed lasers
Rosencwaig Photo‐acoustic spectroscopy of solids
CN1168980C (en) Method and apparatus for measuring photoacoustic signal in biological tissue by ultrasonic beams
JPS58169056A (en) Detection of internal information of solid sample by photo-acoustic method
JP3538516B2 (en) Concentration distribution measuring device
Busse Imaging with the optoacoustic effect
SE424024B (en) PHOTOTHERMIC METCELL FOR STUDYING THE LIGHT ABSORPTION OF A TEST SUBSTANCE
JPH0567908B2 (en)
JP3271994B2 (en) Dimension measurement method
JPS61120041A (en) Correlation photoacoustic imaging method
JPS59162451A (en) Device for detecting defect in painted film
Glazov et al. Imaging of solid objects by photoacoustic microscopy systems
Rai et al. Physics and instrumentation of photothermal and photoacoustic spectroscopy of solids
JPS62272153A (en) Photoacoustic measuring instrument having open type cell
JPH0526850A (en) Apparatus for measuring heat conductivity
Ömer et al. COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS
JPH0572186A (en) Ultrasonic wave generating/detecting device for ultrasonic microscope