JPS5816568A - Insulating gate type field effect semiconductor device - Google Patents

Insulating gate type field effect semiconductor device

Info

Publication number
JPS5816568A
JPS5816568A JP56113710A JP11371081A JPS5816568A JP S5816568 A JPS5816568 A JP S5816568A JP 56113710 A JP56113710 A JP 56113710A JP 11371081 A JP11371081 A JP 11371081A JP S5816568 A JPS5816568 A JP S5816568A
Authority
JP
Japan
Prior art keywords
junction
region
high voltage
stopper
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56113710A
Other languages
Japanese (ja)
Inventor
Toshibumi Inoue
井上 俊文
Kazuhiro Komori
小森 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56113710A priority Critical patent/JPS5816568A/en
Publication of JPS5816568A publication Critical patent/JPS5816568A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To improve junction withstand voltage and simultaneously increase freedom degree on design, by providing a channel stopper at an adjacent position separated from the fringe part of an active region whereon a high voltage is impressed. CONSTITUTION:The junction JD of the fringe of a drain region 2 is covered with a poly Si film 4 of the second layer, and the junction J is kept off from a P type channel stopper 6 under a field SiO2 film 5 at a fixed interval l. The stopper 6 surrounds the periphery of the region 2 from three directions but not directly contacted with the drain region. Therefore, since the region 2 whereon a high voltage is impressed is just joined to a substrate 7 with low density by the interval l, the junction withstand voltage when impressing a high voltage increases more greatly than in junction to the stopper 6 with higher density than the substrate 7. Accordingly, the ratio of width and length of the channel can be easily and freely determined based on a gate electrode 3 in a linear shape resulting also in large reduction of the occupation area of the element itself.

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果半導体装置に関し、41
1Fに高電圧回路に用いられるMXBIHT(M6ta
1xnsu1ator semiaonauator 
Fieldlffect Transistor )に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device,
MXBIHT (M6ta) used for high voltage circuits is installed on the 1st floor.
1xnsu1ator semiaonauator
Field effect Transistor).

例えばE P ROM (erallable and
 electri −cally reprogram
mable ROM )におけるブートストラップ回路
やインバータ等では、耐圧を同上もぞる目的でドレイン
領域上四角形状のゲート電極で囲んだりングゲートのM
I8]FIITを用いることが考えられる。このIPI
CTによれば、ドレイン領域の周縁部にはゲート電極を
挾んでソース領域がリング状に存在しており、ドレイン
修域がチャネルストッパとは接合を形成していな−ため
に、ドレイン領域に高電圧が加わった場合にドレイン領
域がな丁px*合が破壊し難く、その接合耐圧が向上す
るという効果がある。
For example, E P ROM (erallable and
electri-cally reprogram
In bootstrap circuits, inverters, etc. in Mable ROM (mable ROM), the ring gate is surrounded by a rectangular gate electrode above the drain region in order to improve the withstand voltage.
I8] FIIT may be used. This IPI
According to CT, a source region exists in a ring shape at the periphery of the drain region with the gate electrode in between, and since the drain region does not form a junction with the channel stopper, there is a high When a voltage is applied, the drain region is less likely to be destroyed, and its junction breakdown voltage is improved.

しかしながら、本発明者が検討したところ、このりング
ゲート構造では、ゲート電極がリング状になっているこ
とから素子の占める面積が大きくて集積度の向上に不利
でLJ)、またチャネル幅Wとチャネル長もとの比(W
/L)がレイアウト的に(特にゲート電極の角の部分で
)自由に決められない等の問題があることが判明した。
However, as a result of the study conducted by the present inventor, in this ring gate structure, since the gate electrode is ring-shaped, the area occupied by the element is large, which is disadvantageous for improving the degree of integration (LJ), and the channel width W and channel Nagamoto ratio (W
It has been found that there are problems such as the fact that /L) cannot be freely determined in terms of layout (particularly at the corners of the gate electrode).

従って、本発明の目的は、接合耐圧上向上さゼると同時
に、設計上の自由rt増大名ゼることにある。
Therefore, an object of the present invention is to improve the junction breakdown voltage and at the same time increase the design freedom.

この目的を達成するために、本発明によれば、リングゲ
ート構造とはぜずに、通常の構造のν罵Tにおいて高電
圧の印加嘔れる能動領域の周縁部から離れ几近接位置に
チャネルストッパを設けるようにしている。
In order to achieve this object, according to the present invention, a channel stopper is provided at a position close to and away from the periphery of the active region where high voltage is applied in the normal structure νT, without having to do with the ring gate structure. I am trying to set it up.

゛ 以下、本発明の実施例を図面について詳@IfC述
べる。
゛ Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はプートストラップ回路を等測的に示すものであ
る。この回路において、終段のM工SIPmTQ、のド
レインに書吟み電圧としてvPP=251Fが加えられ
た場合、ソース側の電圧vPPIkV、、=vPP、と
するためにはそのゲート電圧V 0”f V G’、 
V p−P+ 5’V とする必要があり、従ってゲー
トにV、≧30vと高電圧が加わることKなる。このた
め、IFITQt のゲートに接続逼れた他のM工ay
icTQm、、Qiのドレイン領域又はソース領域にも
同程度の高電圧が加わり、この電圧かその接合耐圧以上
となって接合破壊に至る恐れがある。
FIG. 1 is an isometric representation of a Pootstrap circuit. In this circuit, when vPP=251F is applied as a writing voltage to the drain of the final stage M-processor SIPmTQ, in order to make the source side voltage vPPIkV, = vPP, its gate voltage V 0"f V G',
It is necessary to set it to V p-P+ 5'V, and therefore, a high voltage of V, 30 V or more, is applied to the gate. Therefore, other M devices connected to the gate of IFITQt
A similar high voltage is also applied to the drain region or source region of icTQm, Qi, and there is a risk that this voltage will exceed the junction breakdown voltage and lead to junction breakdown.

これt防止するために、本実施例では、接合破壊が問題
となるM工8FIT’i第2図〜第4図の如くに構成し
ている。
In order to prevent this, the present embodiment is constructed as shown in FIGS. 2 to 4, where bonding failure is a problem.

即ち、麗工81F1!’r(2)N+型ソース領域1及
びドレイン領域2自体は、通常の構造のようにポリシリ
コンゲート電極3f:挾んで対向して形成場れているが
、注目下べきことは、ドレイン領域20周縁部の接合J
D上が2層目のポリシリコン膜4で覆われ、接合Jがフ
ィールドsio、ds下のP型チャネルストッパ6から
所定間隔tだけ離ちれていることである。勿論、チャネ
ルストッパ6Fiドレイン領域2の周囲t3方から囲ん
ではいるが、通常の構造のようにドレイン領域と祉直接
接してはいない(PM接合七作っていない)ことが極め
て重要である。
In other words, Reiko 81F1! 'r(2) The N+ type source region 1 and drain region 2 themselves are formed facing each other with the polysilicon gate electrode 3f in between, as in a normal structure, but it should be noted that the drain region 2 Peripheral joint J
D is covered with a second layer of polysilicon film 4, and junction J is separated from P-type channel stopper 6 under fields sio and ds by a predetermined distance t. Of course, although the channel stopper 6Fi surrounds the drain region 2 from the t3 direction, it is extremely important that it is not in direct contact with the drain region (no PM junction is formed) as in a normal structure.

従グて、高電圧(例えば30V以上)の加わるドレイン
領域2は上記間隔tによってより低濃度の半導体基板7
と接合管形成しているのみであるから、基板7より高濃
度のチャネルストッパ6と接合を形成している場合に比
べて、高電圧印加時の接合耐圧が大幅(上昇し、例えば
数10V以上となって充分な接合耐圧を示すようになる
。な訃、上記のポリシリコン映4は、後述するように上
記の間F4t*決めるのに重要な働きをなし、しかも通
常の製造工種を変更することなく形IIt嘔れるもので
あってドレイン領域2の形成時、のマスクとして作用し
ている。ソース領域II/cついては、高電圧が加わる
ことがないので、P型チャネルストッパ6と直接接して
いてよい。
Accordingly, the drain region 2 to which a high voltage (for example, 30 V or more) is applied is connected to the semiconductor substrate 7 with a lower concentration due to the above-mentioned interval t.
Since only a junction tube is formed with the channel stopper 6 with a higher concentration than the substrate 7, the junction withstand voltage when a high voltage is applied increases significantly (for example, several tens of V or more) As a result, sufficient junction breakdown voltage is exhibited.In addition, the polysilicon film 4 plays an important role in determining F4t* during the above process, as will be described later, and also requires changing the usual manufacturing process. The source region II/c is in direct contact with the P-type channel stopper 6 because no high voltage is applied to the source region II/c. It's fine.

このように、直線状のゲート電極3t−挾んで両側にソ
ース及びドレイン領域全形成した簡単な構造であるにも
拘らず、高耐圧化が可能であることから、高耐圧のMI
BlFITK>けるチャネル幅W、とチャネル長、Lと
の比(W/L)は直線形状のゲート電極3に基いて、容
易かつ自由に決めることができ、しかも素子自体の占有
面積も大幅に縮小できることになる。従って、素9子の
レイアウト(設計)t−行ない易く、その自由度が増大
する。
Although it has a simple structure in which the source and drain regions are all formed on both sides of the straight gate electrode 3t, it is possible to achieve a high breakdown voltage.
The ratio of the channel width W to the channel length L (W/L) can be easily and freely determined based on the linear gate electrode 3, and the area occupied by the device itself is also significantly reduced. It will be possible. Therefore, the layout (design) of the nine elements is easy and the degree of freedom is increased.

なお、第2図〜第4図KjlPいて、8#′iゲート酸
、 化膜、9は1層目のポリシリコン膜(ゲート電極)
30表面の8103膜、10は2層目のポリシリコン膜
4の表面の810mJI、11はりンシリケートガラス
換、12はソース領域、13はドレイン領域である。
In addition, in Figures 2 to 4, 8#'i is the gate acid and dielectric film, and 9 is the first layer polysilicon film (gate electrode).
30 is an 8103 film on the surface, 10 is 810 mJI on the surface of the second layer polysilicon film 4, 11 is a phosphorus silicate glass film, 12 is a source region, and 13 is a drain region.

次に、上記M工81FICTの製造方法を第5図で説明
する。
Next, a method of manufacturing the above-mentioned M-work 81FICT will be explained with reference to FIG.

まず第5ム図のように%P−型シリコン基板7の一主面
に、公知のイオン打込み、選択酸化、ゲート酸化等の・
技術によって、素子分離用のフィール、)”8101 
[5、−FILチャネルストッパ6、ゲート酸化膜8t
−形成し、更に化学的気相成長技術(a V :O,)
で全面に成長させたポリシリコン膜上リン処理した後、
公知のフォトエツチングでパターニングする。これによ
って、18FROMのメモリセルにはポリシリコン膜1
4をそのまま残し、他方、周辺回路のM工8F]CTの
ゲ−)ml極15゜ブートスドラ・ツブ回路のMI8F
Kτのゲート電。
First, as shown in FIG.
Technology for element isolation, )”8101
[5, -FIL channel stopper 6, gate oxide film 8t
- formation and further chemical vapor deposition techniques (a V :O,)
After phosphorus treatment on the polysilicon film grown on the entire surface,
Patterning is performed using known photoetching. As a result, the 18FROM memory cell has a polysilicon film 1.
4 is left as is, and on the other hand, MI8F of the peripheral circuit M8F] CT game) ml pole 15° bootstrap circuit.
Gate voltage of Kτ.

極3t−夫々形成する。3t poles are formed respectively.

次いで第5B図のように、各ポリシリコン膜3.14.
15の表面を熱酸化して810m換9に夫々形成した後
、CVDによって2層目のポリシリコン膜4を全面取に
成長路ゼる。
Next, as shown in FIG. 5B, each polysilicon film 3.14.
After the surfaces of 15 are thermally oxidized to form 810 m squares 9, a second layer polysilicon film 4 is grown over the entire surface by CVD.

次いで第5C図のように、フォトレジスト16を全面に
被着し、公知の露光、現像処理によってメモリセル上の
みを所定パターンにエツチングし、他の周辺回路sFi
覆って訃〈。そしてこの状態で、フォトレジスト16f
:マスクとしてポリシリコン膜4.810鵞膜9、ポリ
シリコン膜14.810雪j[8t−順次エツチングす
る。
Next, as shown in FIG. 5C, a photoresist 16 is applied to the entire surface, and only the memory cell is etched into a predetermined pattern by known exposure and development processing, and other peripheral circuits sFi are etched.
Cover the dead. In this state, the photoresist 16f
: As a mask, polysilicon film 4, 810 layers 9, polysilicon film 14, 810 layers are sequentially etched.

次いで第5D図のように、全面に別のフォトレジスト1
7を被せ、これを公知の露光、現像処理によりパターニ
ングして、メモリセル上は覆うが他は所定ハターンに残
丁。そしてこのフォトレジスト17をマスクとして、2
層目のポリシリコン膜4及び下地の810*M8.9’
lr順次エツチングし、周辺回路部ではオフセットゲー
ト構造を形成し、他方高電圧回路では素子領域及びフィ
ールド8101膜上にかけてポリシリコン膜4を残丁。
Then, as shown in FIG. 5D, another photoresist 1 is applied over the entire surface.
7 and patterned it using known exposure and development processes to cover the memory cells but leave the rest in a predetermined pattern. Then, using this photoresist 17 as a mask, 2
Layer polysilicon film 4 and base layer 810*M8.9'
By sequentially etching the polysilicon film 4, an offset gate structure is formed in the peripheral circuit area, and a polysilicon film 4 is left over the element region and field 8101 film in the high voltage circuit.

次いで第51H図のように、フォトレジスト17を除去
した後、リン又は砒素を気相拡散技術又はイオン打込み
技術によって基板7に導入し、各IITのソース又はド
レイン領域としてのM+型能能動領域12.18,19
.20.21.22を夫々セルファラインで(自己整合
的に)形成する。
Then, as shown in FIG. 51H, after removing the photoresist 17, phosphorus or arsenic is introduced into the substrate 7 by vapor phase diffusion or ion implantation to form the M+ type active region 12 as the source or drain region of each IIT. .18,19
.. 20, 21, and 22 are formed with self-aligned lines, respectively.

この際、高電圧回路側では、ポリシリコン膜4の一部が
基板7の面上に位置しているので、その部分下には不純
物が導入されず、−ってH型領域+ 2はフィールドSiO3膜5(即ちチャネルストッパ6
)からは離れた状態で形成場れることになる。
At this time, on the high voltage circuit side, since a part of the polysilicon film 4 is located on the surface of the substrate 7, impurities are not introduced under that part, and the H-type region +2 is a field. SiO3 film 5 (i.e. channel stopper 6
) will be formed at a distance from the formation field.

次いで#5F図のように1熱酸化処理によって各ポリシ
リコン膜40表面にB101膜1(1,1層目のポリシ
リコン膜3.14.15の表面ニ81輪膜9を夫々成長
させた後、cvnによって全面にリンシリケでトガラス
膜11を付着せしめる。
Next, as shown in Figure #5F, a B101 film 1 (a B101 film 1 is grown on the surface of each polysilicon film 40 by thermal oxidation treatment (1, 81 membrane 9 on the surface of the first layer polysilicon film 3, 14, 15), respectively. A glass film 11 of phosphorus silica is deposited on the entire surface by , cvn.

次いで第5G図のように、ガラス膜11及び下地のB1
01膜を公知のフォトエツチングで順次エツチングし、
各コンタクトホーにを形成した後、公知の真空蒸着技術
で全面にアルミニウムを付着し、これをフォトエツチン
グでバターニングして各アルミニウム電極又は配線12
.13.23゜24.25を夫々形成する。
Next, as shown in FIG. 5G, the glass film 11 and the base layer B1 are coated.
The 01 film was sequentially etched using known photoetching,
After forming each contact hole, aluminum is deposited on the entire surface using a known vacuum evaporation technique, and this is patterned by photo etching to form each aluminum electrode or wiring 12.
.. 13.23° and 24.25°, respectively.

このようにして、メモリセルではポリシリコン族14t
−フローティングゲートとしかつポリシリコンl[4&
−コントロールゲートとするM工8PETが、周辺では
オフセットゲート構造の高耐圧M工8FK丁が、更に高
電圧回路部では第3図に示した高耐圧M工81FR’l
’が夫々作成される。
In this way, in the memory cell, polysilicon group 14t
- Floating gate and polysilicon l[4&
- The M-8PET used as a control gate is surrounded by a high-voltage M-8FK block with an offset gate structure, and the high-voltage M-81FR'l shown in Figure 3 is located in the high-voltage circuit section.
' are created respectively.

上記の製造工程から理解逼れるように、本実施例による
高電圧回路のMよりFITにおいてドレイン側の接合J
上を覆うポリシリコン膜4(第2図及び第3図参照)は
、第5B図〜第5D図の工程で他の回路部と共通に形成
し7t2層目のポリシリコン膜を同時にエツチングする
ことによって得られるものである。従って、通常の製造
工程において2層目のポリシリコン膜エツチング用のマ
スクパターンを一部変更するのみでよい。しかも、第5
B図の不純物の導入工種も他の回路部と同時に行なえ、
この際のマスクとして2層目のポリシリコン膜が同様に
用いシれている。このように、本実施例による構造は、
通常の制御工程を実質的に変更することなく作成するこ
とができるので、非常に都合が良い。
As can be understood from the above manufacturing process, the junction J on the drain side in the FIT from M in the high voltage circuit according to this embodiment
The overlying polysilicon film 4 (see FIGS. 2 and 3) is formed in common with other circuit parts in the steps shown in FIGS. 5B to 5D, and the second layer polysilicon film is etched at the same time. This is obtained by Therefore, it is only necessary to partially change the mask pattern for etching the second layer polysilicon film in the normal manufacturing process. Moreover, the fifth
The impurity introduction work shown in Figure B can be done at the same time as other circuit parts.
The second layer of polysilicon film is also used as a mask at this time. In this way, the structure according to this example is
It is very convenient because it can be created without substantially changing the normal control process.

以上、本発8Aを例示したが、上述の実施例は本発明の
技術的思想に基いて更に変形が可能である。
Although the present invention 8A has been illustrated above, the above-mentioned embodiment can be further modified based on the technical idea of the present invention.

例えば、上述の接合J上金願うポリシリコン膜4は、第
2図に一点鎖線で示すようにソース領域lの周縁の接合
J′上も梯う(即ちポリシリコン膜4をリング状に形成
する)ようにしてもよい。また、上述の各牛導体領域の
導電型を逆タイプへ変換してPチャネルM工81FIl
tTとしてよいし、0M0B (Oomplenlen
tory MOS )型のデバイスとしてもよい。 な
お、本発明は上述のデバイス例に限らず、能動領域に高
電圧が加わるM工8 FITt高耐圧化する必要のある
種々の回路に適用可能である。
For example, the polysilicon film 4 above the junction J described above is also extended over the junction J' at the periphery of the source region l as shown by the dashed line in FIG. 2 (that is, the polysilicon film 4 is formed in a ring shape) ). In addition, the conductivity type of each of the above-mentioned conductor regions is converted to the reverse type, and the P channel M
It may be tT, or 0M0B (Oomplelen
It may also be a tory MOS type device. Note that the present invention is applicable not only to the above-mentioned device example but also to various circuits in which a high voltage is applied to the active region and which requires a high withstand voltage.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであって、第1図はブ
ートストラップ回路の等価回路図、第2図は高耐圧M工
81!ETの平面図、第3図は第2図のx−xsIyr
面図、第4図asz図0Y−Y線断面図、第5A図〜第
5G図は上記高耐圧M工5IPI[fTi組込んだEF
ROMの主要部の作成方法を工程順に示す各断面図であ
る。 1はソース領域、2はドレイン領域、3はホ17シリコ
ンゲート電極、4はボリン1)コンM1.(2層目)、
6けP型チャネルストツ/(、JDI/′iPM接合で
ある。 第  1  図 第  3  図 第5A図 第5’ C図
The drawings show an embodiment of the present invention, and FIG. 1 is an equivalent circuit diagram of a bootstrap circuit, and FIG. 2 is a high-voltage M-engine 81! The plan view of ET, Figure 3 is x-xsIyr of Figure 2.
The top view, Figure 4 asz Figure 0Y-Y line sectional view, Figures 5A to 5G are
3A and 3B are cross-sectional views illustrating, in order of steps, a method for producing the main parts of a ROM. 1 is a source region, 2 is a drain region, 3 is a silicon gate electrode, 4 is a borin 1) contact M1. (2nd layer),
6 P-type channel struts/(, JDI/'iPM junctions. Figure 1, Figure 3, Figure 5A, Figure 5', C).

Claims (1)

【特許請求の範囲】[Claims] 1、 ソース又はドレイン領域として機能する一対の能
動領域間にゲート電極が設けられ、前記一対の能動領域
のうち高電圧の印加される能動領域の周縁部に近接した
側方位置K、前記周縁部から所定の間隔を置いてチャネ
ルストッパが設けられていることt−W徴とする絶縁ゲ
ート型電界効果半導体装置。
1. A gate electrode is provided between a pair of active regions functioning as a source or drain region, a lateral position K close to the peripheral edge of the active region to which a high voltage is applied among the pair of active regions, and the peripheral edge. An insulated gate field effect semiconductor device characterized in that a channel stopper is provided at a predetermined interval from tW.
JP56113710A 1981-07-22 1981-07-22 Insulating gate type field effect semiconductor device Pending JPS5816568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113710A JPS5816568A (en) 1981-07-22 1981-07-22 Insulating gate type field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113710A JPS5816568A (en) 1981-07-22 1981-07-22 Insulating gate type field effect semiconductor device

Publications (1)

Publication Number Publication Date
JPS5816568A true JPS5816568A (en) 1983-01-31

Family

ID=14619190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113710A Pending JPS5816568A (en) 1981-07-22 1981-07-22 Insulating gate type field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS5816568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192993A (en) * 1988-09-27 1993-03-09 Kabushiki Kaisha Toshiba Semiconductor device having improved element isolation area

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130170A (en) * 1979-03-30 1980-10-08 Hitachi Ltd Semiconductor device and method of fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130170A (en) * 1979-03-30 1980-10-08 Hitachi Ltd Semiconductor device and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192993A (en) * 1988-09-27 1993-03-09 Kabushiki Kaisha Toshiba Semiconductor device having improved element isolation area

Similar Documents

Publication Publication Date Title
JP2791260B2 (en) Method for manufacturing semiconductor device
JPH033389B2 (en)
JPH1070281A (en) Semiconductor device and fabrication thereof
JP3229665B2 (en) Method of manufacturing MOSFET
JP2619340B2 (en) High voltage transistor structure of semiconductor device and method of manufacturing the same
KR970004458B1 (en) Single tub transistor and method for its fabrication
JP3015781B2 (en) Semiconductor element inductor manufacturing method
JPS6015944A (en) Semiconductor device
JPH08181285A (en) Semiconductor device and manufacture thereof
JPS6129154B2 (en)
JPS5816568A (en) Insulating gate type field effect semiconductor device
JP2538857B2 (en) Method for manufacturing semiconductor device
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPS6228587B2 (en)
JP2773205B2 (en) Semiconductor memory
JPH0864810A (en) Manufacture of vertical mosfet
JP3165693B2 (en) Stacked capacitor type DRAM
JPS6244862B2 (en)
JPS5944787B2 (en) MOS type ROM
JP2516429B2 (en) Method for manufacturing semiconductor device
JP2972020B2 (en) Method for manufacturing semiconductor device
JPS60117658A (en) Manufacture of mos dynamic memory
JP3300474B2 (en) Semiconductor device and manufacturing method thereof
JPS61128554A (en) Semiconductor device
JPS6294985A (en) Manufacture of mos semiconductor device