JPS5814021A - Optical thermometer - Google Patents

Optical thermometer

Info

Publication number
JPS5814021A
JPS5814021A JP56112617A JP11261781A JPS5814021A JP S5814021 A JPS5814021 A JP S5814021A JP 56112617 A JP56112617 A JP 56112617A JP 11261781 A JP11261781 A JP 11261781A JP S5814021 A JPS5814021 A JP S5814021A
Authority
JP
Japan
Prior art keywords
light
temperature
liquid crystal
wavelength
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112617A
Other languages
Japanese (ja)
Inventor
Kazuhito Isobe
磯部 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56112617A priority Critical patent/JPS5814021A/en
Publication of JPS5814021A publication Critical patent/JPS5814021A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/16Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials
    • G01K11/165Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials of organic liquid crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To measure temperature accurately and readily by using liquid crystal whose light reflectivity varies with the temperature and detecting the variation in the light reflectivity through optical fibers. CONSTITUTION:Light emitting elements 1a and 1b are lit by light emitting element driving circuits 4a and 4b which are operated by the outputs of chopper circuits 3a and 3b. Light beams with wavelengths of lambda1 and lambda2 are alternately irradiated from the elements 1a and 1b on the liquid crystal 6 through the optical fibers 5a and 5b. The reflected light is guided to a light receiving element 7 by the optical fiber 8. The output thereof is inputted to an AD converter 10 through an amplifier circuit 9. In the AD converter 10, the outputs corresponding to the respective wavelengths are converted into digital signals by the time division method. The signals are compared with the data stored in a memory circuit 11 in advance and calibrated in an operating circuit 2. The temperature of the liquid crystal 6 is diaplayed on a display circuit 12. Since the reflectivity of the liquid crystal varies with the temperature and it is different for each wavelength, the temperature can be measured accurately and readily.

Description

【発明の詳細な説明】 本発明は、温度により光反射率が変化する液晶を用いて
、その変化を光学的に検知して温度を測定する光学的温
度計に関する亀のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical thermometer that uses a liquid crystal whose light reflectance changes depending on temperature and measures temperature by optically detecting the change.

癌細胞或いは悪性の腫瘍部は、加熱されることによシ活
性を失ったり消滅したりすることが最近知られ、治療に
利用されつつある。加熱温度については人体の場合通常
42〜43℃程度が良好とされ、このとき正常な細胞に
は影響を与えず、癌細胞などが活発な部分は血流による
冷却効果が正常な部分に比べて悪いために、僅かな温度
上昇に抵抗できずに死滅すると云われている。然し加熱
温度が50℃を越えると、正常な細胞にも悪影響々提案
されているが、その中の有力な手段として電磁波による
ものが挙げられる。電磁波の周波数は14 MHz、 
27 MH7等の短波長帯が選択されており、接触式の
温度計ではこれらの電磁波の影響を受けることなく正確
に人体部位の温度を測定することは困難とされている。
It has recently been known that cancer cells or malignant tumors lose their activity or disappear when heated, and this is being used for treatment. The heating temperature for the human body is usually around 42 to 43 degrees Celsius, which does not affect normal cells, and the cooling effect of blood flow is more effective in areas where cancer cells are active than in normal areas. It is said that it is so bad that it cannot resist even the slightest rise in temperature and dies. However, it has been proposed that if the heating temperature exceeds 50°C, it will have an adverse effect on normal cells, and one of the effective methods is to use electromagnetic waves. The frequency of electromagnetic waves is 14 MHz,
27 MH7 and other short wavelength bands are selected, and it is difficult for contact thermometers to accurately measure the temperature of human body parts without being affected by these electromagnetic waves.

そこで、少なくとも電磁波の輻射を受ける温度計の検出
端が、電磁波に対する非感応物質で造られた光学的温度
計が必要となる。例えば米国特許第4016761号が
それで、検出端;ニコレステリツク系液晶を有し、他端
にあるTノFi D (tlghtemittlngd
lode)からの光を導光繊維で液晶に導き、その反射
光を別の導光繊維を用いて受光素子に伝達して温度を測
定するものであり、既に商品化されている。然しこの種
の温度計は光源に単一波長を使用しているために、液晶
の色変化に対する追従精度が悪く、液晶自体の経時変化
や光源の光量変化の影響を受は易く、十分な測定精度が
得られないという欠点がある。例えば第1図は光源を単
一波長とした場合の温度対反射率特性を示し、曲線は成
る波長λを用いた場合の成る液晶の温度Tに対する反射
率特性である。今、Toに於ける反射率をRoとし、次
に温度T1に上昇したとすると、反射率は図のように角
となる。ところがR1なる反射率に対応する温度はT1
及び贅の2点にあるから、何らかな手段を用いて何れの
温度であるカーを判別する必要がある。又、光量の変動
も直接反対量に影響してくるため測定誤差を免れ得ない
ことになる。
Therefore, an optical thermometer is required in which at least the detection end of the thermometer that receives electromagnetic radiation is made of a material that is insensitive to electromagnetic waves. For example, US Pat. No. 4,016,761 has a detection end; a nicolesteric liquid crystal;
This method uses a light guide fiber to guide light from a light source (lode) to a liquid crystal, and then transmits the reflected light to a light receiving element using another light guide fiber to measure the temperature, and has already been commercialized. However, because this type of thermometer uses a single wavelength as a light source, it has poor tracking accuracy for color changes in the liquid crystal, and is easily affected by changes in the liquid crystal itself over time and changes in the light intensity of the light source, making it difficult to measure accurately. The disadvantage is that accuracy cannot be obtained. For example, FIG. 1 shows the reflectance characteristics versus temperature when the light source is of a single wavelength, and the curve shows the reflectance characteristics versus temperature T of the liquid crystal when the wavelength λ is used. Now, suppose that the reflectance at To is Ro, and then the temperature rises to T1, the reflectance becomes an angle as shown in the figure. However, the temperature corresponding to the reflectance R1 is T1
Since there are two points, 1 and 2, it is necessary to use some means to determine which temperature the temperature is. Further, since fluctuations in the amount of light directly affect the amount of opposition, measurement errors cannot be avoided.

本発明は、上述の従来装置の欠点を解消し、波長域の異
なる1個或いは複数の光源及び複数或いは単数の受光素
子を使用すると共に、複数の波長の光を用いることによ
り、液晶の反射率に対して鋭敏でかつ高精度の測定を可
能とし、例えば人体部位の温度測定1−好適な光学的温
度計を提供すること(=あり、その内容は、温度変化に
応じて光反射率が変化すると共に、この反射率が光の波
長によって異なるような特性を有する液晶を内蔵する温
度検出端と、入射端に光源を射出端に前記液晶をそれぞ
れ光学的に接続した送光用導光繊維と、入射端に前記液
晶を射出端に受光素子をそれぞれ光学的に接続した受光
用導光繊維と、前記受光素子で得られた反射光中の2つ
以上の波長領域を用i いて温度を求める演算処理回路
とを具備することを特徴とするものである。
The present invention eliminates the drawbacks of the conventional device described above, uses one or more light sources with different wavelength ranges, and one or more light-receiving elements, and uses light with a plurality of wavelengths to improve the reflectance of the liquid crystal. For example, temperature measurement of human body parts 1 - To provide a suitable optical thermometer (= Yes, the content is that the light reflectance changes depending on the temperature change. In addition, a temperature detection end has a built-in liquid crystal whose reflectance varies depending on the wavelength of the light, and a light guide fiber for light transmission in which the light source is optically connected to the input end and the liquid crystal is optically connected to the exit end. , the temperature is determined using a light-receiving light guide fiber in which the liquid crystal is optically connected to the input end and a light-receiving element is optically connected to the exit end, and two or more wavelength regions of the reflected light obtained by the light-receiving element are used. It is characterized by comprising an arithmetic processing circuit.

第2図以下に図示する実施例に基づいて本発明の詳細な
説明する。
The present invention will be described in detail based on the embodiments illustrated in FIG. 2 and below.

第2図に於いて、1a、1bは例えばLEDから成る第
1及び第2の発光素子であシ、異なる波長λ、及びλ2
の光を発光する。これらの発光素子1a、1bには、演
算処理回路2の信号(二より駆動される第1、第2のチ
ョッパ回路1 a s 3 bs及びこれらのチョッパ
回路3a、3bの出力1;より作動する第1、第2の発
光素子駆動回路4a、4bが順次それぞれ接続されてい
る。又、発光素子[a、普−5゛  ′ 1bには第1、第2の送光用導光繊維5a、5bの入射
部がそれぞれ光学的に接続されており、これらの射出端
は温度に従ってその光反射率が変化する液晶6に光学的
(−接続している。伺、液晶6は波長λ1、λ2によっ
ても異表る反射率特性を有している。又、7は受光素子
であシ、液晶6の光を導光する受光用導光繊維8の射出
端が光学的に接続されている。この受光素子7;二は光
信号増幅回路9、A/D変換回路10が順次接続され、
 A/D変換回路10と演算処理回路2との間で信号の
供受がなされている。演算処理回路2には更に、記憶回
路11と表示回路12が接続されており、前者はプログ
ラムメモリ、A/D変換された光信号を温度に変換する
ための定数メモリ、データを一時的:;格納するための
データメモリを有しており、後者は測定値を必要;1応
じて表示するようになっている。
In FIG. 2, 1a and 1b are first and second light emitting elements made of, for example, LEDs, and have different wavelengths λ and λ2.
emits light. These light emitting elements 1a, 1b are activated by signals from the arithmetic processing circuit 2 (the first and second chopper circuits 1a, s3bs, which are driven by two, and the outputs 1 of these chopper circuits 3a, 3b; First and second light-emitting element drive circuits 4a and 4b are connected in sequence.Furthermore, first and second light-transmitting light guide fibers 5a, 5b are optically connected to each other, and their exit ends are optically connected to a liquid crystal 6 whose light reflectance changes according to temperature. Also, 7 is a light-receiving element, to which the exit end of a light-receiving light-guiding fiber 8 that guides the light from the liquid crystal 6 is optically connected. A light receiving element 7; second, an optical signal amplification circuit 9 and an A/D conversion circuit 10 are sequentially connected;
Signals are exchanged between the A/D conversion circuit 10 and the arithmetic processing circuit 2. A storage circuit 11 and a display circuit 12 are further connected to the arithmetic processing circuit 2, and the former is a program memory, a constant memory for converting an A/D converted optical signal into temperature, and a temporary memory for storing data. It has a data memory for storing, and the latter is adapted to display the measured values as required.

第3図は液晶6が配置されている温度検出端16の断面
図であり、第1、第2の送光用導光繊雑5a、5b、受
光用導光繊維8と液晶6との間には、光導体14、拡散
面15が挿入され、何れも導光繊維5a、5bからの光
が液晶6に、液晶6の反射光が導光繊維8に有効に伝達
するような適当な屈折率を有する物質が用いられている
。又、これらは熱伝導性が良好で遮光性のあるケース1
6により覆われ、ケース16(′−は電磁波に感応せず
、人体に悪影響を及ぼさない材料が使用されており、そ
の外径は可能な限り細径となっている。
FIG. 3 is a cross-sectional view of the temperature detection end 16 where the liquid crystal 6 is arranged, and shows the space between the first and second light-transmitting light-guiding fibers 5a, 5b, the light-receiving light-guiding fiber 8, and the liquid crystal 6. A light guide 14 and a diffusing surface 15 are inserted in the , and both have appropriate refraction so that the light from the light guide fibers 5a and 5b is effectively transmitted to the liquid crystal 6, and the reflected light from the liquid crystal 6 is effectively transmitted to the light guide fiber 8. A substance with a certain rate is used. In addition, these are Case 1, which has good thermal conductivity and light shielding properties.
The case 16 ('-) is made of a material that is not sensitive to electromagnetic waves and has no adverse effect on the human body, and its outer diameter is as small as possible.

上述の構成に於いて、第1及び2a2の発光素子1a、
1bから発光波長λ1及びλ2の光をそれぞれ時分割し
て射出する場合のタイミングチャート図を第4図に示す
。第1、第2の発光素子1a。
In the above configuration, the first and 2a2 light emitting elements 1a,
FIG. 4 shows a timing chart in the case where the lights of emission wavelengths λ1 and λ2 are emitted from 1b in a time-division manner. First and second light emitting elements 1a.

1bはチョッパ回路3a、3bにより適当な周波数fで
交流駆動され、かつ演算処理回路2の制御信号によシ周
期Tで交互にオン・オフを繰シ返している。又、このオ
ン・オフの制御信号は、A/D変換回路10の変換開始
パルスS T Oとも同期している。発光素子1a、1
bから発光された光は、それぞれの送光用導光繊維5a
、5bにより温度検出端13に導かれ、交互に液晶6を
照明し、その反射光は受光用導光繊維8により受光素子
7に導かれる。受光素子7により光電変換された光信号
出力PD8 は、光信号増幅回路9)二より適当なレベ
ルに増幅され、A/D変換回路1oに入力する。A/D
変換回路1oはチョッパ回路3a。
1b is AC driven at a suitable frequency f by chopper circuits 3a and 3b, and is alternately turned on and off at a period T according to a control signal from the arithmetic processing circuit 2. Further, this on/off control signal is also synchronized with the conversion start pulse S TO of the A/D conversion circuit 10. Light emitting element 1a, 1
The light emitted from b is transmitted through each of the light guide fibers 5a for light transmission.
, 5b to the temperature detection end 13 and alternately illuminate the liquid crystal 6, and the reflected light is guided to the light receiving element 7 by the light guide fiber 8 for light reception. The optical signal output PD8 photoelectrically converted by the light receiving element 7 is amplified to an appropriate level by an optical signal amplification circuit 9) and input to the A/D conversion circuit 1o. A/D
The conversion circuit 1o is a chopper circuit 3a.

してデジタル信号(=変換する。演算処理回路2は、こ
れらのデジタル信号と、予じめ記憶回路11に記憶しで
あるデータとを比較、校正し、液晶6の温度を算出して
データ表示回路12に温度データとして表示する。
The arithmetic processing circuit 2 compares and calibrates these digital signals with data previously stored in the storage circuit 11, calculates the temperature of the liquid crystal 6, and displays the data. It is displayed on the circuit 12 as temperature data.

次に゛この測定原理について説明すると、第5図は光源
をλ1、λ2の波長とした場合の温度対反射率特性であ
る。このグラフに於いて、曲線Aは波長λ、に対する液
晶6の反射率特性、曲線Bは波長λ2に対する液晶6の
反射率特性を示している。更にこれらの特性の差を計算
すれば第6図に示すような特性が得られる。反射率は一
定の入射光量;一対する反射光量と考えてよいから、波
長λ1、λ2の光量がそれぞれ一定であれば、得られた
光量、即ち光信号出力PDS(λ1)、PDS(λ、)
から演算処理回路2に於いて光量差を求め、記憶回路1
1に記憶されている定数により、第6図の横軸の温度T
を算出することが可能となる。但し第6図の特性からは
同一光量差であっても2個所の温度が得られる領域が存
在するので、測定温度範囲を最低温度をTLに、最高温
度をT11に限定することを要する。
Next, to explain the principle of this measurement, FIG. 5 shows the temperature versus reflectance characteristics when the light source has wavelengths λ1 and λ2. In this graph, curve A shows the reflectance characteristic of liquid crystal 6 with respect to wavelength λ, and curve B shows the reflectance characteristic of liquid crystal 6 with respect to wavelength λ2. Further, by calculating the difference between these characteristics, the characteristics shown in FIG. 6 can be obtained. The reflectance can be thought of as a constant amount of incident light; it can be thought of as the amount of reflected light for a pair, so if the amounts of light at wavelengths λ1 and λ2 are each constant, the obtained light amounts, that is, the optical signal outputs PDS(λ1) and PDS(λ,)
The arithmetic processing circuit 2 calculates the difference in light amount from the storage circuit 1.
1, the temperature T on the horizontal axis in FIG.
It becomes possible to calculate. However, from the characteristics shown in FIG. 6, there is a region where two temperatures can be obtained even with the same light intensity difference, so it is necessary to limit the measurement temperature range to TL as the lowest temperature and T11 as the highest temperature.

上述した測定方法は、異なる波長に対する反射率の差を
利用して温度を測定するものであったが、との方法以外
にも第7図に示すような方法によっでも測定可能である
。例えば測定の結果、波長λ1の反射率R11、波長波
長λ、の反射率R,が得られたとすると、第7図;;示
す特性曲線;−より波長λ1の測定結果からは温度が1
又はTl、同様1″−波長λ、の測定結果からは温度が
T1又はT//と測定される。そこで両測定結果の比較
により、等しい温度T1が真の値であることが判る。こ
の作業は波長λ1、λ鵞の反射率Rと温度Tの関係を演
算処理回路に記憶させておけば、極めて容易にかつ迅速
に測定結果とし引き出すことが可能となる。
The above-mentioned measuring method measures temperature using the difference in reflectance for different wavelengths, but in addition to this method, measurement can also be performed by a method as shown in FIG. 7. For example, if we obtain the reflectance R11 at wavelength λ1 and the reflectance R at wavelength λ as a result of measurement, then from the characteristic curve shown in FIG.
or Tl, similarly, from the measurement result of 1"-wavelength λ, the temperature is measured as T1 or T//. Therefore, by comparing both measurement results, it is found that the equal temperature T1 is the true value. This work If the relationship between the wavelength λ1 and the reflectance R of λ1 and the temperature T is stored in the arithmetic processing circuit, it becomes possible to extract the measurement results very easily and quickly.

第8図は受光光学系に分光器を用いた第2の実施例であ
り、受光用導光繊維8の射出端の後部に光軸に沿って集
光レンズ17、ビームスプリッタ18、光撫択性を有す
る第1の光学フィルタ19a、集光レンズ20aが配列
され、集□光レンズ20aの焦点位置に第1の受光素子
7aが配置されている。
FIG. 8 shows a second embodiment in which a spectroscope is used in the light receiving optical system, and a condenser lens 17, a beam splitter 18, and a light beam selector are arranged along the optical axis at the rear of the exit end of the light guide fiber 8 for light reception. A first optical filter 19a and a condensing lens 20a are arranged, and a first light receiving element 7a is arranged at the focal position of the condensing lens 20a.

又、ビームスプリッタ18の他方の射出側には、その光
軸上に第2の光学フィルタ19b1集光レンズ20b、
第2の受光素子7bが配列されている。第1の受光素子
7aには第1の光信号増幅回路9g、第1のA/D変換
回路IQaが接続され、第2の受光素子7bには第2の
光信号増幅回路9b、第2のA/D 変換回路10bが
それぞれ接続されている。伺、駆動回路4a、4bに出
力信号を与えるチョッパ回路6は1個でよく、第2図に
於ける演算処理回路2等は図面上省略されている。
Further, on the other exit side of the beam splitter 18, a second optical filter 19b1, a condensing lens 20b, and a second optical filter 19b1 are arranged on the optical axis.
Second light receiving elements 7b are arranged. A first optical signal amplification circuit 9g and a first A/D conversion circuit IQa are connected to the first light receiving element 7a, and a second optical signal amplification circuit 9b and a second optical signal amplification circuit IQa are connected to the second light receiving element 7b. A/D conversion circuits 10b are connected to each. However, only one chopper circuit 6 is required to provide output signals to the drive circuits 4a and 4b, and the arithmetic processing circuit 2 and the like in FIG. 2 are omitted in the drawing.

第8図に於いて受光用導光繊維8から射出され10′ た液晶6の反射光は、ビームスプリッタ18により分け
られ、第1の光学フィルタ19aに於いては波長λ、の
光、第2の光学フィルタ19bに於いては波長λ鵞の光
のみが透過することになる。受光素子7a、7bではそ
れぞれ波長λ1、λ2の光量の測光がな古れるが、第2
図の実施例の場合のように受光素子1a、1bを交互に
オン・オフしたり、受光系で時分割して信号処理をする
必要はない。
In FIG. 8, the reflected light of the liquid crystal 6 emitted from the light-receiving light guide fiber 8 is split by the beam splitter 18, and in the first optical filter 19a, the light of wavelength λ, the second In the optical filter 19b, only light having a wavelength of λ is transmitted. The light receiving elements 7a and 7b are outdated in photometry of the amount of light at wavelengths λ1 and λ2, respectively.
There is no need to alternately turn on and off the light-receiving elements 1a and 1b or to perform time-division signal processing in the light-receiving system as in the illustrated embodiment.

第6図の特性は第5図の曲線A1Bの差分な求めて得る
ようにしたが、曲線A、Hの反射率の比を求めて第6図
に相当する特性データとしてもよい。との場合には液晶
6に送光するλ8、λ、の波長の光量の割合が一定であ
れば、光量が変化しても測温に支障はないことになる。
Although the characteristics shown in FIG. 6 are obtained by calculating the difference between the curves A1B in FIG. 5, the characteristic data corresponding to FIG. 6 may be obtained by calculating the ratio of the reflectances of curves A and H. In this case, as long as the ratio of the amount of light of wavelengths λ8 and λ sent to the liquid crystal 6 is constant, there will be no problem in temperature measurement even if the amount of light changes.

又、温度検出端13は先端分を差し換えできる構造とす
れば、液晶6の種類を適当に選択して交換することによ
り、第6図のTL、 THの位置、即ち測温領域を変化
させることができる。更には導光繊維5a、5b、8の
配列も種々考えられるが、その−例を第9図(a)、(
b)に示す。第9図(a)は受光用導光繊維8の両側に
1 送光用導光繊維5a、5bを配置し、第2図、第8図の
実施例で使用した亀のである。第9図(b)は光量:1
応じて、受光用導光繊維8を中心に複数本ずつ送光用導
光繊維5a15bを配置した例である。岡、送光用繊維
5a、5bは同数である必要はなく、例えば波長による
発光素子1a、1bの発光量差を考慮して適当な数を選
べばよい。受光用導光繊維8も1本ではなく、複数本で
あってもよく、その射出端に波長選択性の光学フィルタ
を設けるようにしてもよい。又、光源を1個として波長
領域の広いものを使用し、受光光学系に於いて波長選択
して信号処理するととも可能である。
Furthermore, if the temperature sensing end 13 has a structure in which the tip can be replaced, the positions of TL and TH in FIG. 6, that is, the temperature measurement area, can be changed by appropriately selecting and replacing the type of liquid crystal 6. Can be done. Furthermore, various arrangements of the light guide fibers 5a, 5b, and 8 can be considered, examples of which are shown in FIGS.
Shown in b). FIG. 9(a) shows an example in which two light transmitting light guide fibers 5a and 5b are arranged on both sides of a light receiving light guide fiber 8, which was used in the embodiments shown in FIGS. 2 and 8. Figure 9(b) shows light intensity: 1
Accordingly, this is an example in which a plurality of light guide fibers 5a15b for light transmission are arranged around the light guide fiber 8 for light reception. It is not necessary that the number of light transmitting fibers 5a and 5b be the same, and an appropriate number may be selected by taking into account, for example, the difference in the amount of light emitted by the light emitting elements 1a and 1b depending on the wavelength. The number of light guide fibers 8 for receiving light may not be one, but may be plural, and a wavelength-selective optical filter may be provided at the exit end. It is also possible to use one light source with a wide wavelength range and select the wavelength in the light receiving optical system for signal processing.

以上説明したように本発明に係る光学的温度計は、異な
る2波長以上の反射光を用いて正確;二かつ容易に温度
測定が可能となる。特に温度検出端1:電磁波に非感応
の材料を使用することにより、電磁波治療をする人体部
位の測温に極めて好適である。
As explained above, the optical thermometer according to the present invention can accurately and easily measure temperature using reflected light of two or more different wavelengths. In particular, the temperature detection end 1: By using a material that is insensitive to electromagnetic waves, it is extremely suitable for measuring the temperature of a part of the human body to be treated with electromagnetic waves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、光源を単一波長とした場合の温度対2 反射率の特性図、第2図は本発明に係る第1の実施例の
ブロック回路構成図、第3図は検出端の断面図、第4図
はその作動を説明するためのタイミングチャート図、第
5図は光源を2波長とした場合の温度対反射率の特性図
、第6図は第5図の差動出力特性図、第7図は他の測定
原理を説明するための特性図、第8図は第2の実施例の
ブロック回路構成図、第9図<a)、(b)は導光繊維
の配置断面図である。 符号1a、1bは発光素子、2は演算処理回路図、5a
、5bは送光用導光繊維、6は液晶、7.7a、7bは
受光素子、8は受光用導光繊維、11は記憶回路、12
は表示回路、13は検出端、18はビームスプリッタ、
19a、19bは光学的フィルタである。 特許出願人     キャノン株式会社3 T+’  To  T+      T第2図 第40 TC 筒5図 第6図 第7図 ■、’      T+   T;   7第8図 ((1)        (1))
Fig. 1 is a characteristic diagram of temperature vs. reflectance when the light source has a single wavelength, Fig. 2 is a block circuit configuration diagram of the first embodiment of the present invention, and Fig. 3 is a cross section of the detection end. Figure 4 is a timing chart diagram to explain its operation, Figure 5 is a characteristic diagram of temperature versus reflectance when the light source has two wavelengths, and Figure 6 is a differential output characteristic diagram of Figure 5. , FIG. 7 is a characteristic diagram for explaining another measurement principle, FIG. 8 is a block circuit configuration diagram of the second embodiment, and FIG. 9 <a), (b) is a sectional view of the arrangement of light guide fibers. It is. Symbols 1a and 1b are light emitting elements, 2 is an arithmetic processing circuit diagram, and 5a
, 5b is a light guide fiber for transmitting light, 6 is a liquid crystal, 7.7a and 7b are light receiving elements, 8 is a light guide fiber for light reception, 11 is a memory circuit, 12
is a display circuit, 13 is a detection end, 18 is a beam splitter,
19a and 19b are optical filters. Patent applicant Canon Corporation 3 T+' To T+ TFigure 2Figure 40 TC Tube 5Figure 6Figure 7 ■,' T+ T; 7Figure 8 ((1) (1))

Claims (1)

【特許請求の範囲】 1、 温度変化に応じて光反射率が変化すると共に、゛
この反射率が光の波長によって異なるような特性を有す
る液晶を内蔵する温度検出端と、入射端に光源を射出端
に前記液晶をそれぞれ光学的に接続した送光用導光繊維
と、入射端に前記液晶を射出端に受光素子をそれぞれ光
学的に接続した受光用導光繊維と、前記受光素子で得ら
れた反射光中の2つ以上の波長領域を用いて温度を求め
る演算処理回路とを具備することを特徴とする光学的温
度計。 2、異なる波長を発光する2個の発光素子に、それぞれ
送光用導光繊維を接続した特許請求の範囲第1項記載の
光学的温度計。 3.2個の発光素子を交互;1発光し、液晶の反射光を
発光に同期して2つの波長に分離する特許請求の範囲第
2項記載の光学的温度計。 4、液晶の反射光を波長選択性フィルタを用いて2つの
波長に分離する特許請求の範囲第1項記載の光学的温度
計。 5、液晶の2つの温度対波長特性の差分を基に□温度を
求めるようにした特許請求の範囲第1項記載の光学的温
度計。 6、温度検出端を含む先端付近は電磁波に対し非感応物
質で造った特許請求の範囲第1項記載の光学的温度計。
[Claims] 1. A temperature detection end that has a built-in liquid crystal whose light reflectance changes according to temperature changes and whose reflectance varies depending on the wavelength of the light, and a light source at the input end. A light guide fiber for transmitting light having the liquid crystal optically connected to the exit end, a light guide fiber for receiving light having the liquid crystal at the input end and a light receiving element optically connected to the exit end, and 1. An optical thermometer comprising: an arithmetic processing circuit for determining temperature using two or more wavelength regions in the reflected light. 2. The optical thermometer according to claim 1, wherein a light guide fiber for transmitting light is connected to two light emitting elements that emit light of different wavelengths. 3. The optical thermometer according to claim 2, wherein two light emitting elements emit light alternately, and the reflected light from the liquid crystal is separated into two wavelengths in synchronization with the emitted light. 4. The optical thermometer according to claim 1, wherein the reflected light from the liquid crystal is separated into two wavelengths using a wavelength selective filter. 5. The optical thermometer according to claim 1, wherein the temperature is determined based on the difference between two temperature versus wavelength characteristics of the liquid crystal. 6. The optical thermometer according to claim 1, wherein the vicinity of the tip including the temperature detection end is made of a material insensitive to electromagnetic waves.
JP56112617A 1981-07-18 1981-07-18 Optical thermometer Pending JPS5814021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112617A JPS5814021A (en) 1981-07-18 1981-07-18 Optical thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112617A JPS5814021A (en) 1981-07-18 1981-07-18 Optical thermometer

Publications (1)

Publication Number Publication Date
JPS5814021A true JPS5814021A (en) 1983-01-26

Family

ID=14591212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112617A Pending JPS5814021A (en) 1981-07-18 1981-07-18 Optical thermometer

Country Status (1)

Country Link
JP (1) JPS5814021A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168839A (en) * 1984-09-12 1986-04-09 Matsushita Electric Ind Co Ltd Charged particle deflector
FR2610104A1 (en) * 1987-01-23 1988-07-29 Bertin & Cie OPTICAL FIBER DEVICE FOR REMOTELY DETECTING THE STATUS OF A PHYSICAL PARAMETER IN RELATION TO AT LEAST ONE DETERMINED VALUE
US5474381A (en) * 1993-11-30 1995-12-12 Texas Instruments Incorporated Method for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer
US5803606A (en) * 1993-12-16 1998-09-08 Phototherm Dr. Petry Gmbh Surface photothermic testing device
WO2000000004A1 (en) * 1998-06-26 2000-01-06 Medical Indicators, Inc. Liquid crystal thermometer
WO2002018891A1 (en) * 2000-08-31 2002-03-07 Siemens Westinghouse Power Corporation Optical power generator system condition status indicator and methods of indicating same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168839A (en) * 1984-09-12 1986-04-09 Matsushita Electric Ind Co Ltd Charged particle deflector
JPH0371734B2 (en) * 1984-09-12 1991-11-14 Matsushita Electric Ind Co Ltd
FR2610104A1 (en) * 1987-01-23 1988-07-29 Bertin & Cie OPTICAL FIBER DEVICE FOR REMOTELY DETECTING THE STATUS OF A PHYSICAL PARAMETER IN RELATION TO AT LEAST ONE DETERMINED VALUE
US5474381A (en) * 1993-11-30 1995-12-12 Texas Instruments Incorporated Method for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer
US5741070A (en) * 1993-11-30 1998-04-21 Texas Instruments Incorporated Apparatus for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer
US5803606A (en) * 1993-12-16 1998-09-08 Phototherm Dr. Petry Gmbh Surface photothermic testing device
WO2000000004A1 (en) * 1998-06-26 2000-01-06 Medical Indicators, Inc. Liquid crystal thermometer
WO2002018891A1 (en) * 2000-08-31 2002-03-07 Siemens Westinghouse Power Corporation Optical power generator system condition status indicator and methods of indicating same
US6513972B1 (en) 2000-08-31 2003-02-04 Siemens Westinghouse Power Corporation Optical temperature probe, monitoring system, and related methods
US6527440B1 (en) 2000-08-31 2003-03-04 Siemens Westinghouse Power Corporation Optical power generator system condition status indicator and methods of indicating same

Similar Documents

Publication Publication Date Title
US4790669A (en) Spectroscopic method and apparatus for optically measuring temperature
US9500537B2 (en) Temperature measurement apparatus and method
US4459044A (en) Optical system for an instrument to detect the temperature of an optical fiber phosphor probe
JPH09318529A (en) Optical measurement equipment of light scattering object
CN101400301A (en) Living body ingredient concentration measuring instrument
JP5657444B2 (en) Temperature measuring apparatus and temperature measuring method
JP6985561B2 (en) Biological composition measuring device
JP6342445B2 (en) Optical measuring device and method
JPS5814021A (en) Optical thermometer
CN113349768A (en) Measurement device and biological information measurement device
US20230417657A1 (en) Spectral sensing device and method for measuring optical radiation
JP4124389B2 (en) Temperature measuring method and temperature measuring device
JPH05172657A (en) Optical fiber distributed temperature sensor
US11703391B2 (en) Continuous spectra transmission pyrometry
JPS5847654B2 (en) Hannokongobutsuno Kiyuukodoo
JP2002116087A (en) Wavelength-measuring apparatus
JPS59160725A (en) Optical thermometer
JPS59119225A (en) Light applied sensor
CN113476043A (en) Non-invasive sensing device, detection method and detector
JPH03287050A (en) Optical refractive index measuring instrument
JP3110139B2 (en) Optical fiber temperature sensor
JPS63205531A (en) Measuring method for temperature by optical fiber
JPS58139038A (en) Temperature measuring device using optical fiber
JP2019052924A (en) Dryness measuring device and dryness measurement method
JPH0429969B2 (en)