JPH1198706A - Non-contact charger - Google Patents

Non-contact charger

Info

Publication number
JPH1198706A
JPH1198706A JP9253057A JP25305797A JPH1198706A JP H1198706 A JPH1198706 A JP H1198706A JP 9253057 A JP9253057 A JP 9253057A JP 25305797 A JP25305797 A JP 25305797A JP H1198706 A JPH1198706 A JP H1198706A
Authority
JP
Japan
Prior art keywords
power
unit
frequency
power transmission
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9253057A
Other languages
Japanese (ja)
Inventor
Naoto Sato
直人 佐藤
Kouichi Saitou
孝一 歳桃
Tadakuni Sato
忠邦 佐藤
Hidetoshi Matsuki
英敏 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP9253057A priority Critical patent/JPH1198706A/en
Publication of JPH1198706A publication Critical patent/JPH1198706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To charge a secondary battery with high efficiency in a non-contact manner. SOLUTION: When a plug 47 is connected to the plug-socket of a commercial power supply, a frequency conversion circuit 46 converts the supplied power with a commercial frequency into converted power with a frequency equal to the resonance frequency of a parallel resonance circuit (43, 44 and 45). The parallel resonance circuit (53, 54 and 55) of a receiving unit 50 functions as a receiving means which receives power from the transmitting means of a transmission unit 40. The rectifying circuit (56 and 57) of the receiving unit 50 converts the output power of the reception means into a DC power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池を充電する
ための充電器に関し、特に、二次電池を非接触で充電可
能な非接触充電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charger for charging a secondary battery, and more particularly, to a non-contact charger capable of charging a secondary battery in a non-contact manner.

【0002】[0002]

【従来の技術】従来、この種の二次電池用充電器は、携
帯機器と充電器本体とを接続するための、外部に露出し
た複数個の充電端子を備えている。しかし、長時間使用
するうちに充電端子の表面が酸化による錆や塵芥の付
着、摩耗・変形、接触端子のバネの経たりによる接触抵
抗値の増大による接続不具合が発生し、確実な接続がで
きなくなる。更に、近年防水・防滴仕様の携帯機器が増
え、充電端子の劣化が著しく早まる傾向がある。一方
で、携帯機器の軽量化が進み、充電端子一本に加わる荷
重がますます減ってきており、充電端子の接続が不安定
になりつつある。
2. Description of the Related Art Conventionally, this type of secondary battery charger has a plurality of externally exposed charging terminals for connecting a portable device and a charger main body. However, over long periods of use, rust and dust adhere to the surface of the charging terminal due to oxidation, wear and deformation, and a connection failure occurs due to an increase in the contact resistance value due to the spring of the contact terminal. Disappears. Furthermore, in recent years, the number of portable devices having waterproof / drip-proof specifications has increased, and there has been a tendency that deterioration of a charging terminal has been remarkably accelerated. On the other hand, the weight of mobile devices has been reduced, and the load applied to a single charging terminal has been reduced, and the connection of the charging terminal has become unstable.

【0003】また、二次電池を使用する機器が増え、使
用する年齢層が広がり、子供や老年層の使用も今後増え
る傾向にある。そのため、誤使用による充電接触端子同
士や2次電池端子同士の短絡事故発生の恐れもある。
[0003] In addition, the number of devices using secondary batteries has increased, the age group of use has expanded, and the use of children and the elderly tends to increase in the future. For this reason, there is a possibility that a short circuit accident may occur between the charging contact terminals or between the secondary battery terminals due to misuse.

【0004】このような問題は、充電器が接触式である
ことから避けられない問題である。したがって、上述し
た問題を解決するために、送電部から受電部へ非接触で
電力を伝送して、受電部に備えられた二次電池を充電可
能とした非接触充電器が提案されている。
[0004] Such a problem is unavoidable because the charger is a contact type. Therefore, in order to solve the above-mentioned problem, a non-contact charger has been proposed in which electric power is transmitted from a power transmission unit to a power reception unit in a non-contact manner so that a secondary battery provided in the power reception unit can be charged.

【0005】従来の提案されている非接触充電器では、
送電部および受電部の各々に、棒状或いはポット状フェ
ライトコア等の強磁性体に巻線を施したコイルを備えて
いる。送電部に備えらるコイルは入力側コイルと呼ば
れ、受電部に備えられるコイルは出力側コイルと呼ばれ
る。入力側コイルと出力側コイルとを空隙を介して対向
して配置される。そして、対向する入力側コイルと出力
側コイルとの間に生じる電磁誘導作用を利用して、送電
部から受電部へ非接触に電力を伝送している。換言すれ
ば、従来の非接触充電器は内鉄型の磁気回路構成を採用
している。
[0005] In the conventional proposed non-contact charger,
Each of the power transmission unit and the power reception unit includes a coil formed by winding a ferromagnetic material such as a rod-shaped or pot-shaped ferrite core. The coil provided in the power transmission unit is called an input side coil, and the coil provided in the power reception unit is called an output side coil. The input side coil and the output side coil are arranged to face each other via a gap. Then, the power is transmitted from the power transmission unit to the power reception unit in a non-contact manner by using an electromagnetic induction effect generated between the opposed input side coil and output side coil. In other words, the conventional contactless charger employs a core-type magnetic circuit configuration.

【0006】一方、本出願人も、送電部から受電部へ電
磁誘導作用を利用して非接触で電力を伝送する「コード
レスパワーステーション」を既に提案している(例え
ば、特開平−231586号公報参照、以下、先願と呼
ぶ)。この先願において、送電部および受電部の各々
は、板状の軟磁性部材と、この軟磁性部材上に設けられ
た渦巻型コイルとから成る。
On the other hand, the present applicant has already proposed a "cordless power station" for transmitting electric power from a power transmitting section to a power receiving section in a non-contact manner by utilizing an electromagnetic induction action (for example, Japanese Patent Application Laid-Open No. Hei 231586). Reference, hereinafter referred to as prior application). In this prior application, each of the power transmission unit and the power reception unit includes a plate-shaped soft magnetic member and a spiral coil provided on the soft magnetic member.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の非接触
充電器では、内鉄型の磁気回路構成を採用しているた
め、電力伝送に寄与する磁束の一部はコイル周辺から外
部に漏洩する。この漏れ磁束に起因して、誘導加熱に依
る障害を発生させる可能性がある。また、コアの形状が
棒状或いはポット状の為に、入力側コイルおよび出力側
コイルを薄型化することが困難で、各々5mmおよび1
5mm程度になっている。
In the above-described conventional non-contact charger, since a core-type magnetic circuit configuration is employed, a part of the magnetic flux contributing to power transmission leaks from the coil periphery to the outside. . Due to this leakage flux, there is a possibility that a failure due to induction heating may occur. Further, since the shape of the core is rod-shaped or pot-shaped, it is difficult to reduce the thickness of the input side coil and the output side coil.
It is about 5 mm.

【0008】これに対して、先願は、板状の軟磁性部材
を使用しているので、漏れ磁束を少なくすることがで
き、誘導加熱による障害の発生を防止することができ
る。また、コイルとして渦巻型コイルを使用しているの
で、薄型化することが可能である。
On the other hand, in the prior application, since a plate-shaped soft magnetic member is used, the leakage magnetic flux can be reduced, and the occurrence of trouble due to induction heating can be prevented. Further, since a spiral coil is used as the coil, it is possible to reduce the thickness.

【0009】しかしながら、従来の非接触充電器も先願
も、電力を送電部から受電部へ非接触で伝送する技術を
開示するのみで、二次電池を効率良く充電するための具
体的構成について何等開示していない。
[0009] However, both the conventional non-contact charger and the prior application only disclose a technology for non-contact transmission of power from a power transmission unit to a power reception unit, and describe a specific configuration for efficiently charging a secondary battery. Nothing is disclosed.

【0010】したがって、本発明の課題は、二次電池を
効率良く非接触で充電可能な非接触充電器を提供するこ
とにある。
[0010] Therefore, an object of the present invention is to provide a non-contact charger capable of efficiently charging a secondary battery in a non-contact manner.

【0011】[0011]

【課題を解決するための手段】本発明によれば、電力を
送電するための送電部と、電力を受電するための受電部
とを備え、前記送電部から前記受電部へ電磁誘導作用を
利用して非接触に電力を伝送して、前記受電部に備えら
れた二次電池を充電可能な非接触充電器に於いて、前記
送電部は、商用周波数の電源電力を所定の周波数の変換
電力に変換する周波数変換手段と、前記所定の周波数に
等しい共振周波数を持ち、前記変換電力を外部へ送信す
る送信手段とを有し、前記受電部は、前記所定の周波数
に等しい共振周波数を持ち、前記送信手段からの前記変
換電力を受信する受信手段と、該受信手段の出力を直流
電力に変換する整流手段とを有する、ことを特徴とする
非接触充電器が得られる。
According to the present invention, there is provided a power transmitting unit for transmitting power, and a power receiving unit for receiving power, wherein an electromagnetic induction action is used from the power transmitting unit to the power receiving unit. In a non-contact charger capable of non-contactly transmitting power and charging a secondary battery provided in the power receiving unit, the power transmitting unit converts power from a commercial frequency into converted power at a predetermined frequency. Frequency conversion means for converting into a, having a resonance frequency equal to the predetermined frequency, having a transmission means for transmitting the converted power to the outside, the power receiving unit has a resonance frequency equal to the predetermined frequency, A wireless charger is provided, comprising: a receiving unit that receives the converted power from the transmitting unit; and a rectifying unit that converts an output of the receiving unit into DC power.

【0012】[0012]

【作用】商用周波数(50Hz又は60Hz)を所定の
周波数に変換し、共振させて電力を伝送しているので、
効率良く電力を伝送できる。
[Function] Since the commercial frequency (50 Hz or 60 Hz) is converted to a predetermined frequency and resonated to transmit power,
Power can be transmitted efficiently.

【0013】[0013]

【発明の実施の形態】次に、本発明について図面を参照
して詳細に説明する。
Next, the present invention will be described in detail with reference to the drawings.

【0014】図2に本発明の一実施の形態に係る非接触
充電器の構成を示す。図示の非接触充電器は電力を送電
するための送電部40と、電力を受電するための受電部
50とを備え、送電部40から受電部50へ電磁誘導作
用を利用して非接触に電力を伝送するものである。送電
部40および受電部50の各々は、図示しない樹脂ケー
ス内に収納される。したがって、電気的接触部が外部に
露出させる必要がない。
FIG. 2 shows a configuration of a non-contact charger according to one embodiment of the present invention. The illustrated non-contact charger includes a power transmitting unit 40 for transmitting power and a power receiving unit 50 for receiving power, and wirelessly transmits power from the power transmitting unit 40 to the power receiving unit 50 using electromagnetic induction. Is transmitted. Each of power transmission unit 40 and power reception unit 50 is housed in a resin case (not shown). Therefore, there is no need to expose the electrical contact to the outside.

【0015】一例として、送電部40は、1次側フェラ
イトコア41と1次側FPC(Flexible Printed Circu
it)基板42とを備え、1次側FPC基板42は1次側
フェライトコア41の上面に搭載される。図示の1次側
フェライトコア41は、軟磁性で、重さが3.4gで、
長さが38mmで幅が19mmの直方体の形状をしてい
る。1次側FPC基板42上には、一対の平面渦巻型コ
イル43,44と共振用コンデンサ45とが搭載され
る。尚、図示はしないが、1次側FPC基板42上には
これら一対の平面渦巻型コイル(以下、渦巻コイルとも
いう)43,44と共振用コンデンサ45とを図示のよ
うに接続するための配線が予め形成されている。
As an example, the power transmission unit 40 includes a primary side ferrite core 41 and a primary side FPC (Flexible Printed Circuit).
it) a substrate 42, and the primary-side FPC board 42 is mounted on the upper surface of the primary-side ferrite core 41. The illustrated primary ferrite core 41 is soft magnetic, weighs 3.4 g,
It has a rectangular parallelepiped shape with a length of 38 mm and a width of 19 mm. A pair of planar spiral coils 43 and 44 and a resonance capacitor 45 are mounted on the primary side FPC board 42. Although not shown, wiring for connecting the pair of planar spiral coils (hereinafter also referred to as spiral coils) 43 and 44 and the resonance capacitor 45 to the primary side FPC board 42 as shown in the figure. Are formed in advance.

【0016】各渦巻コイル43,44は0.44gの重
さがあり、共振用コンデンサ45の重さは60mgであ
る。ここで、渦巻コイル43,44は互いに発生する磁
束の方向が逆となるように巻回され、直列に接続されて
いる。この直列接続された渦巻コイル43,44は共振
用コンデンサ45と並列に接続されている。渦巻コイル
43,44のインダクタンスと共振用コンデンサ45の
キャパシタンスCpとによって規定される共振周波数は
100Hz〜300kHzの範囲に設定される。この理
由は、この周波数範囲外では回路の損失が大きくなり、
共振周波数を高くすると雑音が外部に発生するからであ
る。但し、雑音を防止することができれば、共振周波数
を1MHz程度までに高くすることが可能である。
Each of the spiral coils 43 and 44 weighs 0.44 g, and the resonance capacitor 45 weighs 60 mg. Here, the spiral coils 43 and 44 are wound so that the directions of the magnetic fluxes generated are opposite to each other, and are connected in series. The spiral coils 43 and 44 connected in series are connected in parallel with the resonance capacitor 45. The resonance frequency defined by the inductance of the spiral coils 43 and 44 and the capacitance Cp of the resonance capacitor 45 is set in the range of 100 Hz to 300 kHz. The reason for this is that outside of this frequency range, circuit losses are high,
This is because noise is generated outside when the resonance frequency is increased. However, if noise can be prevented, the resonance frequency can be increased to about 1 MHz.

【0017】尚、後述するように、送電部40は、周波
数変換回路をさらに備えている。
As described later, the power transmission section 40 further includes a frequency conversion circuit.

【0018】受電部50は、2次側フェライトコア51
と2次側FPC基板52とを備え、2次側FPC基板5
2は2次側フェライトコア51の下面に搭載される。図
示の2次側フェライトコア51は、軟磁性で、重さが
1.7gで、長さが38mmで幅が19mmの直方体の
形状をしている。2次側FPC基板52上には、一対の
平面渦巻型コイル53,54と共振用コンデンサ55と
整流用ダイオード56と平滑用コンデンサ57とが搭載
される。2次側FPC基板52上にはこれら一対の平面
渦巻型コイル53,54と共振用コンデンサ45と整流
用ダイオード56と平滑用コンデンサ57を図示のよう
に接続するための配線が予め形成されている。
The power receiving section 50 includes a secondary ferrite core 51.
And a secondary-side FPC board 52.
2 is mounted on the lower surface of the secondary ferrite core 51. The illustrated secondary ferrite core 51 is soft magnetic, weighs 1.7 g, and has a rectangular parallelepiped shape with a length of 38 mm and a width of 19 mm. On the secondary-side FPC board 52, a pair of planar spiral coils 53 and 54, a resonance capacitor 55, a rectifying diode 56, and a smoothing capacitor 57 are mounted. Wiring for connecting the pair of planar spiral coils 53 and 54, the resonance capacitor 45, the rectifying diode 56, and the smoothing capacitor 57 is formed in advance on the secondary-side FPC board 52 as shown in the drawing. .

【0019】各渦巻コイル53,54は0.44gの重
さがあり、共振用コンデンサ55の重さは60mgであ
る。渦巻コイル53,54は、それぞれ渦巻コイル4
3,44と対向するように配置され、渦巻コイル43,
44で発生された磁束の変化により発生する電流の向き
が同一方向となるように巻回され、直列に接続されてい
る。この直列接続された渦巻コイル53,54は共振用
コンデンサ55と並列に接続されている。渦巻コイル5
3,54のインダクタンスと共振用コンデンサ55のキ
ャパシタンスCsとによって規定される共振周波数は、
上記送電部40における渦巻コイル43,44のインダ
クタンスと共振用コンデンサ45のキャパシタンスCp
とによって規定される共振周波数と同一に設定される。
Each of the spiral coils 53 and 54 weighs 0.44 g, and the resonance capacitor 55 weighs 60 mg. The spiral coils 53 and 54 are respectively
3 and 44, and the spiral coils 43 and
It is wound so that the direction of the current generated by the change of the magnetic flux generated at 44 becomes the same direction, and is connected in series. The spiral coils 53 and 54 connected in series are connected in parallel with the resonance capacitor 55. Spiral coil 5
The resonance frequency defined by the inductances 3, 54 and the capacitance Cs of the resonance capacitor 55 is
The inductance of the spiral coils 43 and 44 in the power transmission unit 40 and the capacitance Cp of the resonance capacitor 45
Is set to be the same as the resonance frequency defined by

【0020】整流用ダイオード56と平滑用コンデンサ
57とは直列に接続され、共振用コンデンサ45に並列
に接続されている。図示の例では、整流用ダイオード5
6の重さは60mgであり、平滑用コンデンサ57の重
さは115mgである。平滑用コンデンサ57の両端
は、電圧調整器(図示せず)を介して二次電池(図示せ
ず)に接続される。これによって、二次電池を非接触で
充電することができる。
The rectifying diode 56 and the smoothing capacitor 57 are connected in series, and are connected in parallel to the resonance capacitor 45. In the illustrated example, the rectifying diode 5
6 weighs 60 mg, and the smoothing capacitor 57 weighs 115 mg. Both ends of the smoothing capacitor 57 are connected to a secondary battery (not shown) via a voltage regulator (not shown). Thereby, the secondary battery can be charged without contact.

【0021】このような構成の非接触充電器では、渦巻
コイル43,44で発生された磁束は、ある瞬間では、
例えば、渦巻コイル43→1次側フェライトコア41→
渦巻コイル44→渦巻コイル54→2次側フェライトコ
ア51→渦巻コイル53→渦巻コイル43というような
順序の経路から成る閉磁路を通るので、磁束が外部に漏
洩するのを防止することができる。したがって、2次側
フェライトコア51に近接して電子部品を配置したとし
ても、この電子部品が上記漏れ磁束によって誘導加熱さ
れることがない。例えば、0〜5mmの範囲に金属物を
配置しても誘導加熱はされない。
In the contactless charger having such a configuration, the magnetic flux generated by the spiral coils 43 and 44 at a certain moment
For example, the spiral coil 43 → the primary side ferrite core 41 →
Since the coil passes through a closed magnetic path composed of a path in the order of the spiral coil 44 → the spiral coil 54 → the secondary ferrite core 51 → the spiral coil 53 → the spiral coil 43, it is possible to prevent the magnetic flux from leaking to the outside. Therefore, even if the electronic component is arranged close to the secondary ferrite core 51, the electronic component will not be heated by the leakage magnetic flux. For example, induction heating is not performed even if a metal object is arranged in a range of 0 to 5 mm.

【0022】図1に図2に示した非接触充電器の回路図
を示す。送電部40は、渦巻型コイル43,44と共振
用コンデンサ45から成る並列共振回路と、この並列共
振回路に接続された周波数変換回路46とから成り、商
用電源コンセント(図示せず)に接続されるプラグ47
が接続される。周波数変換回路46は、プラグ47が商
用電源コンセントに接続されたとき、プラグ47から供
給される商用周波数の電源電力を上記並列共振回路に等
しい所定の周波数の変換電力に変換する。このような周
波数変換回路46は、周知のように、発振器を内蔵した
スイッチング電源から構成される。並列共振回路はこの
変換電力を外部へ送信する送信手段として作用する。
FIG. 1 shows a circuit diagram of the contactless charger shown in FIG. The power transmission unit 40 includes a parallel resonance circuit including spiral coils 43 and 44 and a resonance capacitor 45, and a frequency conversion circuit 46 connected to the parallel resonance circuit, and is connected to a commercial power outlet (not shown). Plug 47
Is connected. When the plug 47 is connected to a commercial power outlet, the frequency conversion circuit 46 converts the power supply of the commercial frequency supplied from the plug 47 into converted power of a predetermined frequency equal to that of the parallel resonance circuit. As is well known, such a frequency conversion circuit 46 includes a switching power supply having a built-in oscillator. The parallel resonance circuit functions as a transmitting means for transmitting the converted power to the outside.

【0023】受電部50は、渦巻型コイル53,54と
共振用コンデンサ55とから成る並列共振回路と、整流
用ダイオード56と平滑用コンデンサ57とから成る整
流回路とから構成される。すなわち、受電部50の並列
共振回路は、上記送電部40の送信手段からの電力を受
信する受信手段として働き、受電部50の整流回路は、
受信手段の出力を直流電力に変換する。
The power receiving unit 50 includes a parallel resonance circuit including spiral coils 53 and 54 and a resonance capacitor 55, and a rectification circuit including a rectification diode 56 and a smoothing capacitor 57. That is, the parallel resonance circuit of the power receiving unit 50 functions as a receiving unit that receives power from the transmitting unit of the power transmitting unit 40, and the rectifying circuit of the power receiving unit 50 includes:
The output of the receiving means is converted into DC power.

【0024】以上、本発明について好ましい実施の形態
を例に挙げて説明したが、本発明は上述した実施の形態
に限定せず、本発明の要旨を逸脱しない範囲内で種々の
変更が可能なのはいうまでもない。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say.

【0025】例えば、軟磁性部材に用いる軟磁性体粉末
としては、平均粒径が150μm(0を含まず)以下の
ものを使用することが望ましい。その理由は、粒径が小
さい程、粉末同士が接するカ所が多くなり、物性的な強
度が増すからである。
For example, as the soft magnetic material powder used for the soft magnetic member, it is desirable to use a powder having an average particle size of 150 μm (not including 0). The reason is that the smaller the particle size, the more places where the powders come into contact with each other, and the physical strength increases.

【0026】また、軟磁性部材としては、飽和磁束密度
Bが300mT以上で、透磁率μが400以上のMn−
Zn系スピネル型フェライト材を使用することが好まし
い。その理由は、飽和磁束密度Bが大きい程、一定の電
流をコイルに流した場合に、発生する磁束が増えるから
である。この磁束が非接触部の電力伝送に関与する。ま
た、透磁率μを大きくすることにより、同じ巻線を施し
た場合、発生する磁束は透磁率μに比例するからであ
る。すなわち、インダクタンスが大きければ、共振回路
に於いてコイルに流す電流を小さくすることができ、細
い線材を使用でき、軽量化が可能となる。
Further, as the soft magnetic member, a Mn-type alloy having a saturation magnetic flux density B of 300 mT or more and a magnetic permeability μ of 400 or more is used.
It is preferable to use a Zn-based spinel ferrite material. The reason is that the larger the saturation magnetic flux density B is, the more magnetic flux is generated when a constant current flows through the coil. This magnetic flux participates in the power transmission of the non-contact portion. Also, when the same winding is applied by increasing the magnetic permeability μ, the generated magnetic flux is proportional to the magnetic permeability μ. That is, if the inductance is large, the current flowing through the coil in the resonance circuit can be reduced, a thin wire can be used, and the weight can be reduced.

【0027】軟磁性部材として、電気抵抗率(比抵抗)
ρが1MΩ−m以下のNi−Zn系スピネル型フェライ
ト材を使用しても良い。すなわち、コアの損失の1つで
ある渦電流損を低減させるためには、コア材の電気抵抗
つまり抵抗率ρを小さくすれば良い。渦電流損は比抵抗
に依存する。
As the soft magnetic member, electrical resistivity (specific resistance)
A Ni—Zn-based spinel ferrite material having ρ of 1 MΩ-m or less may be used. That is, in order to reduce the eddy current loss which is one of the core losses, the electric resistance of the core material, that is, the resistivity ρ may be reduced. Eddy current loss depends on the specific resistance.

【0028】また、軟磁性部材としてNi−Zn系スピ
ネル型フェライト材を使用した場合、電力伝送に使用す
る周波数を500kHz以上にすることが望ましい。そ
の理由は、Ni−Zn系スピネル型フェライトは高周波
特性が良好だからである。従って、500kHz以上の
高周波を採用することが可能で、部品の小型化、軽量化
が図れ、各部品の総合損失が減少して効率が向上する。
When a Ni—Zn-based spinel type ferrite material is used as the soft magnetic member, the frequency used for power transmission is desirably 500 kHz or more. The reason is that the Ni—Zn spinel ferrite has good high frequency characteristics. Therefore, it is possible to employ a high frequency of 500 kHz or more, the size and weight of parts can be reduced, and the total loss of each part is reduced, and the efficiency is improved.

【0029】軟磁性部材を構成する軟磁性体層の厚さは
0.1〜5.0mmの範囲内であることが好ましい。そ
の理由は、基本的に厚さが薄い程、小型・軽量化が図れ
るが、製造上の制限おり、下限を0.1mmとした。ま
た、パワーを取るためには、厚みがあった方がインダク
タンスをとれるが、上限を5.0mmに設定した。
The thickness of the soft magnetic layer constituting the soft magnetic member is preferably in the range of 0.1 to 5.0 mm. The reason is that the smaller the thickness is, the smaller and lighter the weight can be. Basically, the lower limit is set to 0.1 mm due to the limitation in manufacturing. In addition, in order to obtain power, the thicker the thickness, the higher the inductance, but the upper limit is set to 5.0 mm.

【0030】更に、漏れ磁束を40%以下にすることが
好ましい。その理由は次の通り。基本的に、漏れ磁束が
増加すれば効率が落ちる。また、漏れ磁束が他に悪影響
を及ぼすことも考慮しなければならない。以上の観点よ
り、漏れ磁束の上限(限度)が必要となる。60%以上
の効率を確保するために、漏れ磁束を40%以下とし
た。
Further, it is preferable that the leakage magnetic flux be 40% or less. The reasons are as follows. Basically, the efficiency decreases as the leakage flux increases. It is also necessary to consider that the leakage magnetic flux has another adverse effect. From the above viewpoint, the upper limit (limit) of the leakage magnetic flux is required. In order to secure an efficiency of 60% or more, the leakage magnetic flux was set to 40% or less.

【0031】また、1次側回路部(送電部)と2次側回
路部(受電部)との間のギャップは0〜5mmの範囲に
設定することが好ましい。中心のギャップは3mmに設
定する。樹脂ケースのバラツキ、装着時のバラツキを加
味して、ギャップを0〜5mmに設定した。
The gap between the primary side circuit section (power transmission section) and the secondary side circuit section (power reception section) is preferably set in the range of 0 to 5 mm. The center gap is set to 3 mm. The gap was set to 0 to 5 mm in consideration of the variation of the resin case and the variation at the time of mounting.

【0032】更に、軟磁性部材として比抵抗が0.1M
Ω−m以上のものを使用し、軟磁性部材自身を出力側回
路基板として使用しても良い。軟磁性部材を回路基板材
にするため、比抵抗すなわち電気抵抗を大きくする必要
がある。
Further, the specific resistance of the soft magnetic member is 0.1M.
A soft magnetic member may be used as the output-side circuit board by using one of Ω-m or more. In order to use the soft magnetic member as a circuit board material, it is necessary to increase the specific resistance, that is, the electric resistance.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る非接
触充電器は、共振させて電力を非接触で伝送しているの
で、効率良く電力を伝送できる。共振周波数を高くする
程、回路部品の小型・軽量化を図ることができる。
As described above, since the non-contact charger according to the present invention resonates and transmits power in a non-contact manner, power can be transmitted efficiently. The higher the resonance frequency, the smaller and lighter the circuit component can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による非接触充電器の回
路図である。
FIG. 1 is a circuit diagram of a contactless charger according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係る非接触充電器の構
成を示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a configuration of a non-contact charger according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

40 送電部 41 1次側フェライトコア 42 1次側FPC基板 43,44 平面渦巻型コイル(渦巻コイル) 45 共振用コンデンサ 46 周波数変換回路 47 プラグ 50 受電部 51 2次側フェライトコア 52 2次側FPC基板 53,54 平面渦巻型コイル(渦巻コイル) 55 共振用コンデンサ 56 整流用ダイオード 57 平滑用コンデンサ Reference Signs List 40 power transmission unit 41 primary-side ferrite core 42 primary-side FPC board 43, 44 planar spiral coil (vortex coil) 45 resonance capacitor 46 frequency conversion circuit 47 plug 50 power receiving unit 51 secondary-side ferrite core 52 secondary-side FPC Substrates 53, 54 Flat spiral coil (spiral coil) 55 Resonant capacitor 56 Rectifier diode 57 Smoothing capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松木 英敏 宮城県仙台市太白区八木山本町2−36−4 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidetoshi Matsuki 2-36-4 Yagiyama Honcho, Taishiro-ku, Sendai-shi, Miyagi

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力を送電するための送電部と、電力を
受電するための受電部とを備え、前記送電部から前記受
電部へ電磁誘導作用を利用して非接触に電力を伝送し
て、前記受電部に備えられた二次電池を充電可能な非接
触充電器に於いて、 前記送電部は、商用周波数の電源電力を所定の周波数の
変換電力に変換する周波数変換手段と、前記所定の周波
数に等しい共振周波数を持ち、前記変換電力を外部へ送
信する送信手段とを有し、 前記受電部は、前記所定の周波数に等しい共振周波数を
持ち、前記送信手段からの前記変換電力を受信する受信
手段と、該受信手段の出力を直流電力に変換する整流手
段とを有する、ことを特徴とする非接触充電器。
1. A power transmission unit for transmitting power, and a power reception unit for receiving power, wherein the power is transmitted from the power transmission unit to the power reception unit in a contactless manner by using an electromagnetic induction action. A non-contact charger capable of charging a secondary battery provided in the power receiving unit, wherein the power transmitting unit converts frequency power from commercial frequency power into converted power at a predetermined frequency; And a transmitting unit for transmitting the converted power to the outside, the power receiving unit having a resonant frequency equal to the predetermined frequency, and receiving the converted power from the transmitting unit. And a rectifier for converting an output of the receiver into DC power.
【請求項2】 前記所定の周波数が100〜300kH
zの範囲にある、請求項1に記載の非接触充電器。
2. The method according to claim 1, wherein the predetermined frequency is 100 to 300 kHz.
The contactless charger according to claim 1, which is in the range of z.
【請求項3】 前記送電手段は、送電側軟磁性部材と、
該送電側軟磁性部材上に設けられた複数個の送電側渦巻
型コイルとを含み、 前記受電手段は、受電側側軟磁性部材と、該受電側軟磁
性部材上に設けられ、前記送電側渦巻型コイルと磁気的
に結合される複数個の受電側渦巻型コイルとを含む、こ
とを特徴とする請求項1に記載の非接触充電器。
3. The power transmission means includes: a power transmission side soft magnetic member;
A plurality of power transmission side spiral coils provided on the power transmission side soft magnetic member, wherein the power receiving unit is provided on the power reception side soft magnetic member, and provided on the power reception side soft magnetic member; The non-contact charger according to claim 1, further comprising a plurality of power receiving side spiral coils that are magnetically coupled to the spiral coil.
【請求項4】 前記複数個の送電側渦巻型コイルは、互
いに隣接するもの同士のある瞬間の磁束の向きが互いに
逆向きとなるように接続されている、請求項3に記載の
非接触充電器。
4. The non-contact charging according to claim 3, wherein the plurality of power transmission-side spiral coils are connected such that the directions of magnetic flux at a certain moment between adjacent coils are opposite to each other. vessel.
JP9253057A 1997-09-18 1997-09-18 Non-contact charger Pending JPH1198706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9253057A JPH1198706A (en) 1997-09-18 1997-09-18 Non-contact charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9253057A JPH1198706A (en) 1997-09-18 1997-09-18 Non-contact charger

Publications (1)

Publication Number Publication Date
JPH1198706A true JPH1198706A (en) 1999-04-09

Family

ID=17245894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9253057A Pending JPH1198706A (en) 1997-09-18 1997-09-18 Non-contact charger

Country Status (1)

Country Link
JP (1) JPH1198706A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446930B1 (en) * 2001-12-04 2004-09-01 대한민국 (군산대학교 총장) A Non-Contact Outlet and Plug Apparatus for Electric Shock Prevention Using Magnetic Induction
JP2005260122A (en) * 2004-03-15 2005-09-22 Dainippon Printing Co Ltd Non-contact electric power transmission module
KR20060076796A (en) * 2004-12-29 2006-07-05 한국전기연구원 Non-contacting power supply unit
JP2006314181A (en) * 2005-05-09 2006-11-16 Sony Corp Non-contact charger, non-contact charging system, and non-contact charging method
JP2009111977A (en) * 2007-09-01 2009-05-21 Maquet Gmbh & Co Kg Apparatus and method for performing wireless transmission of energy and/or data between source apparatus and at least one target apparatus
US20090286475A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Signaling charging in wireless power environment
JP2010504074A (en) * 2006-09-18 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, system and method for electromagnetic energy transfer
JP2013017255A (en) * 2011-06-30 2013-01-24 Equos Research Co Ltd Antenna
JP2013165576A (en) * 2012-02-10 2013-08-22 Panasonic Corp Power transmission coil
US8527786B2 (en) 2010-04-27 2013-09-03 Canon Kabushiki Kaisha Electronic apparatus, control method, and computer readable recording medium
JP2013247822A (en) * 2012-05-29 2013-12-09 Sharp Corp Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical instrument
JP2014033499A (en) * 2012-08-01 2014-02-20 Sharp Corp Wireless power supply system, wireless power supply device, and wireless power receiving device
US8680715B2 (en) 2009-05-13 2014-03-25 Canon Kabushiki Kaisha Power supplying device, control method for the same, and power-supplying system
US8836279B2 (en) 2010-03-30 2014-09-16 Canon Kabushiki Kaisha Power supply apparatus, method for controlling the power supply apparatus, and computer-readable storage medium
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
JP2014207458A (en) * 2011-04-27 2014-10-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Contactless power transmission device and electronic device having the same
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
JP2015109275A (en) * 2013-11-12 2015-06-11 ジーエヌ リザウンド エー/エスGn Resound A/S Battery assembly for hearing aid and associated method
US9114717B2 (en) 2009-10-14 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Electric machine and power supply system having battery pack
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9543777B2 (en) 2009-05-13 2017-01-10 Canon Kabushiki Kaisha Power supplying device and power transmission device
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US10250075B2 (en) 2015-09-15 2019-04-02 Canon Kabushiki Kaisha Power receiving apparatus capable of contactless feeding and contact feeding, method of controlling power receiving apparatus, and recording medium
CN111247711A (en) * 2017-10-30 2020-06-05 三菱电机株式会社 Power receiving device and non-contact power transmission system
JP2021103741A (en) * 2019-12-25 2021-07-15 株式会社サムスン日本研究所 Contactless power supply system

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446930B1 (en) * 2001-12-04 2004-09-01 대한민국 (군산대학교 총장) A Non-Contact Outlet and Plug Apparatus for Electric Shock Prevention Using Magnetic Induction
JP2005260122A (en) * 2004-03-15 2005-09-22 Dainippon Printing Co Ltd Non-contact electric power transmission module
KR20060076796A (en) * 2004-12-29 2006-07-05 한국전기연구원 Non-contacting power supply unit
JP2006314181A (en) * 2005-05-09 2006-11-16 Sony Corp Non-contact charger, non-contact charging system, and non-contact charging method
JP2011036125A (en) * 2005-05-09 2011-02-17 Sony Corp Contactless charging apparatus, contactless charging system, and contactless charging method
US9520225B2 (en) 2006-09-18 2016-12-13 Koninklijke Philips N.V. Apparatus, a system and a method for enabling electromagnetic energy transfer
JP2010504074A (en) * 2006-09-18 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, system and method for electromagnetic energy transfer
JP2009111977A (en) * 2007-09-01 2009-05-21 Maquet Gmbh & Co Kg Apparatus and method for performing wireless transmission of energy and/or data between source apparatus and at least one target apparatus
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US20090286475A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Signaling charging in wireless power environment
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9130407B2 (en) * 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9543777B2 (en) 2009-05-13 2017-01-10 Canon Kabushiki Kaisha Power supplying device and power transmission device
US8680715B2 (en) 2009-05-13 2014-03-25 Canon Kabushiki Kaisha Power supplying device, control method for the same, and power-supplying system
USRE48483E1 (en) 2009-05-13 2021-03-23 Canon Kabushiki Kaisha Power-supplying device, control method for the same, and power-supplying system
US9114717B2 (en) 2009-10-14 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Electric machine and power supply system having battery pack
US9573485B2 (en) 2009-10-14 2017-02-21 Panasonic Intellectual Property Management Co., Ltd. Electric machine and power supply system having battery pack
US8836279B2 (en) 2010-03-30 2014-09-16 Canon Kabushiki Kaisha Power supply apparatus, method for controlling the power supply apparatus, and computer-readable storage medium
US8527786B2 (en) 2010-04-27 2013-09-03 Canon Kabushiki Kaisha Electronic apparatus, control method, and computer readable recording medium
JP2014207458A (en) * 2011-04-27 2014-10-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Contactless power transmission device and electronic device having the same
JP2013017255A (en) * 2011-06-30 2013-01-24 Equos Research Co Ltd Antenna
JP2013165576A (en) * 2012-02-10 2013-08-22 Panasonic Corp Power transmission coil
JP2013247822A (en) * 2012-05-29 2013-12-09 Sharp Corp Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical instrument
JP2014033499A (en) * 2012-08-01 2014-02-20 Sharp Corp Wireless power supply system, wireless power supply device, and wireless power receiving device
JP2015109275A (en) * 2013-11-12 2015-06-11 ジーエヌ リザウンド エー/エスGn Resound A/S Battery assembly for hearing aid and associated method
US10250075B2 (en) 2015-09-15 2019-04-02 Canon Kabushiki Kaisha Power receiving apparatus capable of contactless feeding and contact feeding, method of controlling power receiving apparatus, and recording medium
CN111247711A (en) * 2017-10-30 2020-06-05 三菱电机株式会社 Power receiving device and non-contact power transmission system
EP3706286A4 (en) * 2017-10-30 2020-09-09 Mitsubishi Electric Corporation Power reception device and non-contact power transmission system
CN111247711B (en) * 2017-10-30 2024-02-13 三菱电机株式会社 Power receiving device and noncontact power transmission system
JP2021103741A (en) * 2019-12-25 2021-07-15 株式会社サムスン日本研究所 Contactless power supply system

Similar Documents

Publication Publication Date Title
JPH1198706A (en) Non-contact charger
US6008622A (en) Non-contact battery charging equipment using a soft magnetic plate
JP4852829B2 (en) Non-contact power transmission device
US9558884B2 (en) Power transmission apparatus
EP1368815B1 (en) Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
JP5118394B2 (en) Non-contact power transmission equipment
US7495414B2 (en) Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform
JPH09190938A (en) Non-contact type battery charger
JP2006094699A (en) Inductively charged pad having arrangement indicator
US20140176060A1 (en) Miniature Low-Power Remote Battery Charging Systems and Methods
JP2012143091A (en) Remotely and wirelessly driven charger
US20140015338A1 (en) Receiving coil, reception apparatus and non-contact power transmission system
US10186875B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
Adachi et al. Consideration of contactless power station with selective excitation to moving robot
JPH0737737A (en) Noncontact type charger
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit
JP7487237B2 (en) Portable battery pack for wirelessly charging a wearable device through clothing
JP2002170725A (en) Power supply unit
JPH09330838A (en) Power unit
JP7106943B2 (en) Coil unit, wireless power transmission device, wireless power reception device, wireless power transmission system
JP2978100B2 (en) Contactless charger
JP2002017046A (en) Noncontact battery charger
JPH08205432A (en) Noncontact power transmitter
JP2003018758A (en) Contactless charger transformer and power supply device using the transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050706