JPH1194458A - Air separator - Google Patents

Air separator

Info

Publication number
JPH1194458A
JPH1194458A JP9258214A JP25821497A JPH1194458A JP H1194458 A JPH1194458 A JP H1194458A JP 9258214 A JP9258214 A JP 9258214A JP 25821497 A JP25821497 A JP 25821497A JP H1194458 A JPH1194458 A JP H1194458A
Authority
JP
Japan
Prior art keywords
air
oxygen
nitrogen
raw material
material air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9258214A
Other languages
Japanese (ja)
Other versions
JP3466437B2 (en
Inventor
Hisamichi Tanaka
久道 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Oxygen Industries Ltd
Original Assignee
Osaka Oxygen Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Oxygen Industries Ltd filed Critical Osaka Oxygen Industries Ltd
Priority to JP25821497A priority Critical patent/JP3466437B2/en
Publication of JPH1194458A publication Critical patent/JPH1194458A/en
Application granted granted Critical
Publication of JP3466437B2 publication Critical patent/JP3466437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/52Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air separator, capable of forming efficiently high purity nitrogen and high purity oxygen, which are not containing hydrocarbon substantially. SOLUTION: An air separator is provided with a fan 16a, transferring material air forcibly, a first heat exchanger 12a, preheating the material air, a heater 13, heating the material air further, a catalytic reactor 14, reacting a trace amounts of hydrocarbon, carbon monoxide and hydrogen, which are contained in the material air, with oxygen in the material air to convert them into carbon dioxide and water, a first cooler 15, cooling the material air to a normal temperature, a compressor 11, compressing the material air, a second cooler 17, cooling the material air to the normal temperature again, a changeover using type adsorbing tower 18, removing the carbon dioxide and water in the material air, and a fractionating tower 20, separating the material air into nitrogen and oxygen. In this case, the heater 13 is provided with a second heat exchanger 12b, a fuel burner 7 and a blower 16b for circulating air for heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の除去さ
れた製品ガスを製造するための空気分離装置に関し、さ
らに詳しくは、高純度窒素を製造すると同時に、炭化水
素の濃度が低減されたガスであって半導体の製造等に用
いることのできる高純度酸素および酸素含有ガスを製造
するための空気分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation apparatus for producing a product gas from which hydrocarbons have been removed, and more particularly to a gas having reduced hydrocarbon concentration while producing high-purity nitrogen. The present invention also relates to an air separation device for producing high-purity oxygen and an oxygen-containing gas that can be used for producing semiconductors and the like.

【0002】[0002]

【従来の技術】原料空気を精留によって窒素と酸素に分
離して製品窒素を生産する「窒素取りの空気分離装置」
いわゆる「窒素発生装置」によって半導体の製造等に用
いられる高純度窒素を得るために、原料空気中の一酸化
炭素と水素を精留工程の前に触媒反応器によって除去す
る方法が提案されている。例えば、特公平4−6399
3号公報には、原料空気を触媒反応に適した90〜12
0℃に昇温して触媒反応器に導入し、原料空気中の水素
および精留によっては窒素と分離することが困難な一酸
化炭素と酸素を反応・燃焼させて二酸化炭素と水に転換
することが開示されている。また、この技術と関連し
て、前記の触媒反応器の触媒毒となる炭化水素、二酸化
炭素および水を吸着・除去する吸着塔を触媒反応器の上
流側に設置することが、特開平5−172458号公報
に開示されている。これらの技術によって、半導体の製
造等に用いられる高純度窒素を製造することが可能であ
る。
2. Description of the Related Art "Nitrogen-removing air separation equipment" which separates raw air into nitrogen and oxygen by rectification to produce product nitrogen
In order to obtain high-purity nitrogen used for the production of semiconductors by a so-called "nitrogen generator", a method has been proposed in which carbon monoxide and hydrogen in raw material air are removed by a catalytic reactor before a rectification step. . For example, Japanese Patent Publication 4-6399
No. 3 discloses that raw material air is 90 to 12 suitable for a catalytic reaction.
The temperature is raised to 0 ° C and introduced into the catalytic reactor, where hydrogen in the raw material air and carbon monoxide and oxygen, which are difficult to separate from nitrogen due to rectification, are reacted and burned to be converted to carbon dioxide and water. It is disclosed. In connection with this technology, an adsorption tower for adsorbing and removing hydrocarbons, carbon dioxide, and water, which are poisons of the catalyst reactor, is installed upstream of the catalyst reactor. It is disclosed in 172458. With these techniques, it is possible to produce high-purity nitrogen used for producing semiconductors and the like.

【0003】しかし、窒素発生装置を用いて原料空気か
ら取り出された高純度窒素以外の残ガスは、炭化水素を
約15〜30ppm 含有している酸素濃度の高い廃酸素富
化空気であり、吸着塔の再生用ガスとして利用される以
外は何ら有益な用途が無く、有効活用を図ることが求め
られていた。
[0003] However, the residual gas other than high-purity nitrogen extracted from the raw material air using the nitrogen generator is waste oxygen-enriched air having a high oxygen concentration containing about 15 to 30 ppm of hydrocarbons. There was no useful use other than being used as a regeneration gas for the tower, and effective utilization was required.

【0004】また、製品窒素と製品酸素とを同時に生産
する高圧塔と低圧塔から成るいわゆる複式精留塔方式の
空気分離装置においては、原料空気中に炭化水素が含有
されていれば、原料空気を精留して窒素と酸素に分離す
る過程で沸点の高い成分すなわち製品酸素中に炭化水素
が約15〜30ppm の濃度に濃縮される。従って、この
ような空気分離装置においては、半導体の製造等に使用
可能な高純度の製品窒素を製造することはできても、半
導体の製造等に使用可能な高純度の酸素を同時に製造す
ることは困難であった。
In a so-called double rectification column type air separation device comprising a high-pressure column and a low-pressure column for simultaneously producing product nitrogen and product oxygen, if the raw material air contains hydrocarbons, the raw material air During the process of rectifying and separating nitrogen and oxygen, hydrocarbons are concentrated to a concentration of about 15 to 30 ppm in components having a high boiling point, that is, product oxygen. Therefore, in such an air separation apparatus, it is possible to produce high-purity nitrogen that can be used for semiconductor production, etc., but simultaneously produce high-purity oxygen that can be used for semiconductor production, etc. Was difficult.

【0005】すなわち、一般的な大気としての空気中に
は炭化水素として約1.6ppm のメタン、約0.8ppb の
エタン等が含まれているが、通常の空気分離装置によれ
ば製品酸素中にはメタンが約15〜30ppm の高濃度に
濃縮される。しかし、最近の半導体の製造等で必要とさ
れている高純度酸素においては、炭化水素(代表的には
メタン)が約10ppb 以下の極低濃度に低減されている
必要がある。なお、以下の説明において炭化水素とは、
代表的にはメタンであるが、その他にエタン、プロパン
等の大気成分として一般的に含まれる炭化水素を総称し
たものである。
[0005] That is, in general air as air, about 1.6 ppm of methane and about 0.8 ppb of ethane are contained as hydrocarbons. Methane is concentrated to a high concentration of about 15 to 30 ppm. However, in high-purity oxygen required in recent semiconductor production and the like, hydrocarbons (typically, methane) must be reduced to an extremely low concentration of about 10 ppb or less. In addition, in the following description, hydrocarbon means
Representatively, methane is a general term for hydrocarbons generally contained as atmospheric components such as ethane and propane.

【0006】このため、半導体の製造等に必要とされる
炭化水素が含まれない高純度酸素を得るために、(イ)
水を電気分解して酸素と水素を発生させることによって
本質的に炭化水素を含まない酸素ガスを製造し、これを
原料として高純度酸素を製造する、(ロ)空気分離装置
の精留操作方法を改善する、例えば通常の空気分離装置
において主精留塔から抽出された低純度酸素、すなわち
炭化水素を含んでいないが他の不純物を含む液体酸素を
再度精留して酸素濃度を高める、あるいは(ハ)空気分
離装置において液体酸素中の炭化水素を低温吸着にて吸
着除去する、等のことが行われていた。
Therefore, in order to obtain high-purity oxygen free of hydrocarbons required for the production of semiconductors and the like, (a)
(B) A method for rectifying an air separation device by producing oxygen gas essentially free of hydrocarbons by electrolyzing water to generate oxygen and hydrogen and using the raw material to produce high-purity oxygen. To increase the oxygen concentration by, for example, re-rectifying low-purity oxygen extracted from the main rectification column in a normal air separation apparatus, that is, liquid oxygen not containing hydrocarbons but containing other impurities, or (C) In an air separation apparatus, hydrocarbons in liquid oxygen are adsorbed and removed by low-temperature adsorption.

【0007】また、空気分離装置において液体酸素中の
炭化水素を除去する目的には、半導体の製造等に使用可
能な高純度酸素を得ることのほかに、精留塔内の酸素中
に炭化水素(メタン)が蓄積・濃縮されて爆発性混合物
が形成されるのを防止して装置の安全性の向上を図ると
いう目的もある。例えば、従来は、液体酸素中に炭化水
素が蓄積されて危険な高濃度になるのを避けるために製
品の液体酸素の一部を放出していたのであるが、この製
品酸素の放出量を少なくすることを目的として、低温吸
着によって炭化水素を除去する方法が特開昭57−62
81号公報に開示されている。これによると、精留塔に
冷却した原料空気を導入する前に、吸着材を充填した切
換え使用型の低温に冷却された吸着器によって炭化水素
を吸着除去する。
The purpose of removing hydrocarbons in liquid oxygen in an air separation device is to obtain high-purity oxygen usable for the production of semiconductors and the like, and to remove hydrocarbons in oxygen in a rectification column. Another object is to prevent the accumulation and concentration of (methane) from forming an explosive mixture to improve the safety of the apparatus. For example, in the past, part of liquid oxygen in products was released to avoid the accumulation of hydrocarbons in liquid oxygen and dangerously high concentrations. Japanese Patent Laid-Open No. Sho 57-62 discloses a method for removing hydrocarbons by low temperature adsorption.
No. 81 discloses this. According to this, before introducing the cooled raw material air into the rectification column, hydrocarbons are adsorbed and removed by a low-temperature adsorber filled with an adsorbent and cooled by switching.

【0008】また、特公平4−18223号公報には、
高純度窒素の製造と並行して高純度酸素を製造するため
に、酸素を精留塔から取り出す経路に酸素中の炭化水素
を吸着除去する吸着塔を設置することが開示されてい
る。さらに、空気分離装置の精留操作方法を改善するこ
とにより炭化水素を除去して高純度酸素を製造すること
が、特開平5−203345号公報、特開平9−148
32号公報、および特開平7−305954号公報に開
示されている。特開平5−203345号公報に開示さ
れている方法は、窒素発生装置から廃棄される酸素富化
空気を二塔から成る再精留塔に導入して再精留すること
により、炭化水素を含まない高純度酸素を製造するもの
である。特開平9−14832号公報にも、同様に窒素
発生装置方式の空気分離装置において、二段階精留によ
り高純度酸素を製造する改良された方法が開示されてい
る。特開平7−305954号公報に開示されている方
法は、複式精留塔方式の空気分離装置において、酸素を
含有するが重質の汚染物(炭化水素等)を含まない酸素
ガスを主精留塔から抜き出して、続いて補助精留塔にて
再度精留を行う二段階精留によるものである。
Further, Japanese Patent Publication No. 4-18223 discloses that
In order to produce high-purity oxygen in parallel with the production of high-purity nitrogen, it is disclosed that an adsorption tower for adsorbing and removing hydrocarbons in oxygen is installed in a path for extracting oxygen from a rectification tower. Furthermore, it has been disclosed in Japanese Patent Application Laid-Open Nos. 5-203345 and 9-148 to remove hydrocarbons to produce high-purity oxygen by improving a rectification operation method of an air separation device.
32 and JP-A-7-305954. The method disclosed in Japanese Patent Application Laid-Open No. 5-203345 discloses a method in which oxygen-enriched air discarded from a nitrogen generator is introduced into a two-column re-rectification column and re-rectified to contain hydrocarbons. Not to produce high-purity oxygen. Japanese Patent Application Laid-Open No. Hei 9-14832 also discloses an improved method for producing high-purity oxygen by two-stage rectification in an air separation apparatus of a nitrogen generator type. The method disclosed in Japanese Patent Application Laid-Open No. Hei 7-305954 discloses a method in which an oxygen gas containing oxygen but not containing heavy pollutants (such as hydrocarbons) is mainly rectified in a double rectification column type air separation apparatus. This is a two-stage rectification in which the column is withdrawn from the column and subsequently rectified again in the auxiliary rectification column.

【0009】ここで、従来の複式精留塔方式の空気分離
装置の作用を図3を参照して説明する。図3において、
フィルタ−(10)を通った原料空気は、圧縮機(11)に
よって所定圧力(3〜10kg/cm2G)まで昇圧された
後、加熱器(13)によって触媒反応器(14)における反
応温度である約90〜120℃に昇温される。触媒反応
器(14)では、原料空気中に含まれる微量の一酸化炭素
と水素が触媒反応により空気中の酸素と反応して二酸化
炭素と水に転換される。触媒反応器(14)を出た原料空
気は冷却器(15)によって常温まで冷却される。冷却器
(15)を出た原料空気はモレキュラ−シ−ブ等の吸着剤
が充填された切換え使用型の吸着塔(18)に導入され、
原料空気中の二酸化炭素と水が吸着・除去される。吸着
塔(18)を出た原料空気(30)は、再生式のリバ−ス熱
交換器(19)において極低温に冷却された後、精留塔
(20)の下部塔(21)に導入される。
The operation of the conventional double rectification column type air separation apparatus will now be described with reference to FIG. In FIG.
The raw air passed through the filter (10) is pressurized to a predetermined pressure (3 to 10 kg / cm 2 G) by a compressor (11), and then heated by a heater (13) to a reaction temperature in a catalytic reactor (14). Is raised to about 90 to 120 ° C. In the catalytic reactor (14), trace amounts of carbon monoxide and hydrogen contained in the raw air react with the oxygen in the air by a catalytic reaction to be converted into carbon dioxide and water. The raw material air leaving the catalytic reactor (14) is cooled to room temperature by a cooler (15). The raw material air leaving the cooler (15) is introduced into a switchable adsorption tower (18) filled with an adsorbent such as molecular sieve,
Carbon dioxide and water in the raw material air are adsorbed and removed. The raw material air (30) exiting the adsorption tower (18) is cooled to a very low temperature in a regenerative reverse heat exchanger (19) and then introduced into the lower tower (21) of the rectification tower (20). Is done.

【0010】下部塔(21)では予備精留が行われ、下部
塔(21)の下部に酸素含有量の多い液体酸素(40)が分
離され、上部に窒素が分離される。このうち酸素含有量
の多い液体酸素(40)は、導管(60)と膨張弁(25)を
介して上部塔(22)に導入される。下部塔(21)の上部
側に分離される窒素ガスは、その一部が高純度の製品窒
素(33)として取り出される。残部の一部は、上部塔
(22)における液体酸素の蒸発用と下部塔(21)におけ
る窒素の凝縮用を兼ねた分縮器(23)において凝縮・液
化されて下部塔(21)に戻り、更に残りの部分(42)は
導管(62)と膨張弁(24)を介して上部塔(22)に移送
される。
[0010] Preliminary rectification is performed in the lower column (21), and liquid oxygen (40) having a high oxygen content is separated at the lower portion of the lower column (21), and nitrogen is separated at the upper portion. Among them, the liquid oxygen (40) having a high oxygen content is introduced into the upper tower (22) via the conduit (60) and the expansion valve (25). Part of the nitrogen gas separated at the upper side of the lower tower (21) is taken out as high-purity product nitrogen (33). Part of the remaining part is condensed and liquefied in a condensing unit (23), which is used for evaporating liquid oxygen in the upper tower (22) and condensing nitrogen in the lower tower (21), and returns to the lower tower (21). And the remainder (42) is transferred to the upper column (22) via conduit (62) and expansion valve (24).

【0011】上部塔(22)に供給された酸素含有量の多
い液体酸素(40)および液体窒素(42)は、上部塔(2
2)において精留されることにより、上部塔(22)の下
部に液体酸素が貯留すると共に上部に窒素が分離され
る。また、窒素は上部塔(22)の塔頂から導管(54)を
介してリバ−ス熱交換器(19)に導入され、原料空気と
熱交換して昇温した後、導管(55)から廃窒素(35)と
して大気中に放出される。
The liquid oxygen (40) and liquid nitrogen (42) having a high oxygen content supplied to the upper column (22) are supplied to the upper column (2).
By rectification in 2), liquid oxygen is stored in the lower part of the upper tower (22) and nitrogen is separated in the upper part. Nitrogen is introduced into the reverse heat exchanger (19) from the top of the upper tower (22) via the conduit (54), and heat-exchanges with the feed air to raise the temperature. Released into the atmosphere as waste nitrogen (35).

【0012】なお、リバ−ス熱交換器(19)での原料空
気(30)の液化用の寒冷源(図示せず)としては、精留
塔(20)内の一部から取りだしたガス流れを利用して膨
張タ−ビンによって発生させた冷熱や、液体酸素、液体
窒素、液体空気等の外部冷熱源が用いられる。
As a cold source (not shown) for liquefying the raw air (30) in the reverse heat exchanger (19), a gas stream taken from a part of the rectification column (20) is used. A cold source generated by an expansion turbine using the above method or an external cold source such as liquid oxygen, liquid nitrogen, or liquid air is used.

【0013】酸素の再精留は以下のようにして行われ
る。下部塔(21)の一部から第1の酸素含有流れとして
炭化水素を実質的に含まない酸素含有流れを抜き出し、
導管(61)、膨張弁(28)を介して再精留塔(27)の上部
に導入する。上部塔(22)の下部近傍から第2の酸素含
有流れとして、窒素、アルゴン、および酸素(90%以
上)からなるガス流れを抜き出し、導管(65)を介して
再精留塔(27)の下部に導入する。この第2の酸素含有
流れは、再精留塔(27)の塔底液を加熱するために塔底
部に供給される。
The re-rectification of oxygen is carried out as follows. Extracting an oxygen-containing stream substantially free of hydrocarbons as a first oxygen-containing stream from a portion of the lower column (21);
It is introduced into the upper part of the rectification column (27) via the conduit (61) and the expansion valve (28). As a second oxygen-containing stream, a gas stream composed of nitrogen, argon, and oxygen (90% or more) is withdrawn from the vicinity of the lower portion of the upper column (22), and is passed through a conduit (65). Introduce at the bottom. This second oxygen-containing stream is fed to the bottom of the rectification column (27) for heating the bottom liquid.

【0014】再精留塔(27)の塔頂からの流れ(44)と
塔底からの流れ(43)は、上部塔(22)の塔内のガス組
成が同じような位置にそれぞれ戻される。再精留塔(2
7)の中間位置から、炭化水素を含有しない高純度酸素
(46)が取り出される。
The flow (44) from the top of the re-rectification column (27) and the flow (43) from the bottom of the column are returned to the same position in the upper column (22), respectively. . Rerectification tower (2
From the intermediate position of 7), high-purity oxygen (46) containing no hydrocarbon is extracted.

【0015】このように、再精留塔を用いて炭化水素を
含まない酸素を得る従来技術は、酸素の濃度がやや低下
するが実質的に炭化水素を含んでいない酸素を下部塔
(21)から(導管(61)を介して)回収することを基本
にしている。
As described above, the prior art for obtaining hydrocarbon-free oxygen by using a re-rectification column uses the lower column (21) in which the oxygen concentration is slightly reduced but oxygen substantially containing no hydrocarbon is used. (Via conduit (61)).

【0016】しかし、空気分離装置において主精留塔か
ら抽出した低純度液体酸素を補助精留塔で再精留する方
法については、設備コストが増大し製品酸素ガスの価格
が高くなること、運転操作が複雑になる等の問題があっ
た。また、製品酸素中に許容される炭化水素の濃度が低
ければ低い程、炭化水素の濃度が比較的低濃度ではある
が許容限度を超える炭化水素を含有する液化酸素を廃棄
する量が増大するために、高純度酸素の収率が低下する
こととなり、結果として製造コストが高くなり不経済で
あるという不都合があった。
However, in the method of re-rectifying low-purity liquid oxygen extracted from the main rectification column in the air separation device with the auxiliary rectification column, the equipment cost increases and the price of the product oxygen gas increases, There were problems such as complicated operations. Also, the lower the concentration of hydrocarbons allowed in the product oxygen, the greater the amount of liquefied oxygen containing hydrocarbons whose hydrocarbon concentration is relatively low but exceeds the allowable limit increases. In addition, the yield of high-purity oxygen is reduced, resulting in high production cost and uneconomical disadvantage.

【0017】また、空気分離装置において低温に冷却し
た吸着塔によって炭化水素を吸着・除去する方法におい
ては、冷却した吸着塔の再生を行うのに低温下で単に真
空引きしただけでは再生が不十分であり、次第に吸着能
力が低下するという問題があった。定期的に切換え使用
する吸着塔を低温の状態から加熱・再生するとしても、
熱損失が大きく不経済であった。また、低温吸着によっ
て炭化水素を約10ppb 以下の極低濃度まで除去するこ
とは吸着性能の面から困難であった。
Further, in the method of adsorbing and removing hydrocarbons by an adsorption tower cooled to a low temperature in an air separation device, regeneration is insufficient by merely evacuating the cooled adsorption tower at a low temperature. However, there is a problem that the adsorption capacity gradually decreases. Even if the adsorption tower used for regular switching is heated and regenerated from a low temperature,
Heat loss was large and uneconomical. Further, it has been difficult to remove hydrocarbons to an extremely low concentration of about 10 ppb or less by low-temperature adsorption from the viewpoint of adsorption performance.

【0018】また、水を電気分解して発生させた酸素を
原料にして炭化水素を含まない高純度酸素を製造する方
法においては、水電解槽等の電解酸素の発生現場で製造
した酸素を高圧ガス容器に充填し、あるいは酸素ガスを
液化させて液体酸素として、使用現場である半導体製造
工場等のユ−ザーまで運搬する必要があり、運搬流通コ
ストが増大する。そのためユーザーが遠隔地にあって高
純度酸素を大量に使用する場合には、ガスの供給が困難
である等の問題があった。
In the method of producing high-purity oxygen containing no hydrocarbon using oxygen generated by electrolysis of water as a raw material, the oxygen produced at the electrolytic oxygen generation site such as a water electrolysis tank is subjected to high pressure. It is necessary to fill a gas container or liquefy oxygen gas to transport it as liquid oxygen to a user such as a semiconductor manufacturing plant at the site of use, which increases transport and distribution costs. Therefore, when a user is in a remote place and uses a large amount of high-purity oxygen, there are problems such as difficulty in supplying gas.

【0019】[0019]

【発明が解決しようとする課題】従って、原料空気を精
留塔に導入する前に空気中の炭化水素を約10ppb 以下
の極低濃度になるまで効率よく除去し、精留塔内で分離
生成された窒素と酸素のいずれにも炭化水素が含まれて
いないようにすることが可能な、従来技術を大幅に改良
した空気分離装置の提供が求められていた。
Therefore, before introducing the raw material air into the rectification column, hydrocarbons in the air are efficiently removed until the concentration reaches a very low concentration of about 10 ppb or less, and separated and formed in the rectification column. There has been a need to provide an air separation device that can significantly prevent the conventional technology from being able to contain hydrocarbons in both the nitrogen and oxygen.

【0020】すなわち本発明の目的は、高純度窒素を製
造すると同時に、炭化水素の濃度が低減されて半導体の
製造等に必要とされる高純度酸素および酸素含有ガスを
効率良く製造することのできる、安価な設備で運転操作
が簡便な空気分離装置を提供することである。
That is, an object of the present invention is to simultaneously produce high-purity nitrogen and, at the same time, efficiently produce high-purity oxygen and an oxygen-containing gas required for the production of semiconductors by reducing the concentration of hydrocarbons. Another object of the present invention is to provide an air separation device that is inexpensive and easy to operate.

【0021】[0021]

【課題を解決するための手段】前記課題を解決するため
の本発明の空気分離装置は、圧縮された原料空気を冷却
した後に精留塔に導入し、精留塔において原料空気を沸
点の温度差によって窒素と酸素に分離する空気分離装置
であって、原料空気を強制的に移送する送風機と、該送
風機により移送されて加熱器に導入される前の原料空気
と該加熱器の下流にある触媒反応器を出た高温度の原料
空気との熱交換により加熱器に導入する前の原料空気を
予熱するための第1の熱交換器と、予熱された原料空気
を更に触媒反応器での反応に適した温度まで間接的に加
熱するための加熱器であって、前記原料空気の通路に設
けた第2の熱交換器、加熱媒体としての空気を所定温度
に加熱する燃料バーナ、および該空気を第2の熱交換器
と燃料バーナの間を循環送風させる循環ブロアを備えた
加熱器と、加熱されて昇温した原料空気中に含まれる微
量の炭化水素、一酸化炭素および水素を原料空気中の酸
素と反応させて二酸化炭素と水に転換させる触媒が充填
された触媒反応器と、触媒反応器を出て第1の熱交換器
を通過することによって冷却された原料空気を更に常温
まで冷却するための第1の冷却器と、該第1の冷却器を
経た原料空気を圧縮するための圧縮機と、該圧縮機を経
た原料空気を常温まで冷却するための第2の冷却器と、
圧縮され冷却された原料空気中の二酸化炭素と水を除去
するための切換え使用型の吸着塔、および該吸着塔を出
た原料空気を窒素と酸素に分離するための精留塔、を備
えたことを特徴とする。
According to the present invention, there is provided an air separation apparatus for cooling a compressed raw material air, introducing the compressed raw material air into a rectification column, and converting the raw material air to a boiling point temperature in the rectification column. An air separation device for separating nitrogen and oxygen by a difference, wherein a blower forcibly transfers raw air, a raw air before being transferred by the blower and introduced into a heater, and downstream of the heater. A first heat exchanger for preheating the feed air before being introduced into the heater by heat exchange with the high-temperature feed air leaving the catalytic reactor; A heater for indirectly heating to a temperature suitable for the reaction, a second heat exchanger provided in the passage of the raw material air, a fuel burner for heating air as a heating medium to a predetermined temperature, and Air between the second heat exchanger and the fuel burner A heater equipped with a circulation blower that circulates air, and a small amount of hydrocarbons, carbon monoxide and hydrogen contained in the heated and heated raw air react with the oxygen in the raw air to convert it into carbon dioxide and water. A catalyst reactor filled with the catalyst to be cooled, a first cooler for further cooling the raw material air cooled by exiting the catalyst reactor and passing through the first heat exchanger to room temperature; A compressor for compressing the raw material air having passed through the first cooler, a second cooler for cooling the raw material air having passed through the compressor to room temperature,
A switchable adsorption tower for removing carbon dioxide and water in the compressed and cooled raw material air, and a rectification column for separating the raw material air leaving the adsorption tower into nitrogen and oxygen. It is characterized by the following.

【0022】一般に、高温・高圧の過酷な運転条件下で
使用される熱交換器、触媒塔等の圧力容器や配管は、運
転圧力及び運転温度に応じた適切な構造材料を選定し、
耐圧構造や寸法が最適となるように機器・配管の設計、
製作が行われたものが設備される。運転圧力が高い程、
また運転温度が高い程、機器や配管の構造材料は高い強
度が必要となり、肉厚の厚い材料や耐熱温度の高い材料
を使用することになる。従って、高温・高圧下で使用す
る装置の機器は、材料費と製作費が増加し、必然的に設
備コストが増大することになる。
Generally, for pressure vessels and pipes such as heat exchangers and catalyst towers used under severe operating conditions of high temperature and high pressure, appropriate structural materials corresponding to the operating pressure and operating temperature are selected.
Design of equipment and piping to optimize pressure-resistant structure and dimensions,
What has been produced is installed. The higher the operating pressure,
Also, the higher the operating temperature, the higher the strength of the structural material of the equipment and piping is required, and a thicker material or a material with a higher heat resistance temperature is used. Therefore, equipment costs of equipment used under high temperature and high pressure increase material cost and manufacturing cost, and inevitably increase equipment cost.

【0023】そこで本発明者は、これらのことと前記の
解決すべき課題とに鑑み、鋭意研究を重ねた結果、触媒
を用いて空気中に含まれる炭化水素と酸素とを反応させ
る酸化反応の速度に及ぼす反応圧力の影響は少なく、反
応圧力が大気圧近辺であるときの反応速度と通常の空気
分離装置における空気圧縮機の吐出圧力である3〜10
kg/cm2Gのときの反応速度を比較しても大差が無いこと
を見いだした。また、触媒反応器の運転温度が高いほど
反応速度が速くなり、単位触媒量当たりの処理ガス量で
ある空間速度(SV値)を大きな値とすることができる
が、むやみに反応温度を高くすることなく反応温度を3
50〜550℃にすれば、工業的に採用できる妥当な反
応速度が得られることを見い出した。
In view of the above and the problems to be solved, the present inventors have conducted intensive studies and as a result, have found that the oxidation reaction of reacting hydrocarbons contained in air with oxygen using a catalyst. The effect of the reaction pressure on the speed is small, and the reaction speed when the reaction pressure is near the atmospheric pressure and the discharge pressure of the air compressor in an ordinary air separation device are 3 to 10.
It was found that there was no significant difference when comparing the reaction rates at kg / cm 2 G. In addition, the higher the operating temperature of the catalytic reactor, the higher the reaction speed, and the space velocity (SV value), which is the amount of processing gas per unit catalyst amount, can be set to a large value, but the reaction temperature is increased unnecessarily. 3 reaction temperatures without
It has been found that when the temperature is 50 to 550 ° C., a reasonable reaction rate that can be industrially adopted can be obtained.

【0024】そこで、原料空気を精留塔に導入する経路
に送風機、熱交換器、加熱器、および触媒反応器を順に
配置し、触媒反応に必要な反応温度(350〜550
℃)において可能な限り大気圧に近い圧力下で触媒反応
器を運転すれば非常に低い圧力で運転されることにな
り、温度条件は比較的高温であるとしても圧力条件が緩
和されるので、高温・高圧の過酷な運転条件が重なる場
合に比べて非常に安価な熱交換器、触媒塔等の機器設備
で済むこととなり、設備コストを著しく削減することが
可能となる。
Therefore, a blower, a heat exchanger, a heater, and a catalyst reactor are arranged in this order on a path for introducing the raw material air into the rectification column, and a reaction temperature (350 to 550) required for the catalyst reaction is provided.
C)), operating the catalyst reactor at a pressure as close to atmospheric pressure as possible will result in operation at a very low pressure, and even if the temperature condition is relatively high, the pressure condition will be relaxed. Compared to the case where severe operating conditions of high temperature and high pressure are overlapped, only inexpensive equipment such as a heat exchanger and a catalyst tower can be used, and the equipment cost can be significantly reduced.

【0025】また、前記触媒反応器を圧縮機の上流側に
設置し、触媒反応器から圧縮機までの機器・配管経路に
おいて、運転圧力を常に大気圧よりも高い圧力である約
0.005〜0.5kg/cm2G、より好ましくは0.01〜
0.2kg/cm2Gとすることにより、機器・配管の内部が
負圧となる場合に比べて、触媒反応器によって浄化され
た原料空気に機器・配管の接続部分等からのガス漏洩に
より外気(大気)が侵入して炭化水素(メタン)、一酸
化炭素、または水素の濃度が上昇する不具合を低減でき
る。さらに、機器・配管内を微小の正圧に保持して運転
する場合は、機器・配管を耐負圧構造にしないで済むの
で、装置・機器の構造を非常に簡単にすることができ
る。
Further, the catalyst reactor is installed upstream of the compressor, and the operating pressure in the equipment / pipe path from the catalyst reactor to the compressor is always about 0.005 to higher than the atmospheric pressure. 0.5 kg / cm 2 G, more preferably 0.01 to
By setting the pressure to 0.2 kg / cm 2 G, the raw material air purified by the catalytic reactor is exposed to the outside air due to gas leakage from the connection part of the equipment / piping compared to the case where the inside of the equipment / piping has a negative pressure. The problem that the concentration of hydrocarbon (methane), carbon monoxide, or hydrogen rises due to intrusion of the atmosphere (atmosphere) can be reduced. Further, in the case where the operation is performed while maintaining the inside of the device / piping at a small positive pressure, the structure of the device / apparatus can be extremely simplified because the device / piping does not have to have a negative pressure resistant structure.

【0026】また、原料空気を空気分離装置の精留塔に
導入する前に空気中の炭化水素が除去されているので、
従来の空気分離装置に比べて再精留塔等の追加設備投資
を行なわないで済み、安価な設備で、炭化水素の濃度が
低減されて半導体製造等に必要な高純度酸素及び酸素含
有ガスを製造することができる。
Further, since the hydrocarbons in the air are removed before the feed air is introduced into the rectification column of the air separation device,
No additional equipment investment such as re-rectification towers is required compared to conventional air separation equipment.Inexpensive equipment reduces the concentration of hydrocarbons and removes high-purity oxygen and oxygen-containing gas necessary for semiconductor production. Can be manufactured.

【0027】本発明を有効に活用すれば、既存の空気分
離装置であって炭化水素を含んだ製品ガスしか製造でき
ないものについても、送風機、熱交換器、加熱器、触媒
反応器、冷却器等を既存設備に隣接させて追加設備する
ことによって、炭化水素の濃度が低減されて半導体の製
造等に必要な高純度酸素及び酸素含有ガスを製造するこ
とが可能な設備に機能を高めることが可能となり、当業
界における産業上の利用価値は非常に大きいと言える。
If the present invention is effectively used, even if an existing air separation device can only produce a product gas containing hydrocarbons, it can be used as a blower, a heat exchanger, a heater, a catalytic reactor, a cooler, etc. By adding additional equipment adjacent to existing equipment, it is possible to increase the function of equipment capable of producing high-purity oxygen and oxygen-containing gas required for semiconductor production etc. by reducing the concentration of hydrocarbons It can be said that the industrial utility value in this industry is very large.

【0028】本発明を複式精留塔方式の空気分離装置に
適用すれば、従来に比べて安価な設備で運転操作が簡便
な空気分離装置を提供することが可能となり、高純度窒
素の製造と同時に半導体の製造等に使用できる高純度酸
素及び酸素含有ガスを経済的に製造できる。
If the present invention is applied to a double rectification column type air separation apparatus, it becomes possible to provide an air separation apparatus which is inexpensive equipment and whose operation is simpler than in the past, and which enables the production of high-purity nitrogen. At the same time, it is possible to economically produce high-purity oxygen and an oxygen-containing gas that can be used for the production of semiconductors and the like.

【0029】また、本発明を窒素発生装置としての空気
分離装置に適用すれば、従来、廃窒素(実際には酸素濃
度が高い酸素・窒素混合ガス)として放出していた酸素
濃度の高い乾燥ガス中の炭化水素を約10ppb 以下の極
低濃度まで除去することができる。この炭化水素を含ま
ない廃窒素に窒素を添加混合して空気と同じ酸素濃度に
調整すれば、半導体の製造等の各種工業分野で利用でき
る代用乾燥空気として活用できる。
Further, if the present invention is applied to an air separation device as a nitrogen generator, a dry gas with a high oxygen concentration which has conventionally been discharged as waste nitrogen (actually, an oxygen / nitrogen mixed gas with a high oxygen concentration) can be obtained. Hydrocarbons therein can be removed to very low concentrations of about 10 ppb or less. If nitrogen is added to and mixed with the waste nitrogen containing no hydrocarbon to adjust the oxygen concentration to the same as that of air, it can be used as substitute dry air that can be used in various industrial fields such as semiconductor production.

【0030】なお、窒素発生装置の運転操作方法を工夫
することにより、炭化水素が除去された原料空気を製品
乾燥空気として取り出すことが、特開平8−86564
号公報に開示されている。しかし、この場合は炭化水素
が酸素富化空気の側に濃縮されることが改善されておら
ず、酸素富化空気の一部しか製品乾燥空気に利用できな
いので、製品乾燥空気の収率は低い値となってしまう。
それに比べて、本発明においては、精留塔に導入する以
前に原料空気中の炭化水素が除去されているので酸素富
化空気の側に濃縮される炭化水素は全く無い。従って、
廃棄する酸素富化空気の全量を製品乾燥空気として利用
することが可能である。
By devising a method of operating the nitrogen generator, the raw air from which hydrocarbons have been removed can be taken out as product dry air as disclosed in JP-A-8-86564.
No. 6,086,045. However, in this case, the yield of the product dry air is low because the concentration of hydrocarbons on the side of the oxygen-enriched air is not improved, and only a part of the oxygen-enriched air is available for the product dry air. Value.
In contrast, in the present invention, no hydrocarbons are enriched on the oxygen-enriched air side because the hydrocarbons in the feed air have been removed prior to introduction into the rectification column. Therefore,
The entire amount of the oxygen-enriched air to be discarded can be used as product dry air.

【0031】本発明は、触媒反応に必要な反応温度(3
50〜550℃)において可能な限り大気圧に近い圧力
下で触媒反応器を運転し、原料空気中に含まれる炭化水
素(メタン)、一酸化炭素、及び水素を空気中の酸素と
反応させて二酸化炭素と水に転換した後、圧縮機によっ
て昇圧して切換え使用型の吸着塔に導入して二酸化炭素
と水を除去した原料空気を得た後、この原料空気を精留
塔に導入するものである。精留塔では、原料空気は沸点
の温度差により窒素と酸素に分離される。
According to the present invention, the reaction temperature (3
(50-550 ° C.) at a pressure as close to the atmospheric pressure as possible, and reacting hydrocarbons (methane), carbon monoxide, and hydrogen contained in the raw air with oxygen in the air. After converting to carbon dioxide and water, the pressure is increased by a compressor, introduced into a switchable adsorption tower to obtain raw air from which carbon dioxide and water have been removed, and then this raw air is introduced into a rectification tower It is. In the rectification column, the raw material air is separated into nitrogen and oxygen by the difference in boiling points.

【0032】本発明は前記の通り、精留塔に導入する以
前に原料空気中の炭化水素を除去することを特徴として
おり、精留塔に付属する機器の構成によって本発明の本
質的な効果が左右されるものではない。従って、本発明
をあらゆる機器構成の精留塔に適用できることはいうま
でもない。
As described above, the present invention is characterized in that hydrocarbons in the raw material air are removed before being introduced into the rectification column, and the essential effects of the present invention are determined by the configuration of the equipment attached to the rectification column. Is not affected. Therefore, it is needless to say that the present invention can be applied to rectification towers having various equipment configurations.

【0033】[0033]

【発明の実施の形態】以下に実施例に基づいて本発明を
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments.

【0034】実施例 1 本発明の実施例の1つとして、空気分離装置が複式精留
塔方式の場合の基本的な概略構成図を図1に示す。
[0034] As one example of the first embodiment the present invention, an air separation unit showing a basic schematic diagram of a case of the double column system in Figure 1.

【0035】図1において、フィルタ(10)を通して導
入された原料空気は、送風機(16a)によって移送され
る。原料空気は、加熱器(13)に導入される前に、触媒
反応器(14)を出た高温の空気と第1の熱交換器(12
a)において熱交換することにより予熱される。なお、
触媒反応器(14)から圧縮機(11)までの機器・配管経
路において、運転圧力は常に大気圧よりも高い圧力であ
る約0.005〜0.5 kg/cm2Gであるのが好ましく、
より好ましくは約0.01〜0.2 kg/cm2Gである。こ
の圧力は原料空気を送風機(16a)によって強制的に移
送することによって得られる。
In FIG. 1, raw air introduced through a filter (10) is transferred by a blower (16a). Before the feed air is introduced into the heater (13), the hot air exiting the catalytic reactor (14) and the first heat exchanger (12)
It is preheated by heat exchange in a). In addition,
In the equipment and piping route from the catalytic reactor (14) to the compressor (11), the operating pressure is preferably about 0.005 to 0.5 kg / cm 2 G, which is always higher than the atmospheric pressure. ,
More preferably, it is about 0.01 to 0.2 kg / cm 2 G. This pressure is obtained by forcibly transferring the raw air by a blower (16a).

【0036】次に、第1の熱交換器(12a)において予
熱された原料空気は、更に加熱器(13)によって触媒反
応に必要な温度である350〜550℃まで昇温され
る。これは、燃料バーナ(7)で所定温度に加熱した空
気を第2の熱交換器(12b)とバーナ(7)の間で循環
ブロア(16b)によって循環送風させて、この空気を用
いて原料空気を第2の熱交換器(12b)で間接的に加熱
することによって行われる。バーナ(7)としては、液
体燃料バ−ナ、気体燃料バ−ナ等の中から適宜選択して
使用することが可能である。燃料バーナ(7)の運転に
おいて、助燃空気の供給、燃焼排ガスの外部放出等に必
要な付属構成機器(図示せず)は適宜に設備される。
Next, the raw material air preheated in the first heat exchanger (12a) is further heated by a heater (13) to 350 to 550 ° C., which is a temperature required for the catalytic reaction. This is because air heated to a predetermined temperature by a fuel burner (7) is circulated and blown between a second heat exchanger (12b) and a burner (7) by a circulation blower (16b), and the air is used as a raw material. This is done by indirectly heating the air in a second heat exchanger (12b). As the burner (7), a liquid fuel burner, a gas fuel burner or the like can be appropriately selected and used. In the operation of the fuel burner (7), auxiliary components (not shown) necessary for supplying auxiliary combustion air, externally discharging combustion exhaust gas, and the like are appropriately provided.

【0037】次いで、原料空気は触媒反応器(14)に導
入され、原料空気中に含まれる微量の炭化水素(主とし
てメタン)、一酸化炭素および水素は、空気中の酸素と
反応して二酸化炭素と水に転換される。前記の反応温度
を用いる場合、触媒反応器(14)に充填した触媒は、P
t、Pd およびRh から1種以上を選択してアルミナ等
の担体に担持させたものであるのが好ましい。
Next, the raw material air is introduced into the catalytic reactor (14), and trace hydrocarbons (mainly methane), carbon monoxide and hydrogen contained in the raw material air react with oxygen in the air to produce carbon dioxide. And converted to water. When the above reaction temperature is used, the catalyst charged in the catalyst reactor (14) is P
It is preferable that at least one selected from t, Pd and Rh is supported on a carrier such as alumina.

【0038】触媒反応器(14)を出た原料空気は、第1
の熱交換器(12a)において、加熱器(13)に導入され
る前の原料空気との熱交換により冷却された後、更に第
1の冷却器(15)によって常温まで冷却される。
The feed air leaving the catalytic reactor (14) is
In the heat exchanger (12a), after being cooled by heat exchange with the raw material air before being introduced into the heater (13), it is further cooled to room temperature by the first cooler (15).

【0039】好ましくは、少なくとも第1の熱交換器
(12a)と加熱器(13)と触媒反応器(14)とを共通の
架台上に一体的に配設した一体構造物を形成し、これら
を密閉構造の函体(8)の中に収納する。また、該一体
構造物の外表面と函体(8)の壁の間に保温断熱材を設
け、外気への放熱を低減するのが好ましい。
Preferably, at least a first heat exchanger (12a), a heater (13), and a catalytic reactor (14) are integrally formed on a common base to form an integrated structure. In a box (8) with a closed structure. It is preferable to provide a heat insulating material between the outer surface of the integrated structure and the wall of the box (8) to reduce heat radiation to the outside air.

【0040】冷却器(15)を出た原料空気は、圧縮機
(11)によって所定圧力(3〜10kg/cm2G)まで昇圧
された後、第2の冷却器(17)によって常温まで冷却さ
れる。冷却された原料空気は、ドレン分離器(図示せ
ず)によってドレンが分離された後、モレキュラ−シ−
ブ等の吸着剤が充填された切換え使用型の吸着塔(18)
に導入されて、原料空気中の二酸化炭素と水が吸着除去
される。なお、吸着塔(18)は加熱再生方式のものであ
っても圧力スイング方式のいずれであっても良い。
The raw air leaving the cooler (15) is pressurized to a predetermined pressure (3 to 10 kg / cm 2 G) by the compressor (11), and then cooled to room temperature by the second cooler (17). Is done. The cooled raw material air is separated by a drain separator (not shown) into a molecular sieve.
Switch-type adsorption tower filled with adsorbents such as tubes (18)
And carbon dioxide and water in the raw material air are adsorbed and removed. In addition, the adsorption tower (18) may be either a heating regeneration type or a pressure swing type.

【0041】吸着塔(18)を出た原料空気(30)は、再
生式のリバ−ス熱交換器(19)において極低温に冷却さ
れた後、精留塔(20)の下部塔(21)に導入される。下
部塔(21)では予備精留が行われ、下部塔(21)の下部
に酸素含有量の多い液体酸素が、上部に窒素が分離され
る。このうち酸素含有量の多い液体酸素(40)は、導管
(60)と膨張弁(25)を介して上部塔(22)に移送され
る。下部塔(21)の上部側に分離される窒素ガスは、そ
の一部が高純度の製品窒素(33)として取り出される。
残部の一部は、上部塔(22)における液体酸素の蒸発用
と下部塔(21)における窒素の凝縮用を兼ねた分縮器
(23)において凝縮・液化されて下部塔(21)内を下降
し、更に残りの部分(42)は導管(62)と膨張弁(24)
を介して上部塔(22)に移送される。
The raw air (30) leaving the adsorption tower (18) is cooled to a very low temperature in a regenerative reverse heat exchanger (19) and then cooled to the lower tower (21) of the rectification tower (20). ). Preliminary rectification is performed in the lower column (21), and liquid oxygen having a high oxygen content is separated at a lower portion of the lower column (21), and nitrogen is separated at an upper portion. Among them, the liquid oxygen (40) having a high oxygen content is transferred to the upper tower (22) via the conduit (60) and the expansion valve (25). Part of the nitrogen gas separated at the upper side of the lower tower (21) is taken out as high-purity product nitrogen (33).
A part of the remaining part is condensed and liquefied in a condensing unit (23) for evaporating liquid oxygen in the upper tower (22) and condensing nitrogen in the lower tower (21), and passes through the lower tower (21). Descends, and the rest (42) consists of conduit (62) and expansion valve (24)
To the upper tower (22).

【0042】上部塔(22)に供給された酸素含有量の多
い液体酸素(40)および液体窒素(42)は、上部塔(2
2)において精留されることにより、上部塔(22)の下
部に液体酸素が貯留すると共に上部に窒素が分離され
る。このうち液体酸素は炭化水素を含まない高純度の製
品酸素ガス(47)として導管(67)から取り出される。
なお、必要に応じて上部塔(22)の下部に溜まる液体酸
素は、そのまま液体の状態で導管(67)よりも下側の位
置に設けた導管(図示せず)から取り出すことができ
る。また、窒素は上部塔(22)の塔頂から導管(54)を
介してリバ−ス熱交換器(19)に導入され、原料空気と
熱交換して昇温した後、導管(55)から廃窒素(35)と
して大気中へ放出される。
The oxygen-rich liquid oxygen (40) and liquid nitrogen (42) supplied to the upper column (22) are mixed with the upper column (2).
By rectification in 2), liquid oxygen is stored in the lower part of the upper tower (22) and nitrogen is separated in the upper part. Among them, liquid oxygen is taken out of the conduit (67) as hydrocarbon-free high-purity product oxygen gas (47).
If necessary, the liquid oxygen accumulated in the lower part of the upper tower (22) can be taken out in a liquid state from a conduit (not shown) provided below the conduit (67). Nitrogen is introduced into the reverse heat exchanger (19) from the top of the upper tower (22) via the conduit (54), and heat-exchanges with the feed air to raise the temperature. Released into the atmosphere as waste nitrogen (35).

【0043】なお、リバ−ス熱交換器(19)で用いられ
る原料空気の液化用の寒冷源(図示せず)としては、精
留塔内の一部から取りだしたガス流れを利用して膨張タ
−ビンによって発生させた冷熱や、液体酸素・液体窒素
・液体空気等の外部冷熱源を用いることが知られている
が、適宜選択していずれの方法を用いてもよい。
As a cold source (not shown) for liquefying the raw material air used in the reverse heat exchanger (19), expansion is performed by utilizing a gas flow taken out from a part of the rectification column. It is known to use cold generated by a turbine or an external cold heat source such as liquid oxygen, liquid nitrogen, or liquid air, but any method may be used as appropriate.

【0044】以上においては複式精留塔方式の空気分離
装置によって原料空気を窒素と酸素とに分離することを
説明したが、必要に応じて上部塔(22)の一部からアル
ゴン含有量の多い液体流れを取り出して、別途設けたア
ルゴン精留塔によって製品アルゴンを併産することも可
能である。
In the above description, the feed air is separated into nitrogen and oxygen by a double rectification column type air separation apparatus. However, if necessary, a part of the upper column (22) has a large argon content. It is also possible to take out the liquid stream and co-produce product argon by a separately provided argon rectification column.

【0045】製品酸素(47)及び製品窒素(33)の流体
中には炭化水素が実質的に含まれていない(数ppb 以
下)ので、これらをそのまま半導体の製造等に使用する
ことができる。それと共に、酸素を含有する廃窒素(3
5)中にも炭化水素が実質的に含まれていないので、こ
れも次の通り有効に活用できる。
Since hydrocarbons are not substantially contained in the fluid of the product oxygen (47) and the product nitrogen (33) (several ppb or less), they can be used as they are in the manufacture of semiconductors. At the same time, waste nitrogen containing oxygen (3
5) Since it does not substantially contain hydrocarbons, it can also be used effectively as follows.

【0046】例えば、特開平8−86564号公報には
乾燥空気の代用として窒素発生装置から炭化水素の除去
された空気を得る方法が開示されているが、本発明によ
る廃窒素(35)についてもこのような乾燥空気の代用と
して利用できる。なお、必要に応じて廃窒素中の酸素濃
度は窒素を添加して希釈調整することが可能である。ま
た、必要に応じて吸着塔(18)を出た炭化水素の除去さ
れた原料空気も、このような乾燥空気として利用でき
る。
For example, Japanese Patent Application Laid-Open No. Hei 8-86564 discloses a method of obtaining air from which hydrocarbons have been removed from a nitrogen generator as a substitute for dry air, but the waste nitrogen (35) according to the present invention is also disclosed. It can be used as a substitute for such dry air. The oxygen concentration in the waste nitrogen can be adjusted by adding nitrogen as necessary. In addition, the raw material air from which the hydrocarbons exiting the adsorption tower (18) can be used as such dry air as necessary.

【0047】実施例 2 本発明の他の実施例として、空気分離装置が窒素発生装
置の場合の基本的な概略構成図を図2に示す。
Embodiment 2 As another embodiment of the present invention, FIG. 2 shows a basic schematic configuration diagram when the air separation device is a nitrogen generator.

【0048】図2において、原料空気(30)が吸着塔
(18)を出るまでは上記の実施例1と同様な操作によっ
て処理される。吸着塔(18)を出た原料空気は、再生式
のリバ−ス熱交換器(19)において極低温に冷却された
後、精留塔(20)の下部に導入される。
In FIG. 2, until the raw material air (30) leaves the adsorption tower (18), it is treated by the same operation as in the first embodiment. The raw material air leaving the adsorption tower (18) is cooled to an extremely low temperature in a regenerative reverse heat exchanger (19) and then introduced into the lower part of the rectification tower (20).

【0049】精留塔(20)において、原料空気は、精留
塔(20)の底部における酸素含有量の多い液体酸素(4
0)と、精留塔(20)の塔頂における実質的に純粋な高
純度窒素に分離される。高純度窒素の一部がリバ−ス熱
交換器(19)において常温まで加熱され、製品窒素(3
3)として取り出され、残部は凝縮器(26)によって液
化されて精留のための還流用の液体窒素として精留塔
(20)に戻される。
In the rectification column (20), the feed air is supplied to the liquid oxygen (4) having a high oxygen content at the bottom of the rectification column (20).
0) and substantially pure high-purity nitrogen at the top of the rectification column (20). Part of the high-purity nitrogen is heated to room temperature in the reverse heat exchanger (19), and the product nitrogen (3
The residue is taken out as 3) and the remainder is liquefied by the condenser (26) and returned to the rectification column (20) as liquid nitrogen for reflux for rectification.

【0050】精留塔(20)の底部から取り出される酸素
含有量の多い液体酸素(40)は、導管(60)、膨張弁
(25)を介して凝縮器(26)に導入され、窒素ガスを液
化するための寒冷源として利用された後、気化してリバ
−ス熱交換器(19)に導入され、原料空気と熱交換して
昇温した後、導管(55)から廃窒素(35)として大気中
へ放出される。
The oxygen-rich liquid oxygen (40) taken out from the bottom of the rectification column (20) is introduced into the condenser (26) through the conduit (60) and the expansion valve (25), and is supplied with nitrogen gas. After being used as a cold source for liquefaction, it is vaporized and introduced into the reverse heat exchanger (19), exchanges heat with the raw material air, and heats up. ) And released into the atmosphere.

【0051】なお、図1に示した実施例と同様に、リバ
−ス熱交換器(19)で用いられる原料空気の液化用の寒
冷源(図示せず)としては、精留塔内の一部から取りだ
したガス流れを利用して膨張タ−ビンによって発生させ
た冷熱や、液体酸素・液体窒素・液体空気等の外部冷熱
源を用いることが知られているが、適宜選択していずれ
の方法を用いてもよい。
As in the embodiment shown in FIG. 1, the cold source (not shown) for liquefying the raw air used in the reverse heat exchanger (19) is one in the rectification column. It is known to use a cold generated by an expansion turbine by using a gas flow taken out of a section or to use an external cold source such as liquid oxygen, liquid nitrogen, or liquid air. A method may be used.

【0052】廃窒素(35)の流体中には炭化水素が実質
的に含まれていない(数ppb 以下)ので、これを、図1
に示した実施例と同様に、乾燥空気の代用として利用で
きる。なお、必要に応じて廃窒素中の酸素濃度は窒素を
添加して希釈調整することが可能である。また、必要に
応じて吸着塔(18)を出た炭化水素の除去された原料空
気も、このような乾燥空気として利用できる。
Since the hydrocarbon of the waste nitrogen (35) does not substantially contain hydrocarbons (several ppb or less), this is shown in FIG.
Can be used as a substitute for dry air as in the embodiment shown in FIG. The oxygen concentration in the waste nitrogen can be adjusted by adding nitrogen as necessary. In addition, the raw material air from which the hydrocarbons exiting the adsorption tower (18) can be used as such dry air as necessary.

【0053】[0053]

【発明の効果】本発明によれば、空気分離装置の精留塔
が複式精留塔方式である場合において、製品酸素及び製
品窒素の流体には、炭化水素が実質的に含まれていない
(数ppb以下)ので、これらをそのまま半導体製造等に
使用することができると共に、酸素を含有する廃窒素も
乾燥空気の代用として利用できる。
According to the present invention, when the rectification column of the air separation apparatus is a double rectification column system, the product oxygen and product nitrogen fluids do not substantially contain hydrocarbons ( (Several ppb or less), these can be used as they are in semiconductor manufacturing and the like, and waste nitrogen containing oxygen can be used as a substitute for dry air.

【0054】また、本発明の装置によれば、空気分離装
置の精留塔が窒素発生装置である場合において、製品窒
素を得ると共に、従来は大気中へ放出していた原料空気
のおよそ半量に相当する廃窒素を乾燥空気の代用等を用
途として完全に利用することが可能となった。従って、
エネルギ−資源の有効活用を図ることができる。
Further, according to the apparatus of the present invention, when the rectification column of the air separation apparatus is a nitrogen generator, product nitrogen is obtained, and at the same time, about half of the raw material air conventionally discharged into the atmosphere. Corresponding waste nitrogen can be completely used as a substitute for dry air. Therefore,
Effective utilization of energy resources can be achieved.

【0055】また、本発明の装置においては、原料空気
の温度を触媒反応に必要な温度まで昇温させる手段とし
て、送風機(16a)により移送されて加熱器(13)に導
入される前の原料空気と加熱器(13)の下流にある触媒
反応器(14)を出た高温度の原料空気との熱交換により
加熱器(13)に導入する前の原料空気を予熱するための
第1の熱交換器(12a)と、この予熱された原料空気を
更に触媒反応器(14)での反応に適した温度まで間接的
に加熱するための加熱器(13)を用いている。その際、
燃料バーナ(7)で所定温度に加熱した空気を第2の熱
交換器(12b)とバーナ(7)の間で循環ブロア(16
b)によって循環送風させて、この空気を用いて原料空
気を第2の熱交換器(12b)で間接的に加熱する。この
ため未燃焼の炭化水素を含有するバーナ燃焼排ガスと原
料空気とが直接接触して混合することが起こらないの
で、装置に導入された原料空気中の炭化水素濃度が触媒
反応器(14)に入るまでの間に上昇することが避けられ
る。
Further, in the apparatus of the present invention, as means for raising the temperature of the raw material air to a temperature required for the catalytic reaction, the raw material before being transferred by the blower (16a) and introduced into the heater (13) is used. A first method for preheating the feed air before introduction into the heater (13) by heat exchange between air and the high temperature feed air exiting the catalytic reactor (14) downstream of the heater (13). A heat exchanger (12a) and a heater (13) for indirectly heating the preheated raw material air to a temperature suitable for the reaction in the catalytic reactor (14) are used. that time,
The air heated to a predetermined temperature by the fuel burner (7) is circulated between the second heat exchanger (12b) and the burner (7) by a circulation blower (16).
The raw material air is indirectly heated in the second heat exchanger (12b) using the air by circulating the air in b). As a result, the burner flue gas containing unburned hydrocarbons and the raw material air do not directly contact and mix, and the hydrocarbon concentration in the raw material air introduced into the apparatus is reduced by the catalytic reactor (14). It is avoided that it rises before entering.

【0056】また本発明の装置は、好ましくは、少なく
とも第1の熱交換器(12a)と加熱器(13)と触媒反応
器(14)とを共通の架台上に一体的に配設して形成した
一体構造物を収納していて、該一体構造物の外表面との
間に外気への放熱を低減する保温断熱材を配設した密閉
構造の函体(8)を備えている。このため外気への放熱
を低減することができて加熱エネルギーの低減が図れる
とともに、装置寸法の小さいコンパクトな装置とするこ
とが可能であるために設置スペースを小さくすることが
できる。
In the apparatus of the present invention, preferably, at least the first heat exchanger (12a), the heater (13) and the catalytic reactor (14) are integrally disposed on a common base. There is provided a box (8) of a closed structure which houses the formed integral structure and in which a heat insulating material for reducing heat radiation to the outside air is arranged between the housing and the outer surface of the integral structure. For this reason, the heat radiation to the outside air can be reduced, the heating energy can be reduced, and the installation space can be reduced because a compact device having a small device size can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】精留塔が複式精留塔方式である場合の本発明の
空気分離装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an air separation device of the present invention when a rectification column is a double rectification column system.

【図2】精留塔が窒素発生装置である場合の本発明の空
気分離装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of the air separation device of the present invention when the rectification column is a nitrogen generator.

【図3】精留塔が複式精留塔方式である場合の従来の空
気分離装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of a conventional air separation device when the rectification column is a double rectification column system.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮された原料空気を冷却した後に精留
塔(20)に導入し、精留塔(20)において原料空気を沸
点の温度差によって窒素と酸素に分離する空気分離装置
において、 原料空気を強制的に移送する送風機(16a)と、 送風機(16a)により移送されて加熱器(13)に導入さ
れる前の原料空気と加熱器(13)の下流にある触媒反応
器(14)を出た高温度の原料空気との熱交換により加熱
器(13)に導入する前の原料空気を予熱するための第1
の熱交換器(12a)と、 予熱された原料空気を更に触媒反応器(14)での反応に
適した温度まで間接的に加熱するための加熱器(13)で
あって、前記原料空気の通路に設けた第2の熱交換器
(12b)、加熱媒体としての空気を所定温度に加熱する
燃料バーナ(7)、および該空気を第2の熱交換器(12
b)と燃料バーナ(7)の間を循環送風させる循環ブロ
ア(16b)を備えた加熱器(13)と、 加熱されて昇温した原料空気中に含まれる微量の炭化水
素、一酸化炭素および水素を原料空気中の酸素と反応さ
せて二酸化炭素と水に転換させる触媒が充填された触媒
反応器(14)と、 触媒反応器(14)を出て第1の熱交換器(12a)を通過
することによって冷却された原料空気を更に常温まで冷
却するための第1の冷却器(15)と、 第1の冷却器(15)を経た原料空気を圧縮するための圧
縮機(11)と、 圧縮機(11)を経た原料空気を常温まで冷却するための
第2の冷却器(17)と、 圧縮され冷却された原料空気中の二酸化炭素と水を除去
するための切換え使用型の吸着塔(18)、および吸着塔
(18)を出た原料空気を窒素と酸素に分離するための精
留塔(20)を備えたことを特徴とする空気分離装置。
1. An air separation apparatus for cooling compressed raw material air, introducing the cooled raw material air into a rectification column (20), and separating the raw material air into nitrogen and oxygen in the rectification column (20) by a temperature difference between boiling points. A blower (16a) forcibly transferring the raw air, and a catalytic reactor (14) downstream of the raw air and the heater (13) before being transferred by the blower (16a) and introduced into the heater (13). 1) for preheating the raw air before being introduced into the heater (13) by heat exchange with the high-temperature raw air exiting
A heat exchanger (12a), and a heater (13) for indirectly heating the preheated feed air to a temperature suitable for the reaction in the catalytic reactor (14). A second heat exchanger (12b) provided in the passage, a fuel burner (7) for heating air as a heating medium to a predetermined temperature, and a second heat exchanger (12b)
b) a heater (13) provided with a circulation blower (16b) for circulating and blowing between the fuel burner (7), and a small amount of hydrocarbons, carbon monoxide contained in the heated and heated raw air. A catalyst reactor (14) filled with a catalyst for converting hydrogen to oxygen in the raw material air to convert it into carbon dioxide and water; and a first heat exchanger (12a) exiting the catalyst reactor (14). A first cooler (15) for further cooling the raw material air cooled by passing to room temperature, and a compressor (11) for compressing the raw material air passed through the first cooler (15). A second cooler (17) for cooling the raw material air passed through the compressor (11) to room temperature, and a switchable adsorption for removing carbon dioxide and water in the compressed and cooled raw material air Column (18), and rectification to separate feed air exiting adsorption column (18) into nitrogen and oxygen (20) an air separation apparatus characterized by comprising a.
【請求項2】 触媒反応器(14)に充填した触媒がP
t、Pd およびRh から1種以上を選択してアルミナ等
の担体に担持させたものであり、触媒反応器(14)での
反応温度が350〜550℃である、請求項1に記載の
空気分離装置。
2. The catalyst filled in the catalyst reactor (14) is P
The air according to claim 1, wherein at least one selected from t, Pd, and Rh is supported on a carrier such as alumina, and the reaction temperature in the catalytic reactor (14) is 350 to 550 ° C. Separation device.
【請求項3】 少なくとも第1の熱交換器(12a)と加
熱器(13)と触媒反応器(14)とを共通の架台上に一体
的に配設して形成した一体構造物を収納していて、該一
体構造物の外表面との間に外気への放熱を低減する保温
断熱材を配設した密閉構造の函体(8)を備えた、請求
項1または請求項2に記載の装置。
3. An integrated structure formed by integrally disposing at least a first heat exchanger (12a), a heater (13), and a catalyst reactor (14) on a common base is stored. The box (8) according to claim 1 or 2, further comprising a box (8) having a closed structure in which a heat insulating material for reducing heat radiation to the outside air is disposed between the box and the outer surface of the integrated structure. apparatus.
【請求項4】 精留塔(20)が、主として高純度窒素を
製造するために原料空気を窒素と酸素に分離する窒素発
生装置である、請求項1から請求項3のいずれかに記載
の空気分離装置。
4. The rectification column (20) according to claim 1, wherein the rectification column (20) is a nitrogen generator for separating raw air into nitrogen and oxygen mainly for producing high-purity nitrogen. Air separation device.
【請求項5】 精留塔(20)が、原料空気から高純度窒
素と高純度酸素とを同時に製造するための複式精留塔で
ある、請求項1から請求項3のいずれかに記載の空気分
離装置。
5. The rectification column (20) according to claim 1, wherein the rectification column (20) is a double rectification column for simultaneously producing high-purity nitrogen and high-purity oxygen from raw material air. Air separation device.
JP25821497A 1997-09-24 1997-09-24 Air separation equipment Expired - Fee Related JP3466437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25821497A JP3466437B2 (en) 1997-09-24 1997-09-24 Air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25821497A JP3466437B2 (en) 1997-09-24 1997-09-24 Air separation equipment

Publications (2)

Publication Number Publication Date
JPH1194458A true JPH1194458A (en) 1999-04-09
JP3466437B2 JP3466437B2 (en) 2003-11-10

Family

ID=17317110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25821497A Expired - Fee Related JP3466437B2 (en) 1997-09-24 1997-09-24 Air separation equipment

Country Status (1)

Country Link
JP (1) JP3466437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190181A (en) * 1997-09-24 1999-04-06 Osaka Oxygen Ind Ltd Air purifier
CN110108090A (en) * 2019-04-26 2019-08-09 北京科技大学 A method of reducing air separation unit upper tower pressure and system energy consumption

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634083A (en) * 1979-08-23 1981-04-06 Nippon Oxygen Co Ltd Method of liquefying air by low temperature of liquefied natural gas
JPS59195084A (en) * 1983-04-21 1984-11-06 テイサン株式会社 Method of liquefying and separating air
JPH0252980A (en) * 1988-08-18 1990-02-22 Kobe Steel Ltd Air separating device
JPH0463993B2 (en) * 1985-03-29 1992-10-13 Hitachi Ltd
JPH06185856A (en) * 1992-12-18 1994-07-08 Hitachi Ltd Air separating device
JPH06304432A (en) * 1993-04-22 1994-11-01 Nippon Sanso Kk Manufacture of various types of gas for semi-conductor manufacture plant and device therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634083A (en) * 1979-08-23 1981-04-06 Nippon Oxygen Co Ltd Method of liquefying air by low temperature of liquefied natural gas
JPS59195084A (en) * 1983-04-21 1984-11-06 テイサン株式会社 Method of liquefying and separating air
JPH0463993B2 (en) * 1985-03-29 1992-10-13 Hitachi Ltd
JPH0252980A (en) * 1988-08-18 1990-02-22 Kobe Steel Ltd Air separating device
JPH06185856A (en) * 1992-12-18 1994-07-08 Hitachi Ltd Air separating device
JPH06304432A (en) * 1993-04-22 1994-11-01 Nippon Sanso Kk Manufacture of various types of gas for semi-conductor manufacture plant and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190181A (en) * 1997-09-24 1999-04-06 Osaka Oxygen Ind Ltd Air purifier
CN110108090A (en) * 2019-04-26 2019-08-09 北京科技大学 A method of reducing air separation unit upper tower pressure and system energy consumption

Also Published As

Publication number Publication date
JP3466437B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
RU2166546C1 (en) Method of combination of blast furnace and direct reduction reactor with use of cryogenic rectification
KR930001207B1 (en) Production of high purity argon
WO1999011437A1 (en) Method and apparatus for purification of argon
US5783162A (en) Argon purification process
JP2000088455A (en) Method and apparatus for recovering and refining argon
US4623524A (en) Process and apparatus for recovering inert gas
JP2585955B2 (en) Air separation equipment
JP3325805B2 (en) Air separation method and air separation device
CN111174530A (en) Method and device for separating and purifying krypton and xenon
JPH11228116A (en) Recovering and purifying method of argon and device therefor
JP3466437B2 (en) Air separation equipment
JP3959168B2 (en) Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air
CN212842469U (en) Single-tower cryogenic rectification argon recovery system with argon circulation and hydrogen circulation
JP3467178B2 (en) Air separation equipment
JP3364724B2 (en) Method and apparatus for separating high purity argon
US7461521B2 (en) System unit for desorbing carbon dioxide from methanol
JPH1137643A (en) Method and facility for separating air
JP4091755B2 (en) Hydrogen purification method and system at liquefied natural gas receiving terminal
JP2645137B2 (en) Equipment for purifying raw material air for nitrogen production equipment
JP2001033155A (en) Air separator
JP3256811B2 (en) Method for purifying krypton and xenon
JP3082092B2 (en) Oxygen purification method and apparatus
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP2574270B2 (en) Carbon monoxide separation and purification equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees