JP4091755B2 - Hydrogen purification method and system at liquefied natural gas receiving terminal - Google Patents

Hydrogen purification method and system at liquefied natural gas receiving terminal Download PDF

Info

Publication number
JP4091755B2
JP4091755B2 JP2001215169A JP2001215169A JP4091755B2 JP 4091755 B2 JP4091755 B2 JP 4091755B2 JP 2001215169 A JP2001215169 A JP 2001215169A JP 2001215169 A JP2001215169 A JP 2001215169A JP 4091755 B2 JP4091755 B2 JP 4091755B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
natural gas
liquefied natural
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001215169A
Other languages
Japanese (ja)
Other versions
JP2003026402A (en
Inventor
賢 小川
亘 中村
正幸 田中
光一 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kobe Steel Ltd
Original Assignee
Kansai Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kobe Steel Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001215169A priority Critical patent/JP4091755B2/en
Publication of JP2003026402A publication Critical patent/JP2003026402A/en
Application granted granted Critical
Publication of JP4091755B2 publication Critical patent/JP4091755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度の水素ガスを精製するための方法及びシステムに関するものである。
【0002】
【従来の技術】
近年、高純度水素ガスの需要が高まっている。例えば、自動車搭載用として開発が進められている固体高分子電解質型燃料電池においては、その燃料として水素ガスが用いられ、しかも当該水素ガスについては、電池電極の白金触媒の被毒を防ぐため、不純物である一酸化炭素の濃度を10ppm程度に抑えることが好ましいとされている。
【0003】
従来、このような高純度の水素ガスを精製するシステムとして、例えば図5に示すようなものが知られている。図示の水蒸気改質装置90は、原料ガス中の炭化水素を水蒸気と触媒にて反応(改質反応)させることにより水素ガスを含む混合ガスを生成する(スチームリフォーミング)。この混合ガスは複数の吸着塔94を具備する水素PSA装置92に送られ、同装置92にて水素ガス以外の成分が吸着除去されることにより高純度の水素ガスが精製分離される。
【0004】
【発明が解決しようとする課題】
前記水素PSA装置92は、水素ガスの回収率が比較的低い(一般には80〜90%)。また、同装置92から排出される(水素を含む)再生ガスを燃料として使用するにしても、当該再生ガスは圧力が低いため、これを需要地へ給送するためには新たな昇圧設備や燃料ライン設備が必要であり、既存の設備を利用した効率の高い水素精製は望めない。
【0005】
また、前記水蒸気改質装置90では、その規模の拡大によって水素製造量を約150,000Nm3/hまで増やすことが可能であり、かかる規模の拡大によって相当なコストメリットを享受することが可能であるのに対し、水素PSA装置92においては、図示の4塔式のものでも総処理量は15,000〜20,000Nm3/hが限界であり、それ以上の大容量化に対応するには吸着塔94の塔数を増やすしかない。従って、規模の拡大によるコストメリットはほとんど生じない。
【0006】
本発明は、このような事情に鑑み、既存の設備を有効に利用して効率の高い水素精製を可能にする水素精製方法及びシステムを提供することを目的とする。
【0007】
【課題を解決するための手段】
近年、水素の原料ガスとして天然ガスが注目を集めている。この天然ガスはメタンを主成分とし、また硫黄分をほとんど含まないので、脱硫処理を簡素化あるいは省略できるなどの利点がある。しかも、このような天然ガスの供給元である液化天然ガス受入基地においては、低温でガス吸収性に優れた液化天然ガスが豊富に存在しており、この液化天然ガスのガス吸収能を活用して水素ガスの精製を行うようにすれば、その精製効率の著しい向上が期待できる。
【0008】
本発明は、このような観点からなされたものであり、液化天然ガスを液化天然ガス気化器に圧送して気化し、これにより得られた天然ガスを需要先へ送出する液化天然ガス受入基地において、前記天然ガスの一部を原料として富水素ガスを製造し、この富水素ガスを前記液化天然ガス気化器に圧送される液化天然ガスと気液接触させて当該富水素ガス中に含まれる不純物を前記液化天然ガスに吸収させることにより当該富水素ガスを洗浄して水素ガスを精製するとともに、前記富水素ガスを前記液化天然ガスに気液接触させる前に当該富水素ガスから水分及び二酸化炭素を除去する前処理工程を行い、この前処理工程は、液化天然ガスの冷熱を利用して富水素ガス中の二酸化炭素を凝縮分離する工程を含むことを特徴とする液化天然ガス受入基地での水素精製方法である。
【0009】
また本発明は、液化天然ガスを液化天然ガス気化器に圧送する圧送手段を備え、前記液化天然ガス気化器で得られた天然ガスを需要先へ送出する液化天然ガス受入基地において、前記天然ガスの一部を原料として富水素ガスを製造する水素ガス製造装置と、その富水素ガスと液化天然ガスとを気液接触させて当該富水素ガス中に含まれる不純物を前記液化天然ガスに吸収させることにより当該富水素ガスを洗浄して水素ガスを精製するための洗浄塔と、この洗浄塔へ送られる富水素ガス中の水分及び二酸化炭素を除去する前処理装置とを備え、この前処理装置は、前記富水素ガスと液化天然ガスとを熱交換させて富水素ガス中の二酸化炭素を凝縮させる凝縮用熱交換器を含み、前記圧送手段により圧送される液化天然ガスの少なくとも一部が前記洗浄塔を通ってから前記液化天然ガス気化器へ送られるように構成されていることを特徴とする液化天然ガス受入基地での水素精製システムである。
【0010】
以上の構成では、液化天然ガス受入基地で生成される天然ガスの一部を原料として富水素ガスを製造するとともに、この富水素ガスを前記液化天然ガスと気液接触させることにより、当該富水素ガスの洗浄、すなわち不純物ガス吸収による水素ガスの精製を行うようにしているので、既存の液化天然ガス受入基地設備に洗浄塔を加えるだけの簡素な構成で、水素ガスの精製を効率良く行うことができる。
【0011】
そして、前記液化天然ガスによる洗浄では、適当な気液比の設定によって高い水素回収率を得ることが可能である。さらに、液化天然ガス供給量を増やすだけで大容量化にも難なく対応することが可能である。
【0012】
また、液化天然ガスを富水素ガスと接触させる際に圧力損失はほとんど生じないので、圧送手段を増設しなくても(増設するとしても簡易なもののみで)、液化天然ガス受入基地の本来の機能である液化天然ガスの気化及び天然ガスの給送(例えば火力発電所への供給)も支障なく行うことができる。
【0013】
前記水素精製システムにおける水素ガス製造装置は、液化天然ガスの気化により得られる天然ガスから水素濃度に富んだ富水素ガスを製造できるものであればよく、例えば、天然ガスを水蒸気と改質反応させる改質炉を含んだものが好適である。
【0014】
また、前記富水素ガス中に比較的凝固点の高い水分や二酸化炭素が多く含まれていると、これらが液化天然ガスの冷熱により凍結して良好な精製工程を妨げるおそれがあるが、本発明に係る方法では、前記富水素ガスを前記液化天然ガスに気液接触させる前に予め当該富水素ガスから水分及び二酸化炭素を除去する前処理工程を行っておく(本発明に係る水素精製システムでは前記洗浄塔へ送られる富水素ガスから水分及び二酸化炭素を除去する前処理装置を備える)ため、良好な水素ガス精製が保証される。
【0015】
ここで、液化天然ガス受入基地には液化天然ガスが多量に存在するので、この液化天然ガスの冷熱を利用して富水素ガス中の二酸化炭素を凝縮分離することにより、効率の高い前処理工程を行うことができる。具体的に、本発明に係る水素精製システムにおいては、前記富水素ガスと液化天然ガスとを熱交換させて富水素ガス中の二酸化炭素を凝縮させる熱交換器を含む。
【0016】
上述のように、前記水素精製システムにおいて、圧送手段から液化天然ガス気化器に圧送される液化天然ガスは元々温度が十分低いものであるが、さらに、当該液化天然ガスを前記洗浄塔の手前側で予冷する予冷手段を備え、洗浄塔に供給される液化天然ガス温度を下げる(より好ましくは液化点より低い温度まで過冷却する)ようにすれば、当該液化天然ガスによる不純物の吸収率をさらに高めて製品水素ガスの純度をより向上させることができる。
【0017】
その際、前記予冷手段として、前記圧送手段から圧送される液化天然ガスと前記洗浄塔から導出される水素ガスとを熱交換させる熱交換器を含むようにすれば、当該水素ガスのもつ冷熱を有効に利用して液化天然ガスの予冷を効率良く行うことができる。
【0018】
【発明の実施の形態】
本発明の好ましい実施の形態を図1〜図4に基づいて説明する。
【0019】
図1は、本発明にかかる液化天然ガス(以下、「LNG」と称する)受入基地での水素精製システムの一例を示したものである。図において、液化天然ガスタンク10内には例えば輸送船で運び込まれたLNGが貯留されている。このLNGが後述のLNGポンプにより洗浄塔12を通してLNG気化器14へ圧送され、このLNG気化器12で気化することにより、天然ガス(以下、「NG」と称する。)が生成される。このNGは基本的に発電所その他の燃料需要先へ送られるが、その一部が水素ガス原料として水素ガス製造装置16へ導入される。この水素ガス製造装置16は、前記NGから富水素ガスを製造するものであり、例えば図2に示すようなものが好適である。
【0020】
同図の改質炉20は、触媒を収容する触媒室と、前記NGの一部を燃料とするバーナとを備え、このバーナの放射熱により前記触媒室内が加熱された状態で同室内に前記NGと水蒸気とが導入されることにより改質反応が起こり、改質ガスが生成されるようにしたものである(スチームリフォーミング)。この改質ガスは、図略のガスボイラを通り、高温変成器22及び低温変成器24で一酸化炭素変成反応(シフト反応)した後、ガス冷却器26で冷却されてガス中の水分が除去される。これにより、水素に富んだ(例えば水素75%)の富水素ガスが生成される。
【0021】
このようなスチームリフォーミングを用いた水素ガス製造プロセスについては周知のところであり、種々の公知手段が適用可能である(例えば特開2000−327307号公報や特開平9−309703号公報参照)。また、富水素ガスを生成するための改質プロセスは前記スチームリフォーミングに限らず、その他の手段、例えば酸素を用いた酸化リフォーミング法(部分酸化法)の適用も可能である。
【0022】
以上のようにして製造された富水素ガスは、図1に示す前処理装置18に送られ、ここでガス中の水蒸気及び二酸化炭素が除去された後に前記洗浄塔12に導入される。そして、この洗浄塔12で前記富水素ガスとLNGとが直接気液接触することにより当該富水素ガス中の不純物ガスがLNGに吸収され(すなわち富水素ガスが洗浄され)、高純度の製品水素ガスが精製される。
【0023】
図3は、前記前処理装置18及び洗浄塔12を含む具体的な装置構成の好適例を示したものである。図示の前処理装置18は、吸着塔28、圧縮機30、凝縮用熱交換器32、および二酸化炭素分離器34を備えている。
【0024】
まず、前記水素ガス製造装置16から送出された富水素ガスは、モレキュラシーブが装填された吸着塔28に導入され、ここでガス中の水蒸気が吸着除去される。残りのガスは圧縮機30で圧縮され、凝縮用熱交換器32でLNGと熱交換することにより冷却される。この冷却により、ガス中の二酸化炭素が凝縮し、二酸化炭素分離器34において残りのガス成分と気液分離される。これら一連の前処理工程により、ガス中の水分含有率及び二酸化炭素含有率は大幅に削減される。
【0025】
なお、前記前処理装置18は、吸着塔28及び凝縮用熱交換器32を含んだものに限られない。例えば、水素ガス製造装置16側で水分が十分に除去されている場合には吸着塔28の省略が可能であるし、また二酸化炭素除去手段についても、前記凝縮用熱交換器32による二酸化炭素の凝縮分離の他、例えばMDEA(Methyl di ethanol amine)溶液等を用いて二酸化炭素を吸収除去するようにしてもよい。このような吸収による二酸化炭素の除去は圧縮機30の上流側で行うようにしてもよい。
【0026】
前処理工程を経た富水素ガスは、洗浄塔12の下部に導入され、同塔12内を上昇する間に同塔12内を降下するLNGと直接気液接触する。この洗浄塔12は、前記富水素ガスとLNGとを効率良く接触させることができるものであればよく、一般のガス吸収塔(例えば棚段塔や充填塔)を用いることが可能である。
【0027】
この洗浄塔12でのLNGとの気液接触により、前記富水素ガス中に含まれる不純物ガス(主にメタンガス、一酸化炭素ガス、二酸化炭素ガス)が選択的にLNG側へ物理吸収され、これにより高純度の水素ガスが精製される。この水素ガスは、予冷用熱交換器36でLNGと熱交換することにより昇温し、製品水素ガスとしてサージタンク38内に貯留される。
【0028】
一方、LNGタンク10内のLNGは、これに付設されたLNGポンプ40によりLNG気化器14へ向けて圧送される。その途中、前記LNGは、前記予冷用熱交換器36で精製水素ガスと熱交換することにより第一次予冷され、さらに、液体窒素を利用した冷却器44で第二次予冷される。前記液体窒素は、LNGの冷熱を利用した窒素冷凍機42により生成される。
【0029】
予冷済LNGは、前記LNGポンプ40の吐出圧力と略同等の操作圧力で洗浄塔12の頂部に導入され、同塔12を下降するうちに前記富水素ガスと気液接触し、同ガス中の不純物(メタンガス等)を選択的に物理吸収する。この洗浄塔12においても、LNGの圧力損失はほとんど生じないので、当該LNGをLNG気化器14で気化した後、NGとしてそのまま(ポンプ等を増設せずに、あるいは増設するとしても簡易なもののみで)発電所燃料等として需要地へ給送することができる。
【0030】
なお、洗浄塔12での富水素ガスとLNGのモル比は、各種条件を考慮して決定すればよい。LNGの比率が過小であると洗浄塔12内の温度が上がって吸収効率が下がり、水素ガス純度が低下する一方、LNGの比率が過大であると水素ガスの吸収量が増えてその分回収効率が下がるため、一般には前記モル比(富水素ガス/LNG)を0.8〜1.0、より好ましくは約0.9に設定するのが好ましい。
【0031】
また、LNGポンプ40から圧送されるLNGはすべて洗浄塔12に通さなくてもよく、その一部は洗浄塔12をバイパスして直接LNG気化器14へ送るようにしてもよい。かかるバイパス量を操作することによって前記洗浄塔12でのモル比の調節も容易になる。
【0032】
また、本発明は従来の水素PSA装置の併用を除外するものではない。このように水素PSA装置を併用する場合でも、本発明にかかる富水素ガスの洗浄によって前記PSA装置における吸着剤の必要量を従来よりも飛躍的に削減できる効果が得られる。
【0033】
【実施例】
前記図1〜図3に示すシステムにおいて、NGを原料とし、水素ガス製造装置16において、ドライベースで水素が約75%の水素、二酸化炭素が約19.5%、一酸化炭素が約0.5%、メタンが約5%の組成をもつ圧力富水素ガスを製造する。このガスを前処理装置18に導入してガス中の水分及び二酸化炭素を除去し、-150℃のガス温度で洗浄塔12へ導入する。
【0034】
一方、LNGタンク10内のLNGは、予冷用熱交換器36及び冷却器44により予冷した後、LNGポンプ40の吐出圧と略同等の60kg/cm2Gの圧力で洗浄塔12へ供給する。この洗浄塔12での洗浄処理により、富水素ガス中の一酸化炭素及び二酸化炭素はほとんどすべて除去され、メタンガス含有率も0.5〜1.5%のレベルまで低下する。このメタンガスの除去度合いは、LNG温度によって大きく左右される。
【0035】
図4は、前記洗浄塔12における富水素ガスとLNGとのモル比を0.9としたときの、LNGの予冷温度と製品水素ガス中の水素モル分率(すなわち製品水素純度)との関係を示したものである。図示のように、LNG温度を下げるほど製品水素ガスの純度が上がり、最低でも約-175℃までLNGを予冷すれば、モル分率にして約98.4%の純度をもつ製品水素ガスを得ることが可能である。
【0036】
なお、このような温度レベルでは、前記富水素ガス中の二酸化炭素が固体となって析出されるが、その量が少なくてLNG中に分散していれば、そのまま支障なく固液混相流としてLNG気化器14へ導入することが可能である。
【0037】
【発明の効果】
以上のように本発明は、水素ガスを精製するにあたり、LNG受入基地で生成されるNGの一部を原料として富水素ガスを製造し、この富水素ガスをLNG気化器へ圧送されるLNGと気液接触させて当該富水素ガスを洗浄するようにしたものであるので、LNG受入基地に備えられる既存の設備を有効に利用して効率の高い水素ガス精製を行うことができる効果がある。さらに、前記富水素ガスを前記液化天然ガスに気液接触させる前に予め当該富水素ガスから水分及び二酸化炭素を除去する前処理により、良好な水素ガス精製を保証することができる。しかも、この前処理を、液化天然ガスの冷熱を利用した富水素ガス中の二酸化炭素の凝縮分離により高い効率で行うことができる。
【図面の簡単な説明】
【図1】本発明にかかる水素精製システムの一例を示す概略構成図である。
【図2】前記水素精製システムに設けられる水素ガス製造装置の具体例を示す構成図である。
【図3】前記水素精製システムの要部の装置構成例を示すフローシートである。
【図4】前記水素精製システムにおける洗浄塔でのLNG温度と製品水素純度との関係を示すフローシートである。
【図5】従来の水素精製システムの一例を示す概略構成図である。
【符号の説明】
10 LNGタンク
12 洗浄塔
14 LNG気化器
16 水素ガス製造装置
18 前処理装置
20 改質炉
32 凝縮用熱交換器
36 予冷用熱交換器
40 LNGポンプ(圧送手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and system for purifying high purity hydrogen gas.
[0002]
[Prior art]
In recent years, the demand for high-purity hydrogen gas has increased. For example, in a solid polymer electrolyte fuel cell being developed for use in automobiles, hydrogen gas is used as the fuel, and for the hydrogen gas, in order to prevent poisoning of the platinum catalyst of the battery electrode, The concentration of carbon monoxide as an impurity is preferably suppressed to about 10 ppm.
[0003]
Conventionally, as a system for purifying such a high purity hydrogen gas, for example, a system as shown in FIG. 5 is known. The illustrated steam reformer 90 generates a mixed gas containing hydrogen gas by reacting hydrocarbons in the raw material gas with steam and a catalyst (reforming reaction) (steam reforming). This mixed gas is sent to a hydrogen PSA apparatus 92 having a plurality of adsorption towers 94, and components other than hydrogen gas are adsorbed and removed by the apparatus 92 to purify and separate high-purity hydrogen gas.
[0004]
[Problems to be solved by the invention]
The hydrogen PSA device 92 has a relatively low hydrogen gas recovery rate (generally 80 to 90%). Even if the regenerated gas (including hydrogen) discharged from the apparatus 92 is used as fuel, the regenerated gas has a low pressure. Fuel line equipment is required, and high-efficiency hydrogen purification using existing equipment cannot be expected.
[0005]
In the steam reformer 90, the hydrogen production can be increased to about 150,000 Nm 3 / h by expanding the scale, and considerable cost merit can be enjoyed by expanding the scale. On the other hand, in the hydrogen PSA apparatus 92, the total throughput is limited to 15,000 to 20,000 Nm 3 / h even with the four-column type shown in the figure. There is no choice but to increase the number of towers. Therefore, there is almost no cost merit due to the expansion of scale.
[0006]
In view of such circumstances, it is an object of the present invention to provide a hydrogen purification method and system that enables efficient hydrogen purification by effectively using existing facilities.
[0007]
[Means for Solving the Problems]
In recent years, natural gas has attracted attention as a hydrogen source gas. This natural gas contains methane as a main component and contains almost no sulfur content, so that there is an advantage that the desulfurization treatment can be simplified or omitted. In addition, the liquefied natural gas receiving terminal, which is the source of such natural gas, has abundant liquefied natural gas that is excellent in gas absorbency at low temperatures. If hydrogen gas is purified, the purification efficiency can be significantly improved.
[0008]
The present invention has been made from such a point of view. In a liquefied natural gas receiving terminal for sending and liquefying liquefied natural gas to a liquefied natural gas vaporizer and vaporizing the resulting natural gas to a customer. Impurities contained in the hydrogen-rich gas by producing a hydrogen-rich gas using a part of the natural gas as a raw material, and bringing the hydrogen-rich gas into gas-liquid contact with the liquefied natural gas pumped to the liquefied natural gas vaporizer The liquefied natural gas is absorbed to purify the hydrogen rich gas and purify the hydrogen gas, and before the hydrogen rich gas is brought into gas-liquid contact with the liquefied natural gas, moisture and carbon dioxide are removed from the hydrated natural gas. Preprocess step of removing, the pretreatment step, the liquefied natural gas receiving, characterized in that it comprises a step of condensing separating carbon dioxide liquefied natural gas utilizing cold heat of the hydrogen rich gas It is a hydrogen purification method of the land.
[0009]
The present invention also includes a pumping means for pumping liquefied natural gas to a liquefied natural gas vaporizer, and the liquefied natural gas receiving terminal for sending the natural gas obtained by the liquefied natural gas vaporizer to a demand destination. A hydrogen gas production apparatus for producing a hydrogen-rich gas using a part of the gas as a raw material, and the hydrogen-rich gas and the liquefied natural gas are brought into gas-liquid contact to absorb impurities contained in the hydrogen-rich gas into the liquefied natural gas and a pretreatment system for removing and the hydrogen rich gas were washed for purifying hydrogen gas washing tower, the moisture and carbon dioxide hydrogen rich gas fed to the wash column by, the pre-processing unit includes a condenser heat exchanger to the liquefied natural gas and the hydrogen rich gas is condensed carbon dioxide by heat exchange hydrogen rich gas, at least part of the liquefied natural gas is pumped by said pumping means Be hydrogen purification system in liquefied natural gas receiving terminal, characterized in that the through serial washing tower is configured to be sent to the LNG vaporizers.
[0010]
In the above configuration, the hydrogen-rich gas is produced by using a part of the natural gas produced at the liquefied natural gas receiving terminal as a raw material, and the hydrogen-rich gas is brought into gas-liquid contact with the liquefied natural gas, thereby producing the hydrogen-rich gas. Gas purification, that is, purification of hydrogen gas by impurity gas absorption, enables efficient purification of hydrogen gas with a simple configuration that simply adds a washing tower to existing liquefied natural gas receiving terminal equipment Can do.
[0011]
In cleaning with the liquefied natural gas, a high hydrogen recovery rate can be obtained by setting an appropriate gas-liquid ratio. Furthermore, it is possible to easily cope with an increase in capacity simply by increasing the supply amount of liquefied natural gas.
[0012]
In addition, there is almost no pressure loss when bringing liquefied natural gas into contact with hydrogen-rich gas, so even if there is no additional pumping means (even if it is easy to add), the original nature of the LNG receiving base The functions of vaporization of liquefied natural gas and supply of natural gas (for example, supply to a thermal power plant) can be performed without any trouble.
[0013]
The hydrogen gas production apparatus in the hydrogen purification system may be any apparatus that can produce a hydrogen-rich gas rich in hydrogen concentration from natural gas obtained by vaporizing liquefied natural gas. For example, natural gas is reformed with steam. Those including a reforming furnace are preferred.
[0014]
Further, when the wealth of high moisture and carbon dioxide relatively freezing point of hydrogen gas contains much, there is a possibility that they are frozen by the cold of liquefied natural gas prevents the good purification process, the present invention In such a method, before the hydrogen-rich gas is brought into gas-liquid contact with the liquefied natural gas, a pretreatment step for removing moisture and carbon dioxide from the hydrogen-rich gas is performed in advance (in the hydrogen purification system according to the present invention, Since a pretreatment device for removing moisture and carbon dioxide from the hydrogen-rich gas sent to the washing tower is provided, good hydrogen gas purification is guaranteed.
[0015]
Here, since a large amount of liquefied natural gas exists in the liquefied natural gas receiving terminal, a high-efficiency pretreatment process is performed by condensing and separating carbon dioxide in the hydrogen-rich gas using the cold heat of this liquefied natural gas It can be performed. Specifically, in the hydrogen purification system according to the present invention, including a heat exchanger for condensing the carbon dioxide in the hydrogen rich gas and a liquefied natural gas and the hydrogen rich gas by heat exchange.
[0016]
As described above, in the hydrogen purification system, the liquefied natural gas pumped from the pumping means to the liquefied natural gas vaporizer originally has a sufficiently low temperature, but the liquefied natural gas is further moved to the front side of the washing tower. If the temperature of the liquefied natural gas supplied to the washing tower is lowered (more preferably, it is subcooled to a temperature lower than the liquefaction point), the absorption rate of impurities by the liquefied natural gas is further increased. The purity of the product hydrogen gas can be further improved.
[0017]
At this time, if the precooling means includes a heat exchanger for exchanging heat between the liquefied natural gas pumped from the pumping means and the hydrogen gas led out from the washing tower, the cold heat of the hydrogen gas is obtained. It can be effectively used to efficiently precool liquefied natural gas.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described with reference to FIGS.
[0019]
FIG. 1 shows an example of a hydrogen purification system at a liquefied natural gas (hereinafter referred to as “LNG”) receiving terminal according to the present invention. In the figure, LNG carried by, for example, a transport ship is stored in the liquefied natural gas tank 10. The LNG is pumped to the LNG vaporizer 14 through the cleaning tower 12 by an LNG pump, which will be described later, and is vaporized by the LNG vaporizer 12, whereby natural gas (hereinafter referred to as “NG”) is generated. This NG is basically sent to a power plant or other fuel demand destination, and a part of the NG is introduced into the hydrogen gas production apparatus 16 as a hydrogen gas raw material. The hydrogen gas production apparatus 16 produces a hydrogen rich gas from the NG, and for example, the one shown in FIG. 2 is suitable.
[0020]
The reforming furnace 20 shown in the figure includes a catalyst chamber that contains a catalyst and a burner that uses a part of the NG as fuel, and the catalyst chamber is heated by the radiant heat of the burner. By introducing NG and water vapor, a reforming reaction occurs, and a reformed gas is generated (steam reforming). This reformed gas passes through a gas boiler (not shown), undergoes carbon monoxide shift reaction (shift reaction) by the high temperature transformer 22 and the low temperature transformer 24, and then is cooled by the gas cooler 26 to remove moisture in the gas. The Thereby, hydrogen-rich gas rich in hydrogen (for example, 75% hydrogen) is generated.
[0021]
Such a hydrogen gas production process using steam reforming is well known, and various known means can be applied (see, for example, Japanese Patent Laid-Open No. 2000-327307 and Japanese Patent Laid-Open No. 9-309703). Further, the reforming process for generating the hydrogen-rich gas is not limited to the steam reforming, and other means, for example, an oxidation reforming method (partial oxidation method) using oxygen can be applied.
[0022]
The hydrogen-rich gas produced as described above is sent to the pretreatment device 18 shown in FIG. 1, where water vapor and carbon dioxide in the gas are removed and then introduced into the washing tower 12. Then, the hydrogen-rich gas and LNG are directly brought into gas-liquid contact in the washing tower 12 so that the impurity gas in the hydrogen-rich gas is absorbed by LNG (that is, the hydrogen-rich gas is washed), and high-purity product hydrogen The gas is purified.
[0023]
FIG. 3 shows a preferred example of a specific apparatus configuration including the pretreatment apparatus 18 and the cleaning tower 12. The illustrated pretreatment device 18 includes an adsorption tower 28, a compressor 30, a condensation heat exchanger 32, and a carbon dioxide separator 34.
[0024]
First, the hydrogen-rich gas delivered from the hydrogen gas production device 16 is introduced into an adsorption tower 28 loaded with molecular sieves, where water vapor in the gas is adsorbed and removed. The remaining gas is compressed by the compressor 30 and cooled by exchanging heat with LNG in the condensing heat exchanger 32. By this cooling, the carbon dioxide in the gas is condensed and separated from the remaining gas components in the carbon dioxide separator 34. By this series of pretreatment steps, the moisture content and carbon dioxide content in the gas are greatly reduced.
[0025]
The pretreatment device 18 is not limited to the one including the adsorption tower 28 and the heat exchanger 32 for condensation. For example, if the water is sufficiently removed on the hydrogen gas production device 16 side, the adsorption tower 28 can be omitted, and the carbon dioxide removal means can also remove carbon dioxide by the heat exchanger 32 for condensation. In addition to condensation and separation, carbon dioxide may be absorbed and removed using, for example, an MDEA (Methyl diethanol amine) solution. The removal of carbon dioxide by such absorption may be performed on the upstream side of the compressor 30.
[0026]
The hydrogen-rich gas that has undergone the pretreatment process is introduced into the lower portion of the cleaning tower 12 and directly contacts the LNG that descends in the tower 12 while rising in the tower 12. The cleaning tower 12 may be any one that can efficiently contact the hydrogen-rich gas and LNG, and a general gas absorption tower (for example, a plate tower or a packed tower) can be used.
[0027]
By the gas-liquid contact with LNG in the washing tower 12, the impurity gas (mainly methane gas, carbon monoxide gas, carbon dioxide gas) contained in the hydrogen-rich gas is selectively physically absorbed to the LNG side, As a result, high-purity hydrogen gas is purified. This hydrogen gas is heated by exchanging heat with LNG in the precooling heat exchanger 36 and stored in the surge tank 38 as product hydrogen gas.
[0028]
On the other hand, the LNG in the LNG tank 10 is pumped toward the LNG vaporizer 14 by the LNG pump 40 attached thereto. On the way, the LNG is first precooled by exchanging heat with purified hydrogen gas in the precooling heat exchanger 36 and further precooled in the cooler 44 using liquid nitrogen. The liquid nitrogen is generated by a nitrogen refrigerator 42 that uses the cold heat of LNG.
[0029]
The pre-cooled LNG is introduced into the top of the washing tower 12 at an operation pressure substantially equal to the discharge pressure of the LNG pump 40, and comes into gas-liquid contact with the hydrogen-rich gas while descending the tower 12, Selectively physically absorb impurities (methane gas, etc.). In this washing tower 12 as well, almost no LNG pressure loss occurs, so after the LNG is vaporized by the LNG vaporizer 14, it is used as it is as NG (without adding a pump or the like, or only if it is simple) ) It can be sent to demand areas as power plant fuel.
[0030]
Note that the molar ratio of the hydrogen-rich gas to the LNG in the cleaning tower 12 may be determined in consideration of various conditions. If the LNG ratio is too small, the temperature in the washing tower 12 will rise and the absorption efficiency will decrease, and the hydrogen gas purity will decrease. On the other hand, if the LNG ratio is excessive, the amount of hydrogen gas absorbed will increase and the recovery efficiency will increase accordingly. In general, the molar ratio (hydrogen rich gas / LNG) is preferably set to 0.8 to 1.0, more preferably about 0.9.
[0031]
Further, not all of the LNG pumped from the LNG pump 40 may be passed through the washing tower 12, and a part of the LNG may be sent directly to the LNG vaporizer 14, bypassing the washing tower 12. By adjusting the bypass amount, the molar ratio in the washing tower 12 can be easily adjusted.
[0032]
The present invention does not exclude the combined use of a conventional hydrogen PSA apparatus. As described above, even when the hydrogen PSA apparatus is used in combination, the cleaning of the hydrogen-rich gas according to the present invention can achieve the effect that the necessary amount of the adsorbent in the PSA apparatus can be drastically reduced as compared with the prior art.
[0033]
【Example】
In the system shown in FIGS. 1 to 3, NG is used as a raw material, and in the hydrogen gas production device 16, hydrogen is about 75% hydrogen, carbon dioxide is about 19.5%, carbon monoxide is about 0.5%, methane on a dry basis. Produces pressure-rich hydrogen gas having a composition of about 5%. This gas is introduced into the pretreatment device 18 to remove moisture and carbon dioxide in the gas, and is introduced into the cleaning tower 12 at a gas temperature of −150 ° C.
[0034]
On the other hand, the LNG in the LNG tank 10 is pre-cooled by the pre-cooling heat exchanger 36 and the cooler 44 and then supplied to the washing tower 12 at a pressure of 60 kg / cm 2 G which is substantially equal to the discharge pressure of the LNG pump 40. By the cleaning treatment in the cleaning tower 12, almost all carbon monoxide and carbon dioxide in the hydrogen-rich gas are removed, and the methane gas content is also reduced to a level of 0.5 to 1.5%. The degree of methane gas removal depends greatly on the LNG temperature.
[0035]
FIG. 4 shows the relationship between the precooling temperature of LNG and the hydrogen mole fraction in product hydrogen gas (that is, product hydrogen purity) when the molar ratio of hydrogen rich gas to LNG in the washing tower 12 is 0.9. Is shown. As shown in the figure, the purity of the product hydrogen gas increases as the LNG temperature is lowered. If the LNG is pre-cooled to at least about -175 ° C, the product hydrogen gas having a purity of about 98.4% can be obtained. Is possible.
[0036]
At such a temperature level, carbon dioxide in the hydrogen-rich gas is precipitated as a solid. However, if the amount is small and dispersed in LNG, the LNG is converted into a solid-liquid mixed phase flow without any problem. It is possible to introduce into the vaporizer 14.
[0037]
【The invention's effect】
As described above, in the present invention, in purifying hydrogen gas, hydrogen rich gas is produced using a part of NG generated at the LNG receiving terminal as a raw material, and the LNG is pumped to the LNG vaporizer. Since the hydrogen-rich gas is washed by gas-liquid contact, there is an effect that high-efficiency hydrogen gas purification can be performed by effectively using the existing equipment provided in the LNG receiving terminal. Furthermore, good hydrogen gas purification can be ensured by pretreatment for removing moisture and carbon dioxide from the hydrogen-rich gas in advance before bringing the hydrogen-rich gas into gas-liquid contact with the liquefied natural gas. Moreover, this pretreatment can be performed with high efficiency by the condensation separation of carbon dioxide in the hydrogen-rich gas using the cold heat of liquefied natural gas.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a hydrogen purification system according to the present invention.
FIG. 2 is a configuration diagram showing a specific example of a hydrogen gas production apparatus provided in the hydrogen purification system.
FIG. 3 is a flow sheet showing an apparatus configuration example of a main part of the hydrogen purification system.
FIG. 4 is a flow sheet showing the relationship between the LNG temperature in the washing tower and the product hydrogen purity in the hydrogen purification system.
FIG. 5 is a schematic configuration diagram showing an example of a conventional hydrogen purification system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 LNG tank 12 Washing tower 14 LNG vaporizer 16 Hydrogen gas production apparatus 18 Pretreatment apparatus 20 Reforming furnace 32 Heat exchanger for condensation 36 Heat exchanger for pre-cooling 40 LNG pump (pressure feeding means)

Claims (5)

受け入れた液化天然ガスを液化天然ガス気化器に圧送して気化し、これにより得られた天然ガスを需要先へ送出する液化天然ガス受入基地において、
前記天然ガスの一部を原料として富水素ガスを製造し、この富水素ガスを前記液化天然ガス気化器に圧送される液化天然ガスと気液接触させて当該富水素ガス中に含まれる不純物を前記液化天然ガスに吸収させることにより当該富水素ガスを洗浄して水素ガスを精製するとともに、
前記富水素ガスを前記液化天然ガスに気液接触させる前に当該富水素ガスから水分及び二酸化炭素を除去する前処理工程を行い、この前処理工程は、液化天然ガスの冷熱を利用して富水素ガス中の二酸化炭素を凝縮分離する工程を含むことを特徴とする液化天然ガス受入基地での水素精製方法。
At the liquefied natural gas receiving terminal that pumps the received liquefied natural gas to the liquefied natural gas vaporizer and vaporizes it, and sends the natural gas obtained thereby to the customer,
Producing a hydrogen-rich gas using a part of the natural gas as a raw material, and bringing the hydrogen-rich gas into gas-liquid contact with the liquefied natural gas pumped to the liquefied natural gas vaporizer to remove impurities contained in the hydrogen-rich gas While purifying the hydrogen-rich gas by absorbing the liquefied natural gas to purify the hydrogen-rich gas ,
Before the hydrogen-rich gas is brought into gas-liquid contact with the liquefied natural gas, a pretreatment step is performed to remove moisture and carbon dioxide from the hydrogen-rich gas, and this pretreatment step is performed using the cold heat of the liquefied natural gas. A method for purifying hydrogen at a liquefied natural gas receiving terminal , comprising a step of condensing and separating carbon dioxide in hydrogen gas .
液化天然ガスを液化天然ガス気化器に圧送する圧送手段を備え、前記液化天然ガス気化器で得られた天然ガスを需要先へ送出する液化天然ガス受入基地において、
前記天然ガスの一部を原料として富水素ガスを製造する水素ガス製造装置と、
その富水素ガスと液化天然ガスとを気液接触させて当該富水素ガス中に含まれる不純物を前記液化天然ガスに吸収させることにより当該富水素ガスを洗浄して水素ガスを精製するための洗浄塔と
この洗浄塔へ送られる富水素ガス中の水分及び二酸化炭素を除去する前処理装置とを備え、この前処理装置は、前記富水素ガスと液化天然ガスとを熱交換させて富水素ガス中の二酸化炭素を凝縮させる凝縮用熱交換器を含み、
前記圧送手段により圧送される液化天然ガスの少なくとも一部が前記洗浄塔を通ってから前記液化天然ガス気化器へ送られるように構成されていることを特徴とする液化天然ガス受入基地での水素精製システム。
In a liquefied natural gas receiving terminal that includes a pumping means for pumping liquefied natural gas to a liquefied natural gas vaporizer, and sends out the natural gas obtained by the liquefied natural gas vaporizer to a customer,
A hydrogen gas production apparatus for producing hydrogen-rich gas using a part of the natural gas as a raw material;
Cleaning for purifying the hydrogen gas by cleaning the hydrogen-rich gas by bringing the hydrogen-rich gas and the liquefied natural gas into gas-liquid contact and allowing the liquefied natural gas to absorb impurities contained in the hydrogen-rich gas. Tower ,
A pretreatment device that removes moisture and carbon dioxide in the hydrogen-rich gas sent to the washing tower, the pretreatment device heat-exchanges the hydrogen-rich gas and the liquefied natural gas, Including a heat exchanger for condensation to condense carbon dioxide,
Hydrogen at a liquefied natural gas receiving terminal is configured such that at least a part of the liquefied natural gas pumped by the pumping means passes through the washing tower and is then sent to the liquefied natural gas vaporizer. Purification system.
請求項記載の液化天然ガス受入基地での水素精製システムにおいて、前記水素ガス製造装置は、前記天然ガスを水蒸気と改質反応させる改質炉を含んでいることを特徴とする液化天然ガス受入基地での水素精製システム。 3. The hydrogen purification system at a liquefied natural gas receiving terminal according to claim 2 , wherein the hydrogen gas production apparatus includes a reforming furnace for reforming the natural gas with steam. Hydrogen purification system at the base. 請求項2または3に記載の液化天然ガス受入基地での水素精製システムにおいて、前記圧送手段から圧送される液化天然ガスを前記洗浄塔の手前側で予冷する予冷手段を備えたことを特徴とする液化天然ガス受入基地での水素精製システム。The hydrogen purification system at the liquefied natural gas receiving terminal according to claim 2 or 3 , further comprising precooling means for precooling the liquefied natural gas pumped from the pumping means on the front side of the washing tower. Hydrogen purification system at liquefied natural gas receiving terminal. 請求項記載の液化天然ガス受入基地での水素精製システムにおいて、前記予冷手段は、前記圧送手段から圧送される液化天然ガスと前記洗浄塔から導出される水素ガスとを熱交換させる予冷用熱交換器を含むことを特徴とする液化天然ガス受入基地での水素精製システム。5. The hydrogen purification system at the liquefied natural gas receiving terminal according to claim 4 , wherein the precooling means exchanges heat between the liquefied natural gas fed from the pressure feeding means and the hydrogen gas led out from the washing tower. A hydrogen purification system at a liquefied natural gas receiving terminal characterized by including an exchanger.
JP2001215169A 2001-07-16 2001-07-16 Hydrogen purification method and system at liquefied natural gas receiving terminal Expired - Lifetime JP4091755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215169A JP4091755B2 (en) 2001-07-16 2001-07-16 Hydrogen purification method and system at liquefied natural gas receiving terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215169A JP4091755B2 (en) 2001-07-16 2001-07-16 Hydrogen purification method and system at liquefied natural gas receiving terminal

Publications (2)

Publication Number Publication Date
JP2003026402A JP2003026402A (en) 2003-01-29
JP4091755B2 true JP4091755B2 (en) 2008-05-28

Family

ID=19049860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215169A Expired - Lifetime JP4091755B2 (en) 2001-07-16 2001-07-16 Hydrogen purification method and system at liquefied natural gas receiving terminal

Country Status (1)

Country Link
JP (1) JP4091755B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274312B2 (en) * 2009-03-10 2013-08-28 中国電力株式会社 Gas separation method
US20120167620A1 (en) * 2009-05-15 2012-07-05 Eva Marfilia Van Dorst Method and system for separating co2 from synthesis gas or flue gas
JP2014073923A (en) * 2012-10-03 2014-04-24 Jx Nippon Oil & Energy Corp Hydrogen purification system and hydrogen feeding system
CN108799824A (en) * 2018-08-31 2018-11-13 中海石油气电集团有限责任公司 It is a kind of using LNG as the charging method of raw material scene hydrogen manufacturing and device

Also Published As

Publication number Publication date
JP2003026402A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US20230242395A1 (en) Ammonia Cracking for Green Hydrogen
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
KR102651575B1 (en) Systems and methods for production and separation of hydrogen and carbon dioxide
US5656557A (en) Process for producing various gases for semiconductor production factories
US8021464B2 (en) Method and installation for combined production of hydrogen and carbon dioxide
CN102762701B (en) Apparatus & process for treating natural gas
US7871457B2 (en) Carbon dioxide production method
AU2005249880B2 (en) Method and apparatus for cooling in hydrogen plants
BRPI0709902A2 (en) Method for purifying a carbon dioxide-containing feed stream to obtain a carbon dioxide product
JP3647028B2 (en) Liquid hydrogen production method and liquid hydrogen production equipment
CN115667131A (en) Process for the production of hydrogen
JP4619575B2 (en) Hydrogen gas production method and hydrogen gas production facility
JP4091755B2 (en) Hydrogen purification method and system at liquefied natural gas receiving terminal
JP2003165707A (en) Method and apparatus for manufacturing hydrogen
JP2585955B2 (en) Air separation equipment
JP2004323263A (en) Apparatus for recovering carbon dioxide
JPH06287001A (en) Production of hydrogen and carbon dioxide
CN117460686A (en) Ammonia cracking for green hydrogen and NOx removal
JP3678662B2 (en) Hydrogen production method and apparatus used therefor
CN220989715U (en) Organic sulfur removing device
JPH1137642A (en) Method and facility for separating air
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
CN117085352A (en) Organic sulfur removing device
JP2011073909A (en) Co2 recovery process and co2 recovery apparatus
CA3223306A1 (en) Ammonia cracking process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R150 Certificate of patent or registration of utility model

Ref document number: 4091755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term