JPH1172409A - Method for detecting leakage of piping - Google Patents

Method for detecting leakage of piping

Info

Publication number
JPH1172409A
JPH1172409A JP15641898A JP15641898A JPH1172409A JP H1172409 A JPH1172409 A JP H1172409A JP 15641898 A JP15641898 A JP 15641898A JP 15641898 A JP15641898 A JP 15641898A JP H1172409 A JPH1172409 A JP H1172409A
Authority
JP
Japan
Prior art keywords
pipe
leakage
sound source
detected
source position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15641898A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeda
博 竹田
Koichi Sato
功一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP15641898A priority Critical patent/JPH1172409A/en
Publication of JPH1172409A publication Critical patent/JPH1172409A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect with excellent precision a leakage position anytime and periodically without moving operators who inspect a leakage in a waterworks net, a gas piping, or the like and further without needing attendant operations such as a shield, etc., of an internal circulation passage. SOLUTION: This is a method for detecting a leak of water of a distributing water pipe 10 in a water circulation state. Underwater mikes 12A, 12B are installed at both ends of an inspection section, and a detection signal fetched from each of the mikes 12A, 12B is passed through a band-pass filter to classify in each frequency band. The inspection section is divided into n parts to set a tentative sound source position, and waveforms having high correlative coefficients of a signal of each band detected by both the mikes at this tentative sound source position are added to obtain synthesized waveforms 16. This process is performed ranging all sections while the tentative sound source position is renewed, and it is decided whether a leak of water is present or not from the synthesized waveforms at each tentative sound source position. An object to be applied is not only waterworks, but also a leakage of various fluids to be detected in a gas piping or a plant piping. An underwater mike is detected as a sensor, and an object to be detected is various wave motions such as a sound, a vibration or the like which are detected through a piping even in an internal fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は配管の漏洩検知方法
に係り、上水道網における漏水検知やガス管のガス漏れ
位置の検出したり、あるいは化学プラントにおける各種
配管の漏洩位置を検出するのに好適な配管の漏洩検知方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting leaks in pipes, and is suitable for detecting leaks in water supply networks, detecting gas leaks in gas pipes, and detecting leaks in various pipes in chemical plants. The present invention relates to a method for detecting leaks in piping.

【0002】[0002]

【従来の技術】上水道管、ガス配管、送油管、あるいは
化学プラントの流体配管網における漏洩個所を早期に判
定し、漏洩の継続を防止することは資源の有効活用をな
す上で極めて重要である。このため、従来から各種の漏
洩検査が行なわれている。例えば、上水道網における漏
水検査では、一般的な方法として音聴法が用いられ、作
業者が音聴棒を水道配管のバルブ部分に直接当てて配管
から出る音を聴取して漏水の有無を検出し、あるいは水
道配管に沿って地面に振動センサを置き、水道配管から
の伝達される振動音に基づいて漏水の有無を検出してい
る。
2. Description of the Related Art It is extremely important to early determine a leak location in a water pipe, a gas pipe, an oil feed pipe, or a fluid pipe network of a chemical plant and prevent the continuation of the leak in order to effectively utilize resources. . For this reason, various leak inspections have been conventionally performed. For example, in the water leak inspection in the water supply network, the sound hearing method is used as a general method, and the worker directly hits the sound hearing stick to the valve part of the water pipe to hear the sound coming out of the pipe to detect the presence of water leak. Alternatively, a vibration sensor is placed on the ground along the water supply pipe, and the presence or absence of water leakage is detected based on vibration noise transmitted from the water supply pipe.

【0003】ところが、上記のような音聴法では、車両
の通行等による振動などが測定に影響を与えるために夜
間作業となり、しかも作業者が歩行移動により測定する
ために検査距離は極めて短なってしまう欠点があった。
また、音の聴取には熟練を要するため、漏水検知に従事
する作業者が少ないという問題もあった。
However, in the above-described sound hearing method, the work is performed at night because vibrations and the like caused by the traffic of the vehicle affect the measurement, and the inspection distance is extremely short because the worker measures while walking. There was a disadvantage.
In addition, since listening to sound requires skill, there is also a problem that few workers are engaged in water leak detection.

【0004】[0004]

【発明が解決しようとする課題】このような観点から、
配管内部にマイクを挿入して配管に沿って移動させなが
ら検出する方法(特開昭50−118554号公報、特
開昭56−160500号公報)や、配管流量をオリフ
ィスで絞り込みながら差圧を検出し、漏水量を検出する
方法などが提案されている。この方法は水道管網のみな
らず各種の流体配管の漏洩個所を検出するのに利用する
ことができる。
SUMMARY OF THE INVENTION From such a viewpoint,
A method in which a microphone is inserted into a pipe and detected while moving along the pipe (Japanese Patent Application Laid-Open Nos. 50-118554 and 56-160500), and a differential pressure is detected while a pipe flow rate is reduced by an orifice. However, methods for detecting the amount of water leakage have been proposed. This method can be used to detect leak points in various fluid pipes as well as water pipe networks.

【0005】しかし、上記従来のいずれの方法でも、実
際の測定に際して、配管から内部流体を抜き取ること
や、流路遮断などの操作が必要であり、通流状態を維持
しながら正確に漏洩箇所を検出することはできないもの
であった。
However, in any of the above-mentioned conventional methods, it is necessary to perform an operation such as withdrawing the internal fluid from the pipe or shutting off the flow path during the actual measurement. It could not be detected.

【0006】本発明は、上記従来の問題点に着目し、配
管の検査区間の両端部でセンサにより内部流体が発し、
あるいは配管の管壁を通じて聴取できる音を検出する操
作のみで漏水箇所を簡単に検出できるようにした配管の
漏洩検知方法を提供することを目的とする。
The present invention focuses on the conventional problems described above, and internal fluid is generated by sensors at both ends of a pipe inspection section.
Alternatively, it is another object of the present invention to provide a method for detecting a leak in a pipe in which a leak point can be easily detected only by an operation of detecting a sound audible through a pipe wall of the pipe.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る配管の漏洩検知方法は、内部に流体が
流れている状態にある配管の漏洩検知をなす方法であっ
て、検査区間の両端にセンサを配置し、各センサにより
取り込まれた検知信号をバンドパスフィルタを通過させ
て複数の周波数帯域に弁別し、前記検査区間をn等分し
て仮音源位置を設定し、この仮音源位置における両セン
サより検出された帯域毎の信号相関係数の高い波形を加
算して合成波形を得るとともに、この処理を前記仮音源
位置を更新しつつ全区間にわたって行ない、各仮音源位
置での合成波形から漏洩の有無を判別する構成とした。
In order to achieve the above object, a pipe leakage detection method according to the present invention is a method for detecting leakage of a pipe in a state where a fluid is flowing therein, and includes an inspection method. Sensors are arranged at both ends of the section, the detection signal captured by each sensor is passed through a band-pass filter to discriminate into a plurality of frequency bands, the inspection section is divided into n equal parts, and a temporary sound source position is set. A waveform having a high signal correlation coefficient for each band detected by both sensors at the temporary sound source position is added to obtain a synthesized waveform, and this process is performed over the entire section while updating the temporary sound source position. In this configuration, the presence or absence of leakage is determined from the composite waveform obtained in step (1).

【0008】また、本発明の第2の構成に係る配管の漏
洩検知方法は、内部を流体が流れている状態にある配管
の漏洩検知をなす方法であって、漏洩検査区間の音を異
なる位置で同時に検出し、各検出信号を複数の周波数帯
域に弁別するとともに、前記検索間の任意の個所に設定
した仮音源位置での相関により弁別された帯域信号の合
成波形を得て漏洩の有無を判別する処理を行ない、この
処理を仮音源位置を変更処理しつつ全検査区間にわたっ
て行なうことを特徴としている。
A pipe leakage detection method according to a second configuration of the present invention is a method for detecting leakage of a pipe in a state where a fluid is flowing through the inside thereof. At the same time, and discriminates each detection signal into a plurality of frequency bands, and obtains a synthesized waveform of the band signals discriminated by correlation at a temporary sound source position set at an arbitrary position during the search to determine whether or not there is leakage. It is characterized in that a determination process is performed, and this process is performed over the entire inspection section while changing the temporary sound source position.

【0009】これらの場合において、前記配管は上水道
網の送水管または配水管であって、当該上水道網の送水
管または配水管に取り付けられた水中マイクから検査区
間の漏水を検知するようにし、あるいは、前記配管はガ
ス管であって、当該ガス管に取り付けられたセンサから
検査区間のガス漏れを検知するようにし、更には、前記
配管はプラントの配管であって、当該プラントの配管に
取り付けられたセンサから検査区間の流体の漏れを検知
するようにすることができる。
[0009] In these cases, the pipe is a water pipe or a water pipe of a water network, and a water leak in an inspection section is detected from a submersible microphone attached to the water pipe or the water pipe of the water network. The pipe is a gas pipe, and detects a gas leak in an inspection section from a sensor attached to the gas pipe.Furthermore, the pipe is a pipe of a plant, and is attached to a pipe of the plant. The leak of the fluid in the inspection section can be detected from the sensor.

【0010】[0010]

【作用】上記構成によれば、流体配管の検査区間の両端
で水中マイク等のセンサにより音を検出するが、この検
出される音を複数の周波数帯域に弁別しておき、これを
音源がある特定の箇所とした場合に、同一の音源から出
る音は同一の遅れ時間を持っているので、周波数帯域毎
に相関するものを加算して合成することにより、特定位
置の音源から出ている音を再現することができる。仮に
定めた音源位置を移動変化させることにより、検査区間
の全領域で仮音源位置を移動させて得られた合成波形が
流体漏洩に基づくか否かは例えばパターン認識処理等を
用いて判別することができる。したがって、検査区間の
異なる位置で同時に流体自体の音を検出し、これを周波
数帯域毎に弁別しておき、相関するものを加算合成する
ことにより特定位置において生成した音の再現が可能と
なることを利用しているので、単に音の検出を2ヵ所若
しくはそれ以上で検出することにより、簡単に漏洩の有
無判別が可能となるのである。
According to the above arrangement, sound is detected by a sensor such as a submersible microphone at both ends of the inspection section of the fluid pipe, and the detected sound is discriminated into a plurality of frequency bands, and this is identified by a sound source. In the case where the sound from the same sound source has the same delay time, the sound from the sound source at the specific position is synthesized by adding the components correlated for each frequency band and combining them. Can be reproduced. By moving the temporarily determined sound source position, it is determined whether or not the synthesized waveform obtained by moving the temporary sound source position in the entire area of the inspection section is based on fluid leakage, for example, by using a pattern recognition process or the like. Can be. Therefore, it is possible to reproduce the sound generated at a specific position by detecting the sound of the fluid itself at different positions in the inspection section at the same time, discriminating this for each frequency band, and adding and synthesizing correlated ones. Since it is used, it is possible to easily determine the presence or absence of leakage simply by detecting sound at two or more locations.

【0011】[0011]

【発明の実施の形態】以下に、本発明に係る配管の漏洩
検査方法を送配水管の漏水検査方法に適用した場合の具
体的実施の形態を図面を参照して詳細に説明する。図1
は実施形態に係る漏水検査方法を実施するための装置構
成ブロック図である。図示のように、検査対象の送配水
管10に対し、漏水検査区間を設定し、その両端部分に
水中マイク12(12A、12B)を設置するようにし
ている。そして、このマイク12により水中音の検出を
なし、これを異なる周波数帯域に弁別し、相関分類型フ
ィルタ14を通すとともに、漏水検査区間に仮設定した
音源位置(n1、n2、n3、……)にて相関する帯域周
波数の合成を波形合成手段16にて合成し、この合成波
形によって漏水の有無を診断するようになっている。こ
の原理は次のようなものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A detailed description will be given below of a specific embodiment in which a pipe leakage inspection method according to the present invention is applied to a water transmission and distribution pipe leakage inspection method with reference to the drawings. FIG.
FIG. 1 is a block diagram of a device configuration for implementing a water leakage inspection method according to an embodiment. As shown in the drawing, a water leakage inspection section is set for the water transmission and distribution pipe 10 to be inspected, and underwater microphones 12 (12A, 12B) are installed at both ends. The microphone 12 detects underwater sounds, discriminates them into different frequency bands, passes them through the correlation classification filter 14, and temporarily sets sound source positions (n1, n2, n3,...) In the leak inspection section. Are synthesized by the waveform synthesizing means 16 and the presence or absence of water leakage is diagnosed by the synthesized waveform. The principle is as follows.

【0012】図1に示しているように、ある漏水検査区
間内において、その区間の両端に位置する一対の水中マ
イク12により水中伝達音を検出する。一方の水中マイ
ク12Aの設置点を基準点A、他方の水中マイク12B
の設置点を対照点B、漏水点をPとすると、基準点Aに
て検出した漏水点Pにおける漏水音と、対照点Bにて検
出した漏水点Pにおける漏水音は同一か極めて類似した
波形を有しているが、PからAまたはBまでの距離が異
なるため、伝播時間差が生じる。この伝播時間差を知る
ことによって、基準点Aから漏水点Pまでの距離la
は、次式により求めることができる。
As shown in FIG. 1, in a water leakage inspection section, a pair of underwater microphones 12 located at both ends of the section detect underwater transmission sounds. The installation point of one underwater microphone 12A is a reference point A, and the other underwater microphone 12B is
Assuming that the installation point is a control point B and the water leak point is P, the water leak sound at the water leak point P detected at the reference point A and the water leak sound at the water leak point P detected at the control point B are the same or very similar waveforms. However, since the distance from P to A or B is different, a propagation time difference occurs. Knowing this propagation time difference, the distance la from the reference point A to the leak point P
Can be obtained by the following equation.

【0013】[0013]

【数1】 (Equation 1)

【0014】但し、LはA点とB点間の距離であり、τ
mは漏水音伝播時間差、Cは漏水音伝播速度である。し
たがって、漏水音伝播時間差が判明すれば漏水点Pの位
置を特定することができる。
Where L is the distance between points A and B, and τ
m is the water leak sound propagation time difference, and C is the water leak sound propagation speed. Therefore, if the difference in the water leak sound propagation time is known, the position of the water leak point P can be specified.

【0015】ところで、水中マイク12(12A、12
B)は複数の音源からの信号を同時に検出し、検出音は
多周波数域にわたる合成された音として捉えられる。し
たがって、複数の音源S1、S2が存在した場合に、こ
れから発せられる信号を前記複数のマイク12にて検出
した後、検出合成音の信号から各音源S1、S2にて発
せられる信号に復元することで、特定位置にある音源か
ら発せられている音の波形を再生することができる。こ
のため、本実施形態では相関分類型フィルタ14を用い
るようにしている。この具体的内容を図2を参照して説
明する。
The underwater microphone 12 (12A, 12A)
B) simultaneously detects signals from a plurality of sound sources, and the detected sound is regarded as a synthesized sound over a multi-frequency range. Therefore, when a plurality of sound sources S1 and S2 are present, after detecting signals to be emitted from the plurality of microphones 12, the signals of the detected synthesized sounds are restored to signals emitted by the respective sound sources S1 and S2. Thus, the waveform of the sound emitted from the sound source at the specific position can be reproduced. For this reason, in the present embodiment, the correlation classification filter 14 is used. The specific contents will be described with reference to FIG.

【0016】音源S1から出る音をバンドパスフィルタ
にかけて周波数別に出力したときに、周波数f1、f2、
f3の信号があり、音源S2では周波数f4、f5の信号
が発せられている場合、音源S1に近いマイク12Aと
音源S2に近いマイク12Bで検出される音は、両音源
S1、S2の音が混在した状態で検出される。マイク1
2A、12Bおよび音源S1、S2の位置が固定である
とき、マイク12Aで検出される同一の音源からの音は
周波数に拘らず、伝播時間差がなく、異なる音源からの
音は伝播時間差が等しい。したがって、周波数毎に検出
される音の波形の相関を計算し、その相関値が大きい場
合には同一の音源から発せられている音であると判別で
き、これを抽出することにより、音源S1、S2の各々
から出る音を再現することができるのである。
When the sound emitted from the sound source S1 is output by frequency through a band-pass filter, the frequencies f1, f2,
When there is a signal of f3 and the sound source S2 emits signals of frequencies f4 and f5, the sounds detected by the microphone 12A close to the sound source S1 and the microphone 12B close to the sound source S2 are the sounds of both sound sources S1 and S2. Detected in a mixed state. Microphone 1
When the positions of the sound sources 2A and 12B and the sound sources S1 and S2 are fixed, sounds from the same sound source detected by the microphone 12A have no propagation time difference regardless of frequency, and sounds from different sound sources have the same propagation time difference. Therefore, the correlation of the waveform of the sound detected for each frequency is calculated, and when the correlation value is large, it can be determined that the sound is emitted from the same sound source. By extracting this, the sound sources S1, The sound from each of S2 can be reproduced.

【0017】そこで図3に示すように、マイク12A、
12Bから検出された信号は、相関分類型フィルタ14
に入力させるようにする。このフィルタ14では、各マ
イク12A、12Bに対応した周波数分析回路18A、
18Bを通し、周波数弁別された信号は相関計算回路2
0および演算回路22に出力され、各周波数帯域毎に周
波数分析回路18A、18Bの出力間の相互関係が計算
される。そして、遅れ時間設定回路24によって設定さ
れた遅れ時間の下限値と上限値に基づき、演算回路22
によってその設定された遅れ時間の変化に基づく周波数
帯域のレベルの時間変化波形が出力される。
Therefore, as shown in FIG.
The signal detected from the correlation classification filter 14B
To input. In this filter 14, frequency analysis circuits 18A corresponding to the microphones 12A and 12B,
18B, the frequency-discriminated signal is applied to the correlation calculation circuit 2
0 and output to the arithmetic circuit 22, and the correlation between the outputs of the frequency analysis circuits 18A and 18B is calculated for each frequency band. Then, based on the lower limit value and the upper limit value of the delay time set by the delay time setting circuit 24, the arithmetic circuit 22
Outputs a time-varying waveform of the level of the frequency band based on the change in the set delay time.

【0018】図4が帯域フィルタ通過波形の相互相関係
数のグラフであり、周波数が300〜1300Hzを1
0帯域に分けたものである。そして、図4のような出力
データに対し、相関係数にある一定の閾値を設定し、例
えば0.4以上の場合に波形合成手段16に出力して合
成波形を得ると、図1に示すような合成波形が得られ
る。これを漏水診断装置26に出力し、ここで漏水の有
無を判定出力するようにしている。
FIG. 4 is a graph of the cross-correlation coefficient of the waveform passing through the band-pass filter.
It is divided into 0 bands. When a certain threshold value is set for the correlation coefficient with respect to the output data as shown in FIG. Such a composite waveform is obtained. This is output to the water leakage diagnosis device 26, where the presence or absence of water leakage is determined and output.

【0019】このような処理は、送配水管の検査区間を
n等分し、漏水診断を仮に設定した音源位置n1、n2、
n3、……ごとに行われる。合成波形からの漏水判断
は、合成信号が継続して行われていること、合成波形の
振幅から得た強度(図5(1))や合成波形に至るまで
の周波数の加算数(図5(2))を導いて判断するよう
にすればよい。これによって簡便に漏水の有無、その位
置の判別、振幅から漏水量の推定が可能であり、コンピ
ュータにて、その演算処理を行って表示手段に表示させ
るようにすればよい。一対の水中マイク12A、12B
間の検査区間の漏水検査が終了したのは、検査区間を更
新し、上水道間網の全てにわたって同様に処理する。
In such processing, the inspection section of the water distribution pipe is divided into n equal parts, and the sound source positions n1, n2,
n3,... The determination of water leakage from the synthesized waveform is based on the fact that the synthesized signal is continuously performed, the strength obtained from the amplitude of the synthesized waveform (FIG. 5A), and the number of additions of the frequencies up to the synthesized waveform (FIG. 2)) may be derived to make the determination. This makes it possible to easily determine the presence or absence of water leakage, its position, and to estimate the amount of water leakage from the amplitude. The computer may perform the arithmetic processing and display it on the display means. A pair of underwater microphones 12A, 12B
When the water leakage inspection in the inspection section is completed, the inspection section is updated and the same processing is performed over the entire water network.

【0020】上述のような実施形態では、通水状態にあ
る送配水管の漏水検知をなす方法であって、検査区間の
両端に水中マイクを設置し、各マイクにより取り込まれ
た検知信号をバンドパスフィルタを通過させて周波数帯
域ごとに弁別し、前記検査区間をn等分して仮音源位置
を設定し、この仮音源位置における両マイクにより検出
された帯域毎の信号の相関係数の高い波形を加算して合
成波形を得るとともに、この処理を前記仮音源位置を更
新しつつ全区間にわたって行い、各仮音源位置での合成
波形から漏水の有無を判別するものであるため、送配水
管の検査区間の両端部で水中マイクにより音を検出する
操作のみで漏水箇所を簡単に検出できるという効果が得
られる。
In the above-described embodiment, a method for detecting water leakage in a water transmission / distribution pipe in a water-passing state, in which underwater microphones are installed at both ends of an inspection section, and a detection signal captured by each microphone is used as a band After passing through a pass filter, discrimination is performed for each frequency band, the test section is divided into n equal parts, and a temporary sound source position is set. In addition to obtaining the combined waveform by adding the waveforms, this process is performed over the entire section while updating the temporary sound source position, and the presence or absence of water leakage is determined from the combined waveform at each temporary sound source position. The effect is obtained that the leaked portion can be easily detected only by the operation of detecting the sound with the underwater microphone at both ends of the inspection section.

【0021】上記実施形態では上水道網の検知を水中マ
イクを用いて行なう方法について説明したが、上記水中
マイクに代えて加速度ピックアップをセンサとして用
い、これを外部に露出している管壁面あるいは露出して
いる枝管に取り付け、管内音が振動となって管壁に伝わ
ることを利用するようにしてもよい。すなわち、漏水に
起因する音やこの音によってもたらせられる振動、ある
いは漏水によって圧力の変化が生じてこれが負圧力波の
伝播が生じるので、これらを波動信号として検出できる
センサにより、実施形態と同一の手法で漏洩個所を検出
することができる。
In the above embodiment, the method of detecting the water supply network by using the underwater microphone has been described. However, an acceleration pickup is used as a sensor instead of the underwater microphone, and this is used to expose the pipe wall or the exposed wall to the outside. It is also possible to use the fact that the sound inside the pipe is vibrated and transmitted to the pipe wall. In other words, the sound caused by water leakage, the vibration caused by this sound, or the change in pressure caused by water leakage causes the propagation of a negative pressure wave, and the sensor capable of detecting these as a wave signal is the same as the embodiment. The leak location can be detected by the method described in (1).

【0022】本発明は、上水道網の漏水検査に適用でき
るだけでなく、ガス配管網でのガス漏れ検知や化学プラ
ントなどにおける一般流体配管での漏洩検知にも適用す
ることが可能である。例えば、ガス漏れ検知に適用する
場合、ガスの通流音を検出するマイクを間隔をおいて管
内に差し込み、ガス流の音を検出するようにすればよ
い。ガス漏れの音には、超音波領域の高周波音も含まれ
るので、加速度ピックアップの他、AEセンサを利用で
きる。これは配管の露出部の管壁上あるいは露出してい
る枝間を取り付け位置とすればよい。
The present invention can be applied not only to water leak inspection in a water supply network, but also to gas leak detection in a gas piping network and leak detection in general fluid piping in a chemical plant or the like. For example, when the present invention is applied to gas leak detection, a microphone for detecting gas flow noise may be inserted into the pipe at intervals to detect gas flow noise. Since the sound of gas leakage includes high-frequency sound in the ultrasonic range, an AE sensor can be used in addition to the acceleration pickup. This may be set at the mounting position on the pipe wall of the exposed portion of the pipe or between the exposed branches.

【0023】化学プラントなどにおける輸送流体の漏れ
を検知するには、圧力監視による方法として圧力計をセ
ンサとして用いて内部流体漏洩による負圧力波の伝播を
捉えて、漏水検知の実施形態で示した処理を行なって漏
洩個所を特定することができる。また、音響監視による
方法も当然可能であり、漏洩音として内部流体の波動を
検出する場合にはマイクをパイプラインの内部に差し込
むようにすればよく、パイプラインは地表に設置されて
いるので、場合によっては管の周囲に配置して管壁を通
じて外部に漏れ出る音を検出するようにしてもよい。ま
た、上記ガス漏洩検知の場合と同様に、加速度ピックア
ップの他、AEセンサを利用してパイプラインの壁面上
の振動を検出することができる。上記いずれの場合にも
検出に当たってのアルゴリズムは漏水検査の場合と同様
である。
In order to detect leakage of a transport fluid in a chemical plant or the like, a method of monitoring pressure is used to detect the propagation of a negative pressure wave due to internal fluid leakage using a pressure gauge as a sensor, and this is shown in the embodiment of water leak detection. Processing can be performed to identify the leak location. Also, it is naturally possible to use a method based on acoustic monitoring, and when detecting the wave of the internal fluid as leak sound, it is sufficient to insert a microphone inside the pipeline, since the pipeline is installed on the ground surface, In some cases, it may be arranged around the pipe to detect sound leaking out through the pipe wall. Further, similarly to the case of the gas leak detection, vibration on the wall surface of the pipeline can be detected using an AE sensor in addition to the acceleration pickup. In any of the above cases, the algorithm for detection is the same as in the case of the water leakage inspection.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
内部に流体が流れている状態にある配管の漏洩検知をな
す方法であって、検査区間の両端にセンサを配置し、各
センサにより取り込まれた検知信号をバンドパスフィル
タを通過させて複数の周波数帯域に弁別し、前記検査区
間をn等分して仮音源位置を設定し、この仮音源位置に
おける両センサより検出された帯域毎の信号相関係数の
高い波形を加算して合成波形を得るとともに、この処理
を前記仮音源位置を更新しつつ全区間にわたって行な
い、各仮音源位置での合成波形から漏洩の有無を判別す
るように構成し、あるいは、内部を流体が流れている状
態にある配管の漏洩検知をなす方法であって、漏洩検査
区間の音を異なる位置で同時に検出し、各検出信号を複
数の周波数帯域に弁別するとともに、前記検索間の任意
の個所に設定した仮音源位置での相関により弁別された
帯域信号の合成波形を得て漏洩の有無を判別する処理を
行ない、この処理を仮音源位置を変更処理しつつ全検査
区間にわたって行なうように構成したので、漏洩個所の
検出のために作業者の移動を伴うことなく、また配管の
流路遮断等の付帯的な操作を必要とすることなく、いつ
でも定期的に漏洩を精度よく検出することができるとい
う効果が得られる。
As described above, according to the present invention,
This is a method of detecting leaks of pipes in a state where fluid is flowing inside, by arranging sensors at both ends of the inspection section, and passing a detection signal taken by each sensor through a bandpass filter to a plurality of frequencies. Bands are discriminated, the test section is divided into n equal parts to set a temporary sound source position, and a waveform having a high signal correlation coefficient for each band detected by both sensors at the temporary sound source position is added to obtain a composite waveform. At the same time, this process is performed over the entire section while updating the temporary sound source position, and the presence or absence of leakage is determined from the composite waveform at each temporary sound source position, or the fluid is flowing inside. A method for detecting leaks in a pipe, wherein sounds in a leak inspection section are simultaneously detected at different positions, each detection signal is discriminated into a plurality of frequency bands, and a temporary set at an arbitrary point between the searches. A process was performed to determine the presence or absence of leakage by obtaining a composite waveform of the band signal discriminated by correlation at the source position, and to perform this process over the entire inspection interval while changing the temporary sound source position. The effect of being able to detect leaks regularly and accurately at any time without the need for workers to move to detect the location and without the need for ancillary operations such as shutting off the pipe flow path. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の漏水検知方法の実施形態の構成図であ
る。
FIG. 1 is a configuration diagram of an embodiment of a water leakage detection method according to the present invention.

【図2】相関分類型フィルタの説明図である。FIG. 2 is an explanatory diagram of a correlation classification filter.

【図3】同フィルタの具体的構成図である。FIG. 3 is a specific configuration diagram of the filter.

【図4】周波数帯域別の遅れ時間に対する相関係数の出
力グラフである。
FIG. 4 is an output graph of a correlation coefficient with respect to a delay time for each frequency band.

【図5】漏水検査システムの漏水検査結果の出力図であ
る。
FIG. 5 is an output diagram of a water leakage inspection result of the water leakage inspection system.

【符号の説明】[Explanation of symbols]

10 送配水管 12(12A、12B) 水中マイク 14 相関分類型フィルタ 16 波形合成手段 18(18A、18B) 周波数分析回路 20 相関計算回路 22 演算回路 24 遅れ時間設定回路 DESCRIPTION OF SYMBOLS 10 Water distribution pipe 12 (12A, 12B) Underwater microphone 14 Correlation classification type filter 16 Waveform synthesis means 18 (18A, 18B) Frequency analysis circuit 20 Correlation calculation circuit 22 Operation circuit 24 Delay time setting circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内部に流体が流れている状態にある配管
の漏洩検知をなす方法であって、検査区間の両端にセン
サを配置し、各センサにより取り込まれた検知信号をバ
ンドパスフィルタを通過させて複数の周波数帯域に弁別
し、前記検査区間をn等分して仮音源位置を設定し、こ
の仮音源位置における両センサより検出された帯域毎の
信号相関係数の高い波形を加算して合成波形を得るとと
もに、この処理を前記仮音源位置を更新しつつ全区間に
わたって行ない、各仮音源位置での合成波形から漏洩の
有無を判別することを特徴とする配管の漏洩検知方法。
1. A method for detecting leakage of a pipe in which a fluid is flowing inside, wherein sensors are arranged at both ends of an inspection section, and a detection signal taken by each sensor passes through a band-pass filter. Then, the test section is divided into n equal parts to set a temporary sound source position, and a waveform having a high signal correlation coefficient for each band detected by both sensors at the temporary sound source position is added. A method for detecting a leak in a pipe, wherein the process is performed over the entire section while updating the temporary sound source position, and the presence or absence of leakage is determined from the synthetic waveform at each temporary sound source position.
【請求項2】 内部を流体が流れている状態にある配管
の漏洩検知をなす方法であって、漏洩検査区間の音を異
なる位置で同時に検出し、各検出信号を複数の周波数帯
域に弁別するとともに、前記検索間の任意の個所に設定
した仮音源位置での相関により弁別された帯域信号の合
成波形を得て漏洩の有無を判別する処理を行ない、この
処理を仮音源位置を変更処理しつつ全検査区間にわたっ
て行なうことを特徴とする配管の漏洩検査方法。
2. A method for detecting leakage of a pipe in a state in which a fluid is flowing inside, wherein sounds in a leakage inspection section are simultaneously detected at different positions, and each detection signal is discriminated into a plurality of frequency bands. At the same time, a process of obtaining a composite waveform of the band signal discriminated by the correlation at the temporary sound source position set at an arbitrary position during the search to determine whether or not there is leakage is performed, and performing this process to change the temporary sound source position. A pipe leakage inspection method characterized in that the inspection is performed over the entire inspection section.
【請求項3】 前記配管は上水道網の送水管または配水
管であって、当該上水道網の送水管または配水管に取り
付けられた水中マイクから検査区間の漏水を検知するこ
とを特徴とする請求項1または2に記載の配管の漏洩検
知方法。
3. The water supply pipe or water distribution pipe of a water supply network, wherein the underwater microphone attached to the water supply pipe or water distribution pipe of the water supply network detects water leakage in an inspection section. 3. The method for detecting leakage of piping according to 1 or 2.
【請求項4】 前記配管はガス管であって、当該ガス管
に取り付けられたセンサから検査区間のガス漏れを検知
することを特徴とする請求項1または2に記載の配管の
漏洩検査方法。
4. The pipe leakage inspection method according to claim 1, wherein the pipe is a gas pipe, and a gas leak in an inspection section is detected by a sensor attached to the gas pipe.
【請求項5】 前記配管はプラントの配管であって、当
該プラントの配管に取り付けられたセンサから検査区間
の流体の漏れを検知することを特徴とする請求項1また
は2に記載の配管の漏洩検査方法。
5. The pipe according to claim 1, wherein the pipe is a pipe of a plant, and a leak of the fluid in the inspection section is detected from a sensor attached to the pipe of the plant. Inspection methods.
JP15641898A 1997-06-23 1998-06-04 Method for detecting leakage of piping Withdrawn JPH1172409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15641898A JPH1172409A (en) 1997-06-23 1998-06-04 Method for detecting leakage of piping

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18169297 1997-06-23
JP9-181692 1997-06-23
JP15641898A JPH1172409A (en) 1997-06-23 1998-06-04 Method for detecting leakage of piping

Publications (1)

Publication Number Publication Date
JPH1172409A true JPH1172409A (en) 1999-03-16

Family

ID=26484179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15641898A Withdrawn JPH1172409A (en) 1997-06-23 1998-06-04 Method for detecting leakage of piping

Country Status (1)

Country Link
JP (1) JPH1172409A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079425A1 (en) * 1999-06-22 2000-12-28 Thames Water Utilities Limited Correlation analysis in the phase domain
JP2002296139A (en) * 2001-03-30 2002-10-09 High Pressure Gas Safety Institute Of Japan Method for detecting gas leakage
JP2008064494A (en) * 2006-09-05 2008-03-21 Tsurumi Seiki:Kk Water leak determination device and method, and pressure wave sensor
WO2013145492A1 (en) 2012-03-30 2013-10-03 日本電気株式会社 Leak detection method, water leakage detection method, leak detection device, and water leakage detection device
WO2014050358A1 (en) 2012-09-27 2014-04-03 日本電気株式会社 Leak inspection device, leak inspection method, and leak inspection program
CN106644284A (en) * 2016-12-16 2017-05-10 北京伟瑞迪科技有限公司 Automatic leakage monitoring and repairing system for chemical plant device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079425A1 (en) * 1999-06-22 2000-12-28 Thames Water Utilities Limited Correlation analysis in the phase domain
WO2000079424A1 (en) * 1999-06-22 2000-12-28 Central Research Laboratories Limited Correlation analysis in the phase domain
GB2368916A (en) * 1999-06-22 2002-05-15 Thames Water Utilities Correlation analysis in the phase domain
GB2368916B (en) * 1999-06-22 2003-09-24 Thames Water Utilities Correlation analysis in the phase domain
JP2002296139A (en) * 2001-03-30 2002-10-09 High Pressure Gas Safety Institute Of Japan Method for detecting gas leakage
JP2008064494A (en) * 2006-09-05 2008-03-21 Tsurumi Seiki:Kk Water leak determination device and method, and pressure wave sensor
WO2013145492A1 (en) 2012-03-30 2013-10-03 日本電気株式会社 Leak detection method, water leakage detection method, leak detection device, and water leakage detection device
WO2014050358A1 (en) 2012-09-27 2014-04-03 日本電気株式会社 Leak inspection device, leak inspection method, and leak inspection program
US9970840B2 (en) 2012-09-27 2018-05-15 Nec Corporation Leak inspection device, leak inspection method, and leak inspection program
CN106644284A (en) * 2016-12-16 2017-05-10 北京伟瑞迪科技有限公司 Automatic leakage monitoring and repairing system for chemical plant device

Similar Documents

Publication Publication Date Title
US6453247B1 (en) PC multimedia-based leak detection system for water transmission and distribution pipes
JPH11201859A (en) Method for detecting leak in pipe by frequency band division
US7266992B2 (en) Remote pipeline acoustic inspection
CA2347567C (en) Non-destructive measurement of pipe wall thickness
Pal et al. Detecting & locating leaks in water distribution polyethylene pipes
JPH08304124A (en) Method, apparatus and system for identifying body under test
JP3032185B2 (en) Piping leak detection system
GB2367362A (en) Detecting leaks in water distribution systems
JP2008051776A (en) Apparatus and method for detecting water leakage
CN101319955A (en) Method for extracting leakage of pipe monitored by infrasonic wave
JPH11271168A (en) Leakage detection method
JPH1062292A (en) Signal processing method in pipe leakage-position locating method
JP2013044612A (en) Detection method and device of underground piping damage position
JPH11201858A (en) Method using correlation for measuring vibration of conduit system
JPH1172409A (en) Method for detecting leakage of piping
JP6789042B2 (en) How to identify the location of the leak
JPH1114492A (en) Method for inspecting leakage of city water network
JPH1164152A (en) Method for spotting leakage position in gas piping and device therefor
JP2018205192A (en) Water leakage position specification method and leak presence/absence determination method
JPH11210999A (en) Method for specifying leakage position of pipe line system by correlation method
RU2681552C1 (en) Method for detecting illegal tapping in pipeline
JPH0587669A (en) Pipe-leakage inspecting method
JP2017083291A (en) Method for specifying abnormal sound generation position, and device for specifying abnormal sound generation position
JP2000155048A (en) Analyzing method of sound source contribution
JP3630393B2 (en) Abnormal point detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906