JPH11201859A - Method for detecting leak in pipe by frequency band division - Google Patents

Method for detecting leak in pipe by frequency band division

Info

Publication number
JPH11201859A
JPH11201859A JP1824598A JP1824598A JPH11201859A JP H11201859 A JPH11201859 A JP H11201859A JP 1824598 A JP1824598 A JP 1824598A JP 1824598 A JP1824598 A JP 1824598A JP H11201859 A JPH11201859 A JP H11201859A
Authority
JP
Japan
Prior art keywords
sound
water
pipe
point
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1824598A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeda
博 竹田
Koichi Sato
功一 佐藤
Hiroyuki Tachibana
弘幸 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1824598A priority Critical patent/JPH11201859A/en
Publication of JPH11201859A publication Critical patent/JPH11201859A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detecting method in which a water leaking place can be detected simply only by a detecting operation by using microphones by a method in which the detection signal of a pipe flow sound fetched by the microphones at both ends of an inspection section is divided into a plurality of frequency bands and the mean of their correlation coefficients is found. SOLUTION: Underwater microphones 12A, 12B which are installed at both ends of a water-leaking inspection section in a water supply pipe 10 detect the propagation sound of water inside the water supply pipe 10. A controller collects the sound, and it computes a water leaking place together with a sound velocity. At this time, a water leaking sound, in a water leaking point P, which is detected in the installation (reference) point A of the underwater microphone 12A and that which is detected in the installation (comparison) point B of the underwater microphone 12B have the same waveform. Since their distances are different, a delay time τm is generated, and a distance up to the water leaking point P from the reference point A can be found. At this time, underwater sound detection signals are passed through frequency bands in which filter banks 16A, 16B are different, they are input to a correlation-coefficient computing part, and their correlation coefficients are computed for every detection signal whose frequency band is divided. They are added and average by a correlation-coefficient-average processing part 20, and the delay time τm is found. A sound velocity can be computed on the basis of the delay time τm .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上水、LPガス、
都市ガス、原油、化学物質(化学プラント)などの配管
システムにおける漏洩検知方法に係り、特に水道網の漏
水箇所の検知に有効な周波数帯域分割による配管漏洩検
知方法に関する。
TECHNICAL FIELD The present invention relates to clean water, LP gas,
The present invention relates to a leak detection method in a piping system of city gas, crude oil, a chemical substance (chemical plant), and the like, and more particularly to a pipe leak detection method by frequency band division effective for detecting a leak point in a water network.

【0002】[0002]

【従来の技術】上水、LPガス、都市ガス、原油、化学
物質(化学プラント)などの流体配管網における漏洩を
防止することは資源の有効活用をなす上で極めて重要で
ある。このため、従来から配管網に対して各種の漏洩検
査が行われている。例えば、上水道網に対する漏水検査
についての従来の一般的な方法は音聴法といわれ、作業
者が音聴棒を水道配管のバルブ部分に直接当てて配管か
ら出る音を聴取して漏水の有無を検出し、あるいは水道
配管に沿って地面に振動センサを置き、水道配管から伝
達される振動音に基づいて漏水の有無を検出している。
2. Description of the Related Art It is extremely important to prevent leakage of water, LP gas, city gas, crude oil, chemical substances (chemical plants) and the like in a fluid piping network in order to effectively utilize resources. For this reason, various leak inspections have been conventionally performed on piping networks. For example, the conventional general method of water leakage inspection for a water supply network is called a sound hearing method. Detecting or placing a vibration sensor on the ground along the water pipe to detect the presence or absence of water leakage based on the vibration sound transmitted from the water pipe.

【0003】ところが、上記のような音聴法では、車両
の通行等による振動などが測定に影響を与えるために夜
間作業とせざるを得ず、しかも作業者が歩行移動により
測定するために検査距離は極めて短なってしまう欠点が
あった。また、音の聴取には熟練を要するため、漏水検
知に従事する作業者が少ないという問題もあった。
However, in the above-described sound hearing method, vibrations and the like caused by the traffic of a vehicle affect the measurement, and the work must be performed at night. Had the disadvantage of being extremely short. In addition, since listening to sound requires skill, there is also a problem that few workers are engaged in water leak detection.

【0004】[0004]

【発明が解決しようとする課題】このような観点から、
配管内部にマイクを挿入して配管に沿って移動させなが
ら検出する方法(特開昭50−118554号公報、特
開昭56−160500号公報)や、配管流量をオリフ
ィスで絞り込みながら差圧を検出し、漏水量を検出する
方法などが提案されている。
SUMMARY OF THE INVENTION From such a viewpoint,
A method in which a microphone is inserted into a pipe and detected while moving along the pipe (Japanese Patent Application Laid-Open Nos. 50-118554 and 56-160500), and a differential pressure is detected while a pipe flow rate is reduced by an orifice. However, methods for detecting the amount of water leakage have been proposed.

【0005】しかし、上記従来のいずれの方法でも、実
際の測定に際して、配水管の水の抜き取りや、流水遮断
などの操作が必要であり、定常の流通状態を維持しなが
ら正確に漏洩箇所を検出することはできないものであっ
た。
However, in any of the above-mentioned conventional methods, it is necessary to perform an operation such as draining water from a water distribution pipe or shutting off flowing water at the time of actual measurement, and to accurately detect a leakage point while maintaining a steady flow state. I couldn't do that.

【0006】本発明は、上記従来の問題点に着目し、通
流状態にある流体配管の漏洩検知をなす方法であって、
流体配管の検査区間の両端部でマイクにより通流音を検
出する操作のみで漏水箇所を簡単に検出できるようにし
た漏洩検知方法を提供することを目的とする。
The present invention is directed to a method for detecting leakage of a fluid pipe in a flowing state, focusing on the above-mentioned conventional problems,
It is an object of the present invention to provide a leak detection method that can easily detect a leak point only by an operation of detecting a flowing sound by a microphone at both ends of an inspection section of a fluid pipe.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る周波数帯域分割による配管漏洩検知方
法は、通流状態にある流体配管の漏洩検知をなす方法で
あって、検査区間の両端にて流体音をマイクを通じて検
出し、各マイクにより取り込まれた検知信号をバンドパ
スフィルタを通過させて複数の周波数帯域に分割し、相
互相関係数を算出する処理を前記フィルタ数だけ繰り返
し、各周波数帯域の相互相関係数平均を求めて配管漏洩
箇所の特定をなすようにした。
In order to achieve the above object, a method for detecting leakage of a pipe by frequency band division according to the present invention is a method for detecting leakage of a fluid pipe in a flow-through state, comprising: Detects fluid sound through microphones at both ends of the filter, passes a detection signal captured by each microphone through a band-pass filter, divides the detection signal into a plurality of frequency bands, and repeats a process of calculating a cross-correlation coefficient by the number of filters. Then, the average of the cross-correlation coefficients of each frequency band is obtained to specify the leak location of the pipe.

【0008】[0008]

【発明の実施の形態】以下に、本発明に係る周波数帯域
分割による配管漏洩検知方法の具体的実施の形態を図面
を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific embodiment of a pipe leak detecting method based on frequency band division according to the present invention will be described in detail with reference to the drawings.

【0009】図1は本発明に係る周波数帯域分割による
配管漏洩検知方法を上水道配管網の漏水検査に適用する
ための装置構成ブロック図である。図示のように、検査
対象の配水管10に対し、漏水検査区間を設定し、その
両端部分に水中マイク12(12A、12B)を設置す
るようにしている。水中マイク12は、配水管10に適
宜間隔をおいて設けたT字管に装着され、当該マイク1
2で検出した音を増幅する増幅器、並びにこの増幅信号
を通信回線機器などを用いて制御管理センターに送出す
るようにしている。したがって、前記水中マイク12に
より、配水管10内の水を伝播する音が検出され、これ
が管理センター内のコントローラに収集され、記憶保持
される。前記水中マイク12を含む一対のセンサ間の区
間が検知区間とされ、マイク12の移動により検知区間
を更新して移動するようになっている。コントローラは
後述するように音速を演算するとともに、漏水箇所の演
算処理をなすが、制御管理センターでは同時に監視区域
の上水道配管網や漏水検知区間の表示、漏水量の演算結
果などを検知システム表示装置を用いて表示し、あるい
はビデオプロジェクターに表示するようにしている。
FIG. 1 is a block diagram of an apparatus for applying the method for detecting a pipe leak by frequency band division according to the present invention to a leak test of a water supply pipe network. As shown in the drawing, a water leakage inspection section is set for a water distribution pipe 10 to be inspected, and underwater microphones 12 (12A, 12B) are installed at both ends. The underwater microphone 12 is attached to a T-tube provided at an appropriate interval in the water distribution pipe 10 and
An amplifier for amplifying the sound detected in step 2, and the amplified signal is sent to a control management center using a communication line device or the like. Therefore, the sound propagating through the water in the water distribution pipe 10 is detected by the underwater microphone 12 and collected by the controller in the management center and stored and stored. The section between the pair of sensors including the underwater microphone 12 is a detection section, and the detection section is updated and moved by the movement of the microphone 12. The controller calculates the sound velocity and calculates the leak location as described later, but the control management center simultaneously displays the water supply piping network of the monitoring area, the leak detection section, and the calculation result of the leak amount. Or a video projector.

【0010】コントローラでの作業は次のような処理を
行うようにしている。前記各マイク12A、12Bによ
り水中音の検出信号をA/D変換器14(14A、14
B)に供給してデジタル信号への変換を行う。上記A/
D変換器14の出力端には、検出信号を複数の異なる周
波数帯域に弁別するために濾波帯域を複数に分割するフ
ィルタバンク16(16A、16B)が接続され、分割
された帯域毎に検出信号を通過させ、両フィルタバンク
16A、16Bを通過した帯域の信号をそれぞれ相互相
関係数演算部18に入力させて信号の類似度を演算する
ようにしている。
The operation of the controller performs the following processing. The detection signals of the underwater sound are output from the microphones 12A and 12B to the A / D converters 14 (14A and 14A).
B) to convert it into a digital signal. A /
A filter bank 16 (16A, 16B) that divides a filtering band into a plurality of parts in order to discriminate the detection signal into a plurality of different frequency bands is connected to an output terminal of the D converter 14, and the detection signal is divided for each divided band. , And the signals in the bands that have passed through both filter banks 16A and 16B are input to the cross-correlation coefficient calculator 18 to calculate the signal similarity.

【0011】上記フィルタバンク16は検知範囲周波数
(例えば300Hz〜1300Hz)を100Hz単位となる
ように10分割し、300〜400Hz、400〜500
Hz、……、1200〜1300Hzの各帯域範囲を通過さ
せる複数のバンドパスフィルタ群から構成されている。
上記相互相関係数演算部18では、帯域分割された検出
信号毎に次式に基づいて相互相関係数rxy(m)を演算す
るようにしている。
The filter bank 16 divides the detection range frequency (for example, 300 Hz to 1300 Hz) into 10 units of 100 Hz, and 300 to 400 Hz, 400 to 500
Hz,..., And a plurality of band-pass filter groups that pass the respective band ranges of 1200 to 1300 Hz.
The cross-correlation coefficient calculator 18 calculates the cross-correlation coefficient r xy (m) for each band-divided detection signal based on the following equation.

【数1】 (Equation 1)

【0012】ここで、図1に示しているように、ある漏
水検査区間内において、その区間の両端に位置する一対
の水中マイク12により水中伝達音を検出する。一方の
水中マイク12Aの設置点を基準点A、他方の水中マイ
ク12Bの設置点を対照点B、漏水点をPとすると、基
準点Aにて検出した漏水点Pにおける漏水音と、対照点
Bにて検出した漏水点Pにおける漏水音は同一か極めて
類似した波形を有しているが、PからAまたはBまでの
距離が異なるため、伝播時間差が生じる。この伝播時間
差を知ることによって、基準点Aから漏水点Pまでの距
離laは、次式により求めることができる。
Here, as shown in FIG. 1, in a certain water leakage inspection section, underwater transmission sounds are detected by a pair of underwater microphones 12 located at both ends of the section. Assuming that the installation point of one underwater microphone 12A is a reference point A, the installation point of the other underwater microphone 12B is a control point B, and the water leak point is P, the water leak sound at the water leak point P detected at the reference point A and the control point The water leak sound at the water leak point P detected at B has the same or very similar waveform, but a difference in propagation time occurs because the distance from P to A or B is different. By knowing this propagation time difference, the distance la from the reference point A to the water leak point P can be obtained by the following equation.

【数2】 (Equation 2)

【0013】但し、LはA点とB点間の距離であり、τ
mは漏水音伝播時間差、Cは漏水音伝播速度である。し
たがって、漏水音伝播時間差が判明すれば漏水点Pの位
置を特定することができる。
Where L is the distance between points A and B, and τ
m is the water leak sound propagation time difference, and C is the water leak sound propagation speed. Therefore, if the difference in the water leak sound propagation time is known, the position of the water leak point P can be specified.

【0014】水中マイク12(12A、12B)は複数
の音源からの信号を同時に検出し、検出音は多周波数域
にわたる合成された音として捉えられる。漏水音を含む
検出音は両端の水中マイク12A、12Bに距離に応じ
た分だけ時間差をもって到達する。
The underwater microphones 12 (12A, 12B) simultaneously detect signals from a plurality of sound sources, and the detected sound is captured as a synthesized sound over multiple frequency ranges. The detection sound including the water leak sound reaches the underwater microphones 12A and 12B at both ends with a time difference corresponding to the distance.

【0015】そこでマイク12で検出した音を前述した
フィルタバンク16にて、分割された帯域毎に、一方の
マイク12Aで検出された配水管内音の波形を原波形と
し、他方のマイク12Bで検出された配水管内音の波形
をろ波波形として、両者の相互相関係数を演算すること
により、図2に示すような各帯域周波数毎の相関係数結
果が得られる。次に、全帯域にわたり相関係数を加算
し、帯域の数で除算することにより平均相関係数を算出
し、これをグラフ化するようにしている。
Therefore, the sound detected by the microphone 12 is filtered by the above-described filter bank 16 and the waveform of the sound in the water pipe detected by one microphone 12A is used as an original waveform for each divided band, and detected by the other microphone 12B. By calculating the cross-correlation coefficient of the waveform of the water distribution pipe sound as a filtered waveform, a correlation coefficient result for each band frequency as shown in FIG. 2 is obtained. Next, an average correlation coefficient is calculated by adding the correlation coefficient over the entire band and dividing by the number of bands, and this is graphed.

【0016】したがって、前記相互相関係数演算部18
の出力側には各周波数帯域の相互相関係数平均処理部2
0が設けられ、ここで分割した帯域毎に加算平均処理す
ることにより図3に示されるようなグラフが得られる。
このグラフから理解できるように、信号のピーク値まで
の時間がτmとなり、このτmが遅延時間となる。これを
を既知のマイク間距離Lとともに、次式に代入すること
により、簡便に音速を算出することができる。
Therefore, the cross-correlation coefficient calculator 18
On the output side is a cross-correlation coefficient averaging unit 2 for each frequency band.
0 is provided. Here, a graph as shown in FIG. 3 is obtained by performing an averaging process for each of the divided bands.
As can be understood from this graph, the time until the peak value of the signal is τm, and this τm is the delay time. By substituting this into the following equation together with the known distance L between microphones, the sound velocity can be easily calculated.

【数3】 但し、Lは対をなしているセンサ12間の距離である。(Equation 3) Here, L is the distance between the paired sensors 12.

【0017】以後は2式に基づいて演算を行うことによ
り、基準点Aから漏水点Pまでの距離laを求めること
ができ、漏洩箇所を特定することができるのである。
Thereafter, the distance la from the reference point A to the water leak point P can be obtained by performing calculations based on the two equations, and the leak location can be specified.

【0018】[0018]

【発明の効果】以上説明したように、本発明に係る周波
数帯域分割による配管漏洩検知方法は、通流状態にある
流体配管の漏洩検知をなす方法であって、検査区間の両
端にてマイクを通じて配管通流音を検出し、各マイクに
より取り込まれた検知信号をバンドパスフィルタを通過
させて複数の周波数帯域に分割し、相互相関係数を算出
する処理を前記フィルタ数だけ繰り返し、各周波数帯域
の相互相関係数平均を求めて配管漏洩箇所の特定をなす
ようにしたので、流体配管の検査区間の両端部で水中マ
イクにより音を検出する操作のみで漏洩箇所を簡単に検
出できるという優れた効果が得られる。
As described above, the pipe leak detection method based on frequency band division according to the present invention is a method for detecting leak of a fluid pipe in a flowing state, and the microphone is provided at both ends of a test section through microphones. Detecting a pipe flowing sound, passing a detection signal captured by each microphone through a band-pass filter, dividing the signal into a plurality of frequency bands, and repeating a process of calculating a cross-correlation coefficient by the number of filters, each frequency band The cross-correlation coefficient is calculated to determine the leak location of the pipe, so that the leak location can be easily detected only by detecting the sound with the underwater microphones at both ends of the inspection section of the fluid pipe. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る周波数帯域分割による配管漏洩
検知方法を実現するための構成ブロック図である。
FIG. 1 is a configuration block diagram for realizing a pipe leak detection method based on frequency band division according to an embodiment.

【図2】帯域分割した各帯域毎の検出信号の相互相関係
数を示すグラフである。
FIG. 2 is a graph showing a cross-correlation coefficient of a detection signal for each band obtained by band division.

【図3】相互相関係数の閾値以上の値を加算したグラフ
である。
FIG. 3 is a graph obtained by adding values equal to or greater than a threshold value of a cross-correlation coefficient.

【符号の説明】[Explanation of symbols]

10 配水管 12(12A、12B) 水中マイク 14(14A、14B) A/D変換器 16(16A、16B) フィルタバンク 18 相互相関係数演算部 20 相互相関係数平均処理部 Reference Signs List 10 water distribution pipe 12 (12A, 12B) underwater microphone 14 (14A, 14B) A / D converter 16 (16A, 16B) filter bank 18 cross-correlation coefficient calculation unit 20 cross-correlation coefficient average processing unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通流状態にある流体配管の漏洩検知をな
す方法であって、検査区間の両端にてマイクを通じて配
管通流音を検出し、各マイクにより取り込まれた検知信
号をバンドパスフィルタを通過させて複数の周波数帯域
に分割し、相互相関係数を算出する処理を前記フィルタ
数だけ繰り返し、各周波数帯域の相互相関係数平均を求
めて配管漏洩箇所の特定をなすようにしたことを特徴と
する周波数帯域分割による配管漏洩検知方法。
1. A method for detecting leakage of a fluid pipe in a flowing state, wherein the pipe flowing noise is detected through microphones at both ends of an inspection section, and a detection signal captured by each microphone is subjected to a band-pass filter. To divide into a plurality of frequency bands, repeat the process of calculating the cross-correlation coefficient by the number of filters, determine the average of the cross-correlation coefficient of each frequency band, and specify the pipe leakage point A pipe leak detection method using frequency band division.
JP1824598A 1998-01-13 1998-01-13 Method for detecting leak in pipe by frequency band division Withdrawn JPH11201859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1824598A JPH11201859A (en) 1998-01-13 1998-01-13 Method for detecting leak in pipe by frequency band division

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1824598A JPH11201859A (en) 1998-01-13 1998-01-13 Method for detecting leak in pipe by frequency band division

Publications (1)

Publication Number Publication Date
JPH11201859A true JPH11201859A (en) 1999-07-30

Family

ID=11966304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1824598A Withdrawn JPH11201859A (en) 1998-01-13 1998-01-13 Method for detecting leak in pipe by frequency band division

Country Status (1)

Country Link
JP (1) JPH11201859A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079424A1 (en) * 1999-06-22 2000-12-28 Central Research Laboratories Limited Correlation analysis in the phase domain
WO2001051904A2 (en) * 2000-01-14 2001-07-19 National Research Council Of Canada Pc multimedia-based leak detection system for water transmission and distribution pipes
US7033017B2 (en) 2001-01-17 2006-04-25 Silverbrook Research Pty Ltd Personal digital assistant with integrated printer with cutter assembly
JP2008051776A (en) * 2006-08-28 2008-03-06 Toshiba Corp Apparatus and method for detecting water leakage
CN101832472A (en) * 2010-06-12 2010-09-15 中国石油化工股份有限公司管道储运分公司 System implementing pipeline leak detection by utilizing infrasonic wave
CN102182934A (en) * 2010-12-24 2011-09-14 宁波水表股份有限公司 On-line automatic detection device for pipe network leakage
KR101381469B1 (en) * 2013-08-21 2014-04-04 한국원자력연구원 A Method for Reducing Mechanical Noise of Cross-Correlation Method for Leak Detection of a Buried Pipe
US8717183B2 (en) 2009-08-19 2014-05-06 Severn Trent Water Limited Leak detector
JP2016102783A (en) * 2014-11-14 2016-06-02 積水化学工業株式会社 Abnormal sound generation position specification method and abnormal sound generation position specification device
JP2016148617A (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Analysis data creation method, water leakage position detection device, and method for specifying water leakage position
CN106090626A (en) * 2016-06-03 2016-11-09 杭州电子科技大学 A kind of water supply network exception detecting method
JP2017083291A (en) * 2015-10-28 2017-05-18 積水化学工業株式会社 Method for specifying abnormal sound generation position, and device for specifying abnormal sound generation position
US9772250B2 (en) 2011-08-12 2017-09-26 Mueller International, Llc Leak detector and sensor
US9849322B2 (en) 2010-06-16 2017-12-26 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
CN108055218A (en) * 2017-10-18 2018-05-18 上海微波技术研究所(中国电子科技集团公司第五十研究所) Leakage cable intrusion detection method based on frequency selectivity encoding multicarrier modulation technique
CN108758354A (en) * 2018-05-03 2018-11-06 太原理工大学 Heat supply pipeline leak detection system and method based on infrasound and reference point
CN109538947A (en) * 2019-01-21 2019-03-29 天津景威油田技术服务有限公司 A kind of utilidor liquid leakage detection device
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
CN110345392A (en) * 2019-07-16 2019-10-18 辽宁石油化工大学 The localization method and device of oil pipeline leak source
CN110671613A (en) * 2019-10-15 2020-01-10 重庆邮电大学 Fluid pipeline leakage signal time delay estimation method based on improved empirical wavelet transform
US10539480B2 (en) 2017-10-27 2020-01-21 Mueller International, Llc Frequency sub-band leak detection
CN110953485A (en) * 2019-12-06 2020-04-03 北京无线电计量测试研究所 Gas pipeline leakage point positioning method and system
CN111457257A (en) * 2020-03-23 2020-07-28 中国人民解放军国防科技大学 Detection method and system for positioning leakage position of pipeline
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
JP2021021665A (en) * 2019-07-30 2021-02-18 吉佳エンジニアリング株式会社 Leakage detection method and leakage detector
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079424A1 (en) * 1999-06-22 2000-12-28 Central Research Laboratories Limited Correlation analysis in the phase domain
WO2000079425A1 (en) * 1999-06-22 2000-12-28 Thames Water Utilities Limited Correlation analysis in the phase domain
GB2368916A (en) * 1999-06-22 2002-05-15 Thames Water Utilities Correlation analysis in the phase domain
GB2368916B (en) * 1999-06-22 2003-09-24 Thames Water Utilities Correlation analysis in the phase domain
WO2001051904A2 (en) * 2000-01-14 2001-07-19 National Research Council Of Canada Pc multimedia-based leak detection system for water transmission and distribution pipes
WO2001051904A3 (en) * 2000-01-14 2001-11-29 Ca Nat Research Council Pc multimedia-based leak detection system for water transmission and distribution pipes
US6453247B1 (en) 2000-01-14 2002-09-17 National Research Council Of Canada PC multimedia-based leak detection system for water transmission and distribution pipes
US7033017B2 (en) 2001-01-17 2006-04-25 Silverbrook Research Pty Ltd Personal digital assistant with integrated printer with cutter assembly
JP2008051776A (en) * 2006-08-28 2008-03-06 Toshiba Corp Apparatus and method for detecting water leakage
JP4745170B2 (en) * 2006-08-28 2011-08-10 株式会社東芝 Water leakage detection device and water leakage detection method
US8717183B2 (en) 2009-08-19 2014-05-06 Severn Trent Water Limited Leak detector
CN101832472A (en) * 2010-06-12 2010-09-15 中国石油化工股份有限公司管道储运分公司 System implementing pipeline leak detection by utilizing infrasonic wave
US10857403B2 (en) 2010-06-16 2020-12-08 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9849322B2 (en) 2010-06-16 2017-12-26 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US10881888B2 (en) 2010-06-16 2021-01-05 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US11590376B2 (en) 2010-06-16 2023-02-28 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9861848B2 (en) 2010-06-16 2018-01-09 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
CN102182934A (en) * 2010-12-24 2011-09-14 宁波水表股份有限公司 On-line automatic detection device for pipe network leakage
US9772250B2 (en) 2011-08-12 2017-09-26 Mueller International, Llc Leak detector and sensor
US10386257B2 (en) 2011-08-12 2019-08-20 Mueller International, Llc Enclosure for leak detector
US11630021B2 (en) 2011-08-12 2023-04-18 Mueller International, Llc Enclosure for leak detector
US11680865B2 (en) 2011-08-12 2023-06-20 Mueller International, Llc Leak detection in water distribution systems using acoustic signals
US10175135B2 (en) 2011-08-12 2019-01-08 Mueller International, Llc Leak detector
KR101381469B1 (en) * 2013-08-21 2014-04-04 한국원자력연구원 A Method for Reducing Mechanical Noise of Cross-Correlation Method for Leak Detection of a Buried Pipe
JP2016102783A (en) * 2014-11-14 2016-06-02 積水化学工業株式会社 Abnormal sound generation position specification method and abnormal sound generation position specification device
JP2016148617A (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Analysis data creation method, water leakage position detection device, and method for specifying water leakage position
JP2017083291A (en) * 2015-10-28 2017-05-18 積水化学工業株式会社 Method for specifying abnormal sound generation position, and device for specifying abnormal sound generation position
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11336004B2 (en) 2016-02-12 2022-05-17 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11837782B2 (en) 2016-02-12 2023-12-05 Mueller International, Llc Nozzle cap assembly
US11652284B2 (en) 2016-02-12 2023-05-16 Mueller International, Llc Nozzle cap assembly
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11527821B2 (en) 2016-02-12 2022-12-13 Mueller International, Llc Nozzle cap assembly
US11469494B2 (en) 2016-02-12 2022-10-11 Mueller International, Llc Nozzle cap multi-band antenna assembly
CN106090626A (en) * 2016-06-03 2016-11-09 杭州电子科技大学 A kind of water supply network exception detecting method
CN108055218A (en) * 2017-10-18 2018-05-18 上海微波技术研究所(中国电子科技集团公司第五十研究所) Leakage cable intrusion detection method based on frequency selectivity encoding multicarrier modulation technique
US10539480B2 (en) 2017-10-27 2020-01-21 Mueller International, Llc Frequency sub-band leak detection
CN108758354A (en) * 2018-05-03 2018-11-06 太原理工大学 Heat supply pipeline leak detection system and method based on infrasound and reference point
CN108758354B (en) * 2018-05-03 2023-09-12 太原理工大学 Heat supply pipeline leakage detection system and method based on infrasonic wave and reference point
US11422054B2 (en) 2018-09-04 2022-08-23 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11692901B2 (en) 2018-09-04 2023-07-04 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
CN109538947A (en) * 2019-01-21 2019-03-29 天津景威油田技术服务有限公司 A kind of utilidor liquid leakage detection device
US11624674B2 (en) 2019-05-31 2023-04-11 Mueller International, Llc Hydrant nozzle cap with antenna
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
CN110345392A (en) * 2019-07-16 2019-10-18 辽宁石油化工大学 The localization method and device of oil pipeline leak source
CN110345392B (en) * 2019-07-16 2021-01-12 辽宁石油化工大学 Positioning method and device for oil pipeline leakage point
JP2021021665A (en) * 2019-07-30 2021-02-18 吉佳エンジニアリング株式会社 Leakage detection method and leakage detector
CN110671613A (en) * 2019-10-15 2020-01-10 重庆邮电大学 Fluid pipeline leakage signal time delay estimation method based on improved empirical wavelet transform
CN110953485A (en) * 2019-12-06 2020-04-03 北京无线电计量测试研究所 Gas pipeline leakage point positioning method and system
CN111457257B (en) * 2020-03-23 2021-10-15 中国人民解放军国防科技大学 Detection method and system for positioning leakage position of pipeline
CN111457257A (en) * 2020-03-23 2020-07-28 中国人民解放军国防科技大学 Detection method and system for positioning leakage position of pipeline
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter

Similar Documents

Publication Publication Date Title
JPH11201859A (en) Method for detecting leak in pipe by frequency band division
CN108332063B (en) Pipeline leakage positioning method based on cross correlation
US11274797B1 (en) System and method for determining range of possible locations of pipeline leak
FI87493C (en) OVER ANCHORING FOR OVER MAINTENANCE AV STROEMNINGSHASTIGHETEN AV GASER OCH / ELLER STORHETER SOM KAN HAERLEDAS FRAON DENNA
JP2008051776A (en) Apparatus and method for detecting water leakage
CN106813108A (en) A kind of leakage locating method based on speed difference
JP3032185B2 (en) Piping leak detection system
JPH11271168A (en) Leakage detection method
CN106289121A (en) A kind of computational methods of reducer pipe equivalence pipe range
CN110555282B (en) Method for effectively performing blind source analysis by excluding active signals
CN116384277A (en) Method, device and system for detecting and positioning leakage of multi-branch water supply pipe based on filter
KR20210062262A (en) Estimating system for water leakage location of pipeline
JPH11201858A (en) Method using correlation for measuring vibration of conduit system
CN106678553B (en) A kind of calculation method leaking dynamic pressure wave spread speed in gas in pipe
JP6789042B2 (en) How to identify the location of the leak
CN210141480U (en) Natural gas pipe network leakage monitoring system
JPH1114492A (en) Method for inspecting leakage of city water network
JPH11230849A (en) Device for detecting hydraulic information of fire hydrant and fluid conduit line
JP2017083291A (en) Method for specifying abnormal sound generation position, and device for specifying abnormal sound generation position
JPS62297741A (en) Detecting method for leaking place of conduit system fluid
JP3688415B2 (en) External noise judgment method in piping leak location identification method
JPH1172409A (en) Method for detecting leakage of piping
KR20110060632A (en) Acoustics and vibration complex sensing unit for defect of plant and defect diagnostics system for high pressure pipe
JPH0587669A (en) Pipe-leakage inspecting method
JPH11316000A (en) Attaching structure for water leakage sound sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405