JPH1164405A - Modulation analysis device and spectrum analyzer - Google Patents

Modulation analysis device and spectrum analyzer

Info

Publication number
JPH1164405A
JPH1164405A JP9223474A JP22347497A JPH1164405A JP H1164405 A JPH1164405 A JP H1164405A JP 9223474 A JP9223474 A JP 9223474A JP 22347497 A JP22347497 A JP 22347497A JP H1164405 A JPH1164405 A JP H1164405A
Authority
JP
Japan
Prior art keywords
signal
frequency
attenuation
power
attenuated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9223474A
Other languages
Japanese (ja)
Inventor
Takayuki Ogami
孝幸 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP9223474A priority Critical patent/JPH1164405A/en
Publication of JPH1164405A publication Critical patent/JPH1164405A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a modulation analysis device and a spectrum analyzer capable of realizing the optimization of an input level even in the measured frequencies signals distributed in a wide band. SOLUTION: This device is provided with a means for detecting unknown power attenuation signals attenuated by an input attenuator 50, the means for increasing an attenuation amount in the case the unknown power level value is higher than a prescribed upper limit value first and reducing the attenuation amount in the case the unknown power level value is lower than a prescribed lower limit value secondly,the means for frequency-sweeping a section including the power measurement band of measured signals in an obtained attenuation range and the attenuation ranges before and after in a frequency conversion part 60, respectively measuring and calculating the power of the measured signals and performing setting and control to an optimum attenuation range from it and the means for controlling the gain of the variable gain amplifier 72 of an intermediate frequency linked with the setting of the attenuation range and gain-controlling the gain of the entire measurement system to a prescribed state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被測定周波数信
号の入力レベルの最適化に関する。特にスペクトラム拡
散された広帯域に分布する被測定周波数信号の入力レベ
ルの最適化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optimization of an input level of a frequency signal to be measured. In particular, the present invention relates to optimization of an input level of a frequency signal to be measured distributed over a wide band which is spread spectrum.

【0002】[0002]

【従来の技術】従来技術例について図5の変調解析装置
の構成図を示して説明する。この変調解析装置は、スペ
クトラムアナライザを基本構成にし、この中間周波数信
号(IF信号)を受けて、被測定信号の各種変調に関わ
る解析機能を付加した構成例である。
2. Description of the Related Art A prior art example will be described with reference to a block diagram of a modulation analyzer shown in FIG. This modulation analyzer has a spectrum analyzer as a basic configuration, receives this intermediate frequency signal (IF signal), and adds an analysis function relating to various types of modulation of a signal under measurement.

【0003】構成は、被試験装置100と、入力減衰器
50と、周波数変換部60と、IFフィルタ70と、可
変ゲインアンプ72と、対数変換部74と、検波部76
と、AD変換器78と、変調解析部80と、表示処理部
120と、表示装置140とで成る。尚、スペクトラム
アナライザの構成は技術的に良く知られている為説明を
省略する。
[0003] The configuration includes a device under test 100, an input attenuator 50, a frequency converter 60, an IF filter 70, a variable gain amplifier 72, a logarithmic converter 74, and a detector 76.
, An AD converter 78, a modulation analysis unit 80, a display processing unit 120, and a display device 140. Since the configuration of the spectrum analyzer is well known in the art, the description is omitted.

【0004】変調解析部80の内部構成は、周波数変換
部82と、可変ゲインアンプ84と、AD変換器90
と、信号処理部98とで成る。この変調解析部は、周波
数変換部82により数MHzの低い中間周波数信号IF
2に変換し、可変ゲインアンプ84でAD変換器90の
最適レベルに増幅した中間周波数信号をAD変換器90
で高速サンプリングし、信号処理して各種の変調特性等
の解析や変調精度に係る測定と演算処理をするものであ
る。処理された結果は表示処理部120を介して表示装
置140で所望の表示をする。
[0004] The internal configuration of the modulation analysis section 80 is as follows: a frequency conversion section 82, a variable gain amplifier 84, an AD converter 90.
And a signal processing unit 98. This modulation analysis unit uses a frequency conversion unit 82 to output a low intermediate frequency signal IF of several MHz.
2 and the intermediate frequency signal amplified by the variable gain amplifier 84 to the optimum level of the AD converter 90
, Performs high-speed sampling, performs signal processing, analyzes various modulation characteristics and the like, and performs measurement and arithmetic processing relating to modulation accuracy. The processed result is displayed on the display device 140 via the display processing unit 120 as desired.

【0005】ところで変調測定に際して表示装置140
の管面上の表示レベルを使用者が定める必要がある。こ
の管面レベルを設定する一手順を説明する。ここで被試
験装置100が出力する被測定信号101は、図6
(a)に示す周波数信号201のように、CDMA(Co
de Division Multiple Access)等の広帯域に分布する
スペクトラム拡散された周波数信号の場合と仮定する。
先ず図6(a)に示す中心周波数fc付近に設定し、ゼ
ロスパン・モード(周波数を掃引しないモード)で入力
レベルを管面表示させる。そしてキー入力設定により、
スペクトラムレベルが大きく見易くなる所望の入力感度
及びリファレンスレベルに設定する。この設定の結果入
力減衰器50とIF信号用の可変ゲインアンプ72は所
定の減衰量及び増幅量に自動設定される。尚、入力減衰
器50は例えば10dBステップの減衰器であり、可変
ゲインアンプ72は例えば0.1dB/Div.ステップ
の細かな可変増幅器である。
[0005] By the way, at the time of modulation measurement, the display device 140
It is necessary for the user to determine the display level on the display screen. One procedure for setting the tube surface level will be described. The signal under test 101 output from the device under test 100 is shown in FIG.
As in the frequency signal 201 shown in FIG.
It is assumed that the signal is a spread-spectrum frequency signal distributed over a wide band such as de Division Multiple Access.
First, the input level is set near the center frequency fc shown in FIG. 6A, and the input level is displayed on the display panel in the zero span mode (mode in which the frequency is not swept). And by key input setting,
The desired input sensitivity and reference level are set so that the spectrum level is large and easy to see. As a result of this setting, the input attenuator 50 and the variable gain amplifier 72 for the IF signal are automatically set to predetermined attenuation and amplification amounts. The input attenuator 50 is, for example, an attenuator of 10 dB steps, and the variable gain amplifier 72 is, for example, 0.1 dB / Div. It is a variable amplifier with fine steps.

【0006】[0006]

【発明が解決しようとする課題】ところで、図6(a)
に示すように、広帯域に分散した周波数信号201の
為、各周波数点でのレベルは低い。この為、上述管面表
示レベルの設定に伴って、入力減衰器50の設定は小さ
い減衰量になっている。しかしながら広帯域に拡散した
全周波数の総電力は大きいレベルである。この結果、図
5に示す入力減衰器50で減衰した未知電力減衰信号5
1は比較的大きなレベルである。この信号が周波数変換
部60のミキサ回路の入力端に供給される。この結果、
ミキサ回路は過大な入力レベルとなる場合がある。もし
過大入力レベルの場合は、被測定周波数信号が歪んでN
次高調波を生じたり、周波数変換ゲインの直線性が大き
く変わる等の不具合を生じる。これら不具合は、被試験
装置の変調解析や電力測定の誤差を増長させる為、測定
装置としては好ましくなく、実用上の難点がある。尚、
図5に示す変調解析部80を有しない一般的なスペクト
ラムアナライザにおいても広帯域に分布あるいは離散し
た未知電力の周波数信号等においては、同様の難点があ
ることは言うまでもない。
FIG. 6 (a)
As shown in (1), the level at each frequency point is low because of the frequency signal 201 distributed over a wide band. Therefore, the setting of the input attenuator 50 is set to a small amount of attenuation in accordance with the setting of the above-described display surface level. However, the total power of all frequencies spread over a wide band is at a large level. As a result, the unknown power attenuated signal 5 attenuated by the input attenuator 50 shown in FIG.
1 is a relatively large level. This signal is supplied to the input terminal of the mixer circuit of the frequency conversion unit 60. As a result,
The mixer circuit may have an excessive input level. If the input level is excessive, the measured frequency signal is distorted and N
Inconveniences such as generation of second-order harmonics and significant change in linearity of frequency conversion gain occur. These disadvantages increase errors in modulation analysis and power measurement of the device under test, and therefore are not preferable as a measuring device and have practical problems. still,
It goes without saying that even a general spectrum analyzer having no modulation analysis unit 80 shown in FIG. 5 has the same disadvantages in frequency signals of unknown power distributed or dispersed over a wide band.

【0007】そこで、本発明が解決しようとする課題
は、広帯域に分布あるいは離散した被測定周波数信号に
おいても入力レベルの最適化を実現可能とした変調解析
装置及びスペクトラムアナライザを提供することであ
る。
It is an object of the present invention to provide a modulation analyzer and a spectrum analyzer which can realize an input level optimization even for a frequency signal to be measured distributed or dispersed over a wide band.

【0008】[0008]

【課題を解決するための手段】第1図あるいは第2図と
第10図は、本発明の変調解析装置に係る解決手段を示
している。第1に、上記課題を解決するために、本発明
の構成では、未知電力の被測定信号101を受けて、入
力減衰器50により減衰させ、減衰した未知電力減衰信
号51を受けて周波数変換部60で所定の中間周波数I
F1に周波数変換し、これをIFフィルタ70によりフ
ィルタし、変調解析部80に供給して変調解析を行う変
調解析装置において、入力減衰器50によって減衰した
未知電力減衰信号51を受けて、この信号を増幅し検波
して入力減衰器50の出力端における未知電力レベルを
検出する手段を具備し、第1に上記未知電力検出手段で
得た電力レベル値が所定上限値より高い場合は入力減衰
器50の減衰量を増加する方向に減衰レンジを設定制御
し、第2に上記未知電力検出手段で得た電力レベル値が
所定下限値より低い場合は入力減衰器50の減衰量を減
少する方向に減衰レンジを設定制御する粗調整の手段を
具備し、上述で得た減衰レンジ及び前後の減衰レンジに
おいて、被測定信号101のパワー測定帯域を含む区間
を周波数変換部60で周波数掃引して被測定信号101
の電力を各々測定算出し、この測定電力値から最適な減
衰レンジに設定制御する最適調整の手段を具備し、上記
減衰レンジの設定に連動して中間周波数の可変ゲインア
ンプ72のゲインを制御して測定系全体のゲインを所定
の状態にゲイン制御する手段を具備する構成手段であ
る。上述粗調整と最適調整の手段により、広帯域に分布
した被測定周波数信号に対しても入力レベルの最適化を
実現可能とした変調解析装置が実現できる。
FIG. 1 or FIG. 2 and FIG. 10 show the means for solving the problems related to the modulation analyzer of the present invention. First, in order to solve the above-mentioned problem, in the configuration of the present invention, the frequency conversion unit receives the signal under measurement 101 of unknown power, attenuates it by the input attenuator 50, and receives the attenuated unknown power attenuation signal 51. 60 and a predetermined intermediate frequency I
F1 is frequency-converted, filtered by an IF filter 70, and supplied to a modulation analysis unit 80 to perform modulation analysis. The modulation analysis device receives the unknown power attenuated signal 51 attenuated by the input attenuator 50. Amplifying and detecting the unknown power level at the output terminal of the input attenuator 50. First, when the power level value obtained by the unknown power detecting means is higher than a predetermined upper limit, the input attenuator is detected. Second, the attenuation range is set and controlled in a direction to increase the attenuation amount of the input attenuator 50. If the power level value obtained by the unknown power detection means is lower than a predetermined lower limit value, the attenuation amount of the input attenuator 50 is reduced. A coarse adjustment means for setting and controlling the attenuation range is provided. In the attenuation range obtained above and before and after the attenuation range, the section including the power measurement band of the signal under test 101 is converted to the frequency conversion unit 6. In a frequency sweep to the signal to be measured 101
Of the variable gain amplifier 72 at the intermediate frequency in conjunction with the setting of the attenuation range. Means for controlling the gain of the entire measurement system to a predetermined state. By means of the coarse adjustment and the optimal adjustment described above, it is possible to realize a modulation analyzer capable of optimizing an input level even for a frequency signal to be measured distributed over a wide band.

【0009】第4図は、本発明のスペクトラムアナライ
ザに係る解決手段を示している。第2に、上記課題を解
決するために、本発明の構成では、未知電力の被測定信
号101を受けて、入力減衰器50により減衰させ、減
衰した未知電力減衰信号51を受けて周波数変換部60
で所定の中間周波数IF1に周波数変換し、これをIF
フィルタ70によりフィルタして測定するスペクトラム
アナライザにおいて、入力減衰器50によって減衰した
未知電力減衰信号51を受けて、この信号を増幅し検波
して入力減衰器50の出力端における未知電力レベルを
検出する手段を具備し、第1に上記未知電力検出手段で
得た電力レベル値が所定上限値より高い場合は入力減衰
器50の減衰量を増加する方向に減衰レンジを設定制御
し、第2に上記未知電力検出手段で得た電力レベル値が
所定下限値より低い場合は入力減衰器50の減衰量を減
少する方向に減衰レンジを設定制御する粗調整の手段を
具備し、上述で得た減衰レンジ及び前後の減衰レンジに
おいて、被測定信号101のパワー測定帯域を含む区間
を周波数変換部60で周波数掃引して被測定信号101
の電力を各々測定算出し、この測定電力値から最適な減
衰レンジに設定制御する最適調整の手段を具備し、上記
減衰レンジの設定に連動して中間周波数の可変ゲインア
ンプ72のゲインを制御して測定系全体のゲインを所定
の状態にゲイン制御する手段を具備する構成手段があ
る。上述粗調整と最適調整の手段により、広帯域に分布
した被測定周波数信号に対しても入力レベルの最適化を
実現可能としたスペクトラムアナライザが実現できる。
FIG. 4 shows a solution according to the spectrum analyzer of the present invention. Secondly, in order to solve the above problem, in the configuration of the present invention, the unknown power attenuated signal 51 is received by the unknown power signal under measurement 101 and attenuated by the input attenuator 50. 60
To convert the frequency to a predetermined intermediate frequency IF1,
In a spectrum analyzer which is filtered and measured by a filter 70, an unknown power attenuated signal 51 attenuated by an input attenuator 50 is received, and this signal is amplified and detected to detect an unknown power level at an output terminal of the input attenuator 50. Firstly, when the power level value obtained by the unknown power detection means is higher than a predetermined upper limit value, the attenuation range is set and controlled in a direction to increase the amount of attenuation of the input attenuator 50; If the power level value obtained by the unknown power detection means is lower than a predetermined lower limit value, a coarse adjustment means for setting and controlling the attenuation range in a direction to decrease the attenuation of the input attenuator 50 is provided, and the attenuation range obtained above is provided. In the attenuation range before and after, the section including the power measurement band of the signal under test 101 is frequency-swept by the frequency conversion unit 60 and the signal under test 101
Of the variable gain amplifier 72 at the intermediate frequency in conjunction with the setting of the attenuation range. There is a configuration unit that includes a unit that controls the gain of the entire measurement system to a predetermined state. By means of the coarse adjustment and the optimal adjustment described above, a spectrum analyzer can be realized that can optimize the input level even for a frequency signal to be measured distributed over a wide band.

【0010】第3図と第6図(b)は、本発明の変調解
析装置に係る解決手段を示している。第3に、上記課題
を解決するために、本発明の構成では、未知電力の被測
定信号101を受けて、入力減衰器50により減衰さ
せ、減衰した未知電力減衰信号51を受けて周波数変換
部60で所定の中間周波数IF1に周波数変換し、これ
をIFフィルタ70によりフィルタし、変調解析部80
に供給して変調解析を行う変調解析装置において、周波
数変換部60は周波数を非掃引(ゼロスパンモード)と
し、変調解析部80内の周波数変換部82で更に低い第
2の中間周波数信号IF2に変換した信号を受けて、第
2の中間周波数信号IF2の3次高調波成分まで信号処
理可能な高速AD変換器94を用いてデジタルデータに
変換して第2の中間周波数信号IF2の3次高調波成分
を測定する手段を具備し、前記3次高調波成分の測定手
段により上記入力減衰器50の減衰レンジの減衰量を順
次変えて各々3次高調波成分を測定する手段を具備し、
前記で得た3次高調波成分の各減衰レンジ毎の値を受け
て、3次高調波成分が増加に転ずる減衰レンジを特定
し、これから入力減衰器50の減衰レンジを最適レンジ
に設定する手段を具備し、上記最適レンジ設定に連動し
て中間周波数の可変ゲインアンプ72のゲインを制御し
て測定系全体のゲインを所定の状態にゲイン制御する手
段を具備する構成手段がある。上述手法により、第2の
中間周波数信号IF2の3次高調波が増加に転ずる推移
が検出可能となる結果、広帯域に分布した被測定周波数
信号においても入力レベルの最適化を実現可能とした変
調解析装置が実現できる。
FIG. 3 and FIG. 6 (b) show a solution according to the modulation analyzer of the present invention. Third, in order to solve the above-mentioned problem, in the configuration of the present invention, the frequency conversion unit receives the signal under measurement 101 of unknown power, attenuates it by the input attenuator 50, and receives the attenuated unknown power attenuated signal 51. At 60, the frequency is converted to a predetermined intermediate frequency IF1, which is filtered by an IF filter 70,
In the modulation analysis device that performs modulation analysis by supplying the signal to the frequency analysis unit 60, the frequency conversion unit 60 sets the frequency to non-sweep (zero span mode), and converts the frequency into a lower second intermediate frequency signal IF2 by the frequency conversion unit 82 in the modulation analysis unit 80 The received signal is converted into digital data using a high-speed AD converter 94 capable of processing up to the third harmonic component of the second intermediate frequency signal IF2, and the third harmonic of the second intermediate frequency signal IF2 is received. A means for measuring the component, and a means for measuring the third harmonic component by sequentially changing the attenuation of the attenuation range of the input attenuator 50 by the third harmonic component measuring means,
A means for determining the attenuation range in which the third harmonic component starts to increase based on the value of the third harmonic component obtained for each attenuation range obtained as described above, and setting the attenuation range of the input attenuator 50 to the optimum range from this. And a means for controlling the gain of the intermediate frequency variable gain amplifier 72 in conjunction with the above-mentioned optimum range setting to control the gain of the entire measurement system to a predetermined state. According to the above-described method, it is possible to detect a transition in which the third harmonic of the second intermediate frequency signal IF2 is turned into an increase, and as a result, it is possible to realize an input level optimization even for a measured frequency signal distributed over a wide band. The device can be realized.

【0011】第8図は、本発明のスペクトラムアナライ
ザに係る解決手段を示している。第4に、上記課題を解
決するために、本発明の構成では、未知電力の被測定信
号101を受けて、入力減衰器50により減衰させ、減
衰した未知電力減衰信号51を受けて周波数変換部60
で所定の中間周波数IF1に周波数変換し、これをIF
フィルタ70によりフィルタして測定するスペクトラム
アナライザにおいて、周波数変換部60は周波数を非掃
引(ゼロスパンモード)とし、変調解析部80内の周波
数変換部82で更に低い第2の中間周波数信号IF2に
変換した信号を受けて、第2の中間周波数信号IF2の
3次高調波成分まで信号処理可能な高速AD変換器94
を用いてデジタルデータに変換して第2の中間周波数信
号IF2の3次高調波成分を測定する手段を具備し、前
記3次高調波成分の測定手段により入力減衰器50の減
衰レンジの減衰量を順次変えて3次高調波成分を各々測
定する手段を具備し、前記で得た3次高調波成分の各減
衰レンジ毎の値を受けて、3次高調波成分が増加に転ず
る減衰レンジを特定し、これから入力減衰器50の減衰
レンジを最適レンジに設定する手段を具備し、上記最適
レンジ設定に連動して中間周波数の可変ゲインアンプ7
2のゲインを制御して測定系全体のゲインを所定の状態
にゲイン制御する手段を具備する構成手段がある。上述
手法により、第2の中間周波数信号IF2の3次高調波
が増加に転ずる推移が検出可能となる結果、広帯域に分
布した被測定周波数信号においても入力レベルの最適化
を実現可能としたスペクトラムアナライザが実現でき
る。
FIG. 8 shows a solution according to the spectrum analyzer of the present invention. Fourth, in order to solve the above-described problem, in the configuration of the present invention, the frequency conversion unit receives the signal under measurement 101 of unknown power, attenuates it by the input attenuator 50, and receives the attenuated unknown power attenuated signal 51. 60
To convert the frequency to a predetermined intermediate frequency IF1,
In the spectrum analyzer that measures by filtering with the filter 70, the frequency conversion unit 60 sets the frequency to non-sweep (zero span mode), and converts the frequency to a lower second intermediate frequency signal IF2 by the frequency conversion unit 82 in the modulation analysis unit 80. High-speed AD converter 94 that can receive the signal and process the signal up to the third harmonic component of second intermediate frequency signal IF2
Means for measuring the third harmonic component of the second intermediate frequency signal IF2 by converting the data into digital data by using the third harmonic component. The amount of attenuation of the attenuation range of the input attenuator 50 is measured by the third harmonic component measuring means. Are sequentially changed to measure the third harmonic component, and the attenuation range in which the third harmonic component starts to increase in response to the value obtained for each attenuation range of the third harmonic component obtained above is provided. Means for specifying and setting the attenuation range of the input attenuator 50 to the optimum range from now on.
There is a configuration unit that includes a unit that controls the gain of No. 2 to control the gain of the entire measurement system to a predetermined state. According to the method described above, it is possible to detect a transition in which the third harmonic of the second intermediate frequency signal IF2 is turned into an increase, and as a result, it is possible to realize an input level optimization even for a frequency signal to be measured distributed over a wide band. Can be realized.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を実施
例と共に図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings together with embodiments.

【0013】(実施例1)本発明実施例について図1の
変調解析装置の構成図を示して説明する。尚、従来構成
に対応する要素は同一符号を付す。本発明では第1段階
では入力減衰器50により減衰された未知電力減衰信号
51を直接測定して減衰レンジを粗調整し、第2段階で
は被測定信号101のパワー測定帯域を含む周波数区間
を周波数変換部60で周波数掃引して電力を測定し、こ
れに基づき最終的に入力減衰器50を最適レンジに設定
制御する。
(Embodiment 1) An embodiment of the present invention will be described with reference to the block diagram of the modulation analyzer shown in FIG. Elements corresponding to the conventional configuration are denoted by the same reference numerals. In the present invention, in the first stage, the unknown power attenuated signal 51 attenuated by the input attenuator 50 is directly measured to roughly adjust the attenuation range, and in the second stage, the frequency section including the power measurement band of the signal under test 101 is divided into frequencies. The frequency is swept by the converter 60 to measure the power, and based on this, the input attenuator 50 is finally set and controlled to the optimum range.

【0014】構成は、図1に示すように従来構成要素に
対して、高周波増幅器20と、検波部25と、切替器8
6とを追加した構成で成る。第1段階の粗調整における
変調解析の測定に先立って、以下に説明する手段により
入力減衰器50の減衰量設定の適正化を行う。このとき
切替器86は検波部25側に切替えておく。
As shown in FIG. 1, a high frequency amplifier 20, a detector 25, a switch 8
6 is added. Prior to the measurement of the modulation analysis in the first stage of the coarse adjustment, the setting of the attenuation of the input attenuator 50 is optimized by means described below. At this time, the switch 86 is switched to the detection unit 25 side.

【0015】高周波増幅器20は、入力減衰器50で減
衰されLPF(ローパスフィルタ)を通過した後の未知
電力減衰信号51を受けて、所定倍率に増幅して出力す
る。検波部25は、これを受けて検波し、検波した直流
電圧信号26dcを切替器86を介してAD変換器90
に供給する。そしてAD変換器90によりデジタル変換
した未知電力データDxを信号処理部98へ供給する。
The high-frequency amplifier 20 receives the unknown power attenuated signal 51 attenuated by the input attenuator 50 and passed through an LPF (low-pass filter), amplifies the signal by a predetermined factor, and outputs the amplified signal. The detection unit 25 receives this, detects it, and converts the detected DC voltage signal 26dc through the switch 86 into the AD converter 90.
To supply. Then, the unknown power data Dx digitally converted by the AD converter 90 is supplied to the signal processing unit 98.

【0016】信号処理部98では、前記未知電力データ
Dxを受けて、予め決めておいた上限レベルデータDlmt
と比較して過大入力状態か否かを判定し、この判定結果
により入力減衰器50の減衰レンジを適正値に切替え制
御する。尚、上記上限レベルデータDlmtは、周波数変
換部60のミキサ回路のばらつきを考慮し、裕度を持た
せた最大許容入力レベルを上限レベルデータDlmtとす
るが、所望により個々の機器毎にミキサ回路の許容入力
レベルを各々求め、これを上限レベルデータDlmtとし
て使用しても良い。
In response to the unknown power data Dx, the signal processing section 98 determines the predetermined upper limit level data Dlmt.
Then, it is determined whether or not the input state is excessive, and the attenuation range of the input attenuator 50 is switched to an appropriate value based on the determination result. The upper limit level data Dlmt is set to the maximum allowable input level with allowance in consideration of the variation of the mixer circuit of the frequency conversion unit 60, and the upper limit level data Dlmt is used. May be obtained and used as the upper limit level data Dlmt.

【0017】上記の減衰レンジの適正化制御において、
第1に、もし測定された未知電力データDxの値が上限
レベルデータDlmtより大きい場合には、過大入力レベ
ルであるから、入力減衰器50の減衰量を増加する方向
に減衰レンジを切替え制御し、この切替えに連動して中
間周波数の可変ゲインアンプ72のゲインを増加させ、
測定系全体のゲインを当初の所定増幅度となるように設
定制御する。第2に、もし未知電力データDxの値が上
限レベルデータDlmtから所定レベル(例えば10d
B)以上低い値の場合には、微少入力レベルであるか
ら、入力減衰器50の減衰量を減少する方向に減衰レン
ジを切替え制御し、この切替えに連動して中間周波数の
可変ゲインアンプ72のゲインを減少させ、測定系全体
のゲインを当初の所定増幅度となるように設定制御す
る。これにより未知電力減衰信号51は適正化される。
In the above-described control for optimizing the attenuation range,
First, if the measured value of the unknown power data Dx is larger than the upper limit level data Dlmt, it is an excessive input level, so that the attenuation range is switched and controlled so as to increase the attenuation of the input attenuator 50. In conjunction with this switching, the gain of the intermediate frequency variable gain amplifier 72 is increased,
The gain of the entire measurement system is set and controlled so as to become the initial predetermined amplification degree. Second, if the value of the unknown power data Dx is higher than the upper limit level data Dlmt by a predetermined level (for example, 10d
B) When the value is lower than this, since the input level is a minute input level, the attenuation range is switched and controlled in a direction in which the attenuation of the input attenuator 50 is reduced, and the intermediate frequency variable gain amplifier 72 is interlocked with this switching. The gain is reduced and the gain of the entire measurement system is set and controlled so as to be the initial predetermined amplification degree. As a result, the unknown power attenuation signal 51 is optimized.

【0018】上述検波部25のみの手段では必ずしも適
正ではない場合がある。この為測定装置の電力測定機能
を利用して第2段階の最適調整を行う。この第2段階の
最適調整は、測定対象とする信号の電力値を測定して最
適調整を実施する。即ち、被測定信号101のパワー測
定帯域を含む周波数区間を周波数変換部60で周波数掃
引して電力を測定し、この電力測定を入力減衰器50の
減衰レンジを上述第1段階の粗調整で得た減衰レンジの
設定状態から増減して減衰レンジを最適レンジに調整制
御する。
There is a case where the above-described means using only the detection unit 25 is not always appropriate. For this reason, the second-stage optimal adjustment is performed using the power measuring function of the measuring device. In the second stage of the optimal adjustment, the optimal adjustment is performed by measuring the power value of the signal to be measured. That is, the frequency section including the power measurement band of the signal under test 101 is frequency-swept by the frequency conversion unit 60 to measure the power, and this power measurement is obtained by the above-described first-step coarse adjustment of the attenuation range of the input attenuator 50. The attenuation range is adjusted to the optimum range by increasing or decreasing from the setting state of the attenuation range.

【0019】具体的には、図10の周波数スペクトラム
からのパワー測定例に示すように、一般的なパワー測定
アプリケーションを用いてこの区間のパワーを積分して
電力を算出する。例えばスペクトラム表示画面上におい
て周波数軸を11分割し、この分割中で、被測定信号1
01の中心周波数fcを6/11の位置にくるように測
定系の中心周波数を制御し、かつ4/11〜8/11区
間の位置に被測定信号101の帯域成分が収まるように
掃引スパンを自動制御する。そしてこの区間のパワーを
積分して電力を得る。この電力測定で得た結果から被測
定信号の電力が得られ、上述第1段階による減衰レンジ
をもとに該減衰レンジの設定に連動して中間周波数の可
変ゲインアンプのゲインを制御して測定系全体のゲイン
を所定の状態にすることで歪みを生じない減衰レンジに
最適制御可能となる。この結果、周波数変換歪みが無
く、S/Nが良く、測定精度の良い減衰レンジの自動制
御が可能となる利点が得られる。
Specifically, as shown in an example of power measurement from the frequency spectrum in FIG. 10, power is calculated by integrating power in this section using a general power measurement application. For example, on the spectrum display screen, the frequency axis is divided into 11, and during this division, the signal under measurement 1
The center frequency of the measurement system is controlled so that the center frequency fc of 01 is at the position of 6/11, and the sweep span is adjusted so that the band component of the signal under measurement 101 falls within the position of 4/11 to 8/11. Control automatically. Then, the power in this section is integrated to obtain power. The power of the signal to be measured is obtained from the result obtained in the power measurement, and the gain of the intermediate frequency variable gain amplifier is controlled in accordance with the setting of the attenuation range based on the attenuation range in the first step. By setting the gain of the entire system to a predetermined state, it is possible to optimally control the attenuation range in which distortion does not occur. As a result, there is obtained an advantage that there is no frequency conversion distortion, the S / N is good, and the attenuation range with good measurement accuracy can be automatically controlled.

【0020】上述適正化を実施の後、切替器86を変調
解析側に切替えて本来の変調解析を実施する。尚、この
減衰量設定の適正化実施は、所望により変調解析測定の
合間、あるいは減衰量設定の適正化の実行を起動するキ
ー入力を受けた都度、あるいは随時実行するようにして
も良い。
After the above optimization, the switch 86 is switched to the modulation analysis side to perform the original modulation analysis. The adjustment of the attenuation amount may be appropriately performed between the modulation analysis and the measurement, or whenever a key input for starting the execution of the adjustment of the attenuation amount is received, or as needed.

【0021】上述発明の構成によれば、入力減衰器50
により減衰された未知電力減衰信号51を直接測定して
概略の減衰レンジを特定し、更にパワー測定アプリケー
ションを用いて被測定信号の電力を各々測定し、この結
果をもとに測定系全体のゲインを所定の状態にするた
め、周波数変換部60のミキサ入力端は適正な入力レベ
ルに制御可能となるので、広帯域に分布した被測定周波
数信号においても入力レベルの適正化が的確容易に実現
できることとなる。従って、被測定信号が歪んで変調解
析の誤差要因や電力測定の誤差要因を生じる難点が解消
できる大きな利点が得られる。
According to the configuration of the invention described above, the input attenuator 50
The unknown power attenuation signal 51 attenuated by the above is directly measured to specify the approximate attenuation range, and further, the power of the signal under measurement is measured using the power measurement application, and the gain of the entire measurement system is determined based on the result. To a predetermined state, the input terminal of the mixer of the frequency conversion unit 60 can be controlled to an appropriate input level, so that the input level can be appropriately and easily realized even in a frequency signal to be measured distributed over a wide band. Become. Accordingly, there is obtained a great advantage that a difficulty in which a signal to be measured is distorted and causes error factors in modulation analysis and error factors in power measurement can be eliminated.

【0022】(実施例2)本発明実施例について図3の
変調解析装置の構成図を示して説明する。尚、従来構成
に対応する要素は同一符号を付す。本発明では周波数変
換部60は周波数を非掃引(ゼロスパンモード)として
おき、中間周波数信号IF2の3次高調波成分まで信号
処理可能な高速AD変換器94を用いてデジタルデータ
に変換して第2の中間周波数信号IF2の3次高調波成
分を検出測定することで、得られた前記3次高調波成分
が増加に転ずる減衰レンジを特定し、これから入力減衰
器50を最適レンジに設定制御する手法である。
(Embodiment 2) An embodiment of the present invention will be described with reference to the block diagram of the modulation analyzer shown in FIG. Elements corresponding to the conventional configuration are denoted by the same reference numerals. In the present invention, the frequency conversion section 60 sets the frequency to non-sweep (zero span mode), converts the frequency to digital data by using a high-speed AD converter 94 capable of processing up to the third harmonic component of the intermediate frequency signal IF2, and converts the data into the second data. A method of detecting and measuring the third harmonic component of the intermediate frequency signal IF2 to specify the attenuation range in which the obtained third harmonic component starts to increase, and to set and control the input attenuator 50 to the optimum range based on the attenuation range It is.

【0023】構成は、図3に示すように従来構成要素に
対して、変調解析部80内にLPF92と、高速AD変
換器94とを追加した構成で成る。
The configuration is such that an LPF 92 and a high-speed A / D converter 94 are added in a modulation analyzer 80 to the conventional components as shown in FIG.

【0024】実施例1と同様に、変調解析の測定に先立
って、以下に説明する手段により入力減衰器50の減衰
量設定の適正化を行う。但し、予め被測定信号101の
変調解析対象となる基本周波数は得ておく。先ず周波数
変換部60はゼロスパンモードとして周波数を非掃引に
する。この状態で周波数変換部82が出力する中間周波
数信号IF2の基本波成分と3次高調波成分を測定す
る。例えば中間周波数信号IF2を20MHzと仮定す
ると基本波成分は20MHzで3次高調波成分は60M
Hzである。この3次高調波成分を含んだ交流信号を高
速AD変換器94でデジタルデータに変換し、このデー
タをFFT処理して被測定信号101の基本波成分と3
次高調波成分の差を求める。この基本波成分と3次高調
波成分の差の測定処理を入力減衰器50の減衰レンジを
順次切替えて実施する。これらの測定結果を、図6
(b)の3次高調波レベルの推移例に示す。この推移図
ではポイント301が増加に転じ始めていることが判
る。この判定結果により、入力減衰器50の最適設定す
べき減衰レンジはポイント300として容易に求まる。
そしてこの減衰レンジの設定に連動して、実施例1と同
様に中間周波数の可変ゲインアンプ72のゲインを増減
させて、測定系全体のゲインを当初の所定増幅度となる
ように設定制御することは言うまでもない。これにより
周波数変換部60のミキサ回路への入力は最適な入力レ
ベルに設定制御される。
As in the first embodiment, prior to the measurement of the modulation analysis, the attenuation setting of the input attenuator 50 is optimized by means described below. However, the fundamental frequency to be subjected to the modulation analysis of the signal under measurement 101 is obtained in advance. First, the frequency conversion unit 60 sets the frequency to non-sweep in the zero span mode. In this state, the fundamental component and the third harmonic component of the intermediate frequency signal IF2 output from the frequency converter 82 are measured. For example, assuming that the intermediate frequency signal IF2 is 20 MHz, the fundamental component is 20 MHz and the third harmonic component is 60 MHz.
Hz. The AC signal containing the third harmonic component is converted into digital data by the high-speed AD converter 94, and this data is subjected to FFT processing to obtain the fundamental wave component of the signal under measurement 101
Find the difference between the second harmonic components. The measurement process of the difference between the fundamental component and the third harmonic component is performed by sequentially switching the attenuation range of the input attenuator 50. These measurement results are shown in FIG.
The transition example of the third harmonic level in (b) is shown. In this transition diagram, it can be seen that the point 301 has started to increase. From this determination result, the attenuation range to be optimally set by the input attenuator 50 can be easily obtained as the point 300.
In conjunction with the setting of the attenuation range, the gain of the intermediate frequency variable gain amplifier 72 is increased or decreased in the same manner as in the first embodiment, and the gain of the entire measurement system is set and controlled so as to become the initial predetermined amplification. Needless to say. As a result, the input to the mixer circuit of the frequency conversion unit 60 is set and controlled to an optimum input level.

【0025】上述発明の構成によれば、入力減衰器50
の減衰レンジを順次変えて、被測定信号101を周波数
変換した中間周波数信号IF2の基本波成分と3次高調
波成分の差を求め、この基本波成分と3次高調波の差レ
ベルの推移が増加に転じる減衰レンジを特定すること
で、最適な減衰レンジが検出可能となる結果、被測定信
号が歪んで変調解析の誤差要因や電力測定の誤差要因を
生じる難点が解消できる大きな利点が得られる。
According to the configuration of the invention described above, the input attenuator 50
, The difference between the fundamental wave component and the third harmonic component of the intermediate frequency signal IF2 obtained by frequency-converting the signal under test 101 is determined. By specifying the attenuation range that starts to increase, the optimal attenuation range can be detected, and as a result, a significant advantage is obtained in that the signal to be measured is distorted, which can cause errors in modulation analysis and error in power measurement. .

【0026】尚、上述実施例1では、図1に示す変調解
析装置の具体構成例により、入力減衰器50の出力端の
未知電力減衰信号51のレベルを直接測定する構成例と
していたが、所望により図2に示すように、高周波増幅
器20と検波部25と切替器30とによって未知電力減
衰信号51のレベルを直接測定する構成としても良く、
同様にして実施可能である。
In the first embodiment, the level of the unknown power attenuation signal 51 at the output terminal of the input attenuator 50 is directly measured by the specific configuration example of the modulation analyzer shown in FIG. 2, the level of the unknown power attenuated signal 51 may be directly measured by the high-frequency amplifier 20, the detector 25, and the switch 30, as shown in FIG.
It can be implemented in a similar manner.

【0027】尚、上述実施例2では、図3に示す変調解
析装置の具体構成例により、3次高調波成分を測定する
構成例としていたが、所望により図9に示すように、中
間周波数信号における一次レベル信号のみを通過させる
BPF(バンドパスフィルタ)を設けてフィルタし、こ
れを検波してレベルを測定し、更に中間周波数信号にお
ける三次レベル信号のみを通過させるBPF(バンドパ
スフィルタ)を設けてフィルタし、これを検波してレベ
ルを測定し、前記測定を減衰レンジを順次変えて一次レ
ベル信号と三次レベル信号の両者を求め、これから一次
と三次レベルとの差レベルが増加に転ずる減衰レンジが
特定できるので、同様にして入力減衰器50の減衰レン
ジを適正化制御する構成手段としても良い。
In the second embodiment described above, the third harmonic component is measured by the specific configuration example of the modulation analyzer shown in FIG. 3. However, if desired, as shown in FIG. A BPF (Band Pass Filter) that passes only the primary level signal is provided and filtered, the level is detected by detecting this, and a BPF (Band Pass Filter) that passes only the third level signal of the intermediate frequency signal is provided. The filter is then detected and the level is measured by detecting the same. The measurement is sequentially changed in the attenuation range to obtain both the primary level signal and the tertiary level signal, and from this the attenuation range in which the difference level between the primary and tertiary levels starts to increase Can be specified, and similarly, a configuration means for appropriately controlling the attenuation range of the input attenuator 50 may be used.

【0028】尚、上述実施例1の説明では、変調解析装
置に適用した具体例で説明していたが、図4に示すよう
に、高周波増幅器20と検波部25と切替器30を追加
したスペクトラムアナライザの構成とし、同様に入力減
衰器50により減衰された未知電力減衰信号51のレベ
ルを直接測定して減衰レンジを最適化制御することで、
同様にして入力レベルの最適化を実現可能であることは
明白である。
In the above description of the first embodiment, a specific example applied to a modulation analyzer has been described. However, as shown in FIG. 4, a spectrum in which a high-frequency amplifier 20, a detector 25, and a switch 30 are added. The analyzer is configured so that the level of the unknown power attenuated signal 51 similarly attenuated by the input attenuator 50 is directly measured and the attenuation range is optimized and controlled.
It is clear that input level optimization can be achieved in a similar manner.

【0029】尚、上述実施例2においても、変調解析装
置に適用した具体例で説明していたが、図8に示すよう
に、従来のスペクトラムアナライザの構成においても、
周波数変換部82とLPF92と高速AD変換器94を
設けて、上述実施例2の手法である基本波成分と3次高
調波成分との差を順次測定し、得た基本波成分と3次高
調波成分との差から増加に転ずる減衰レンジを特定し
て、入力減衰器50を適正化制御する手法を設けること
により実現可能である。
In the second embodiment, a specific example applied to a modulation analyzer has been described. However, as shown in FIG. 8, even in the configuration of a conventional spectrum analyzer,
The frequency converter 82, the LPF 92, and the high-speed AD converter 94 are provided, and the difference between the fundamental wave component and the third harmonic component, which is the method of the second embodiment, is sequentially measured. This can be realized by providing a method of specifying an attenuation range that starts to increase based on the difference from the wave component and appropriately controlling the input attenuator 50.

【0030】尚、上述実施例1では、図1あるいは図3
に示す変調解析装置の具体構成例で説明していたが、所
望により図7に示すように、両方の制御手段を併用する
構成としても良い。即ち、未知電力減衰信号51を直接
測定し、この測定結果に基づき入力減衰器50と中間周
波数の可変ゲインアンプ72を適正に制御した後、更に
基本波成分と3次高調波を測定して基本波成分と3次高
調波との差が増加に転ずる推移を検出して、最適な入力
減衰器50の設定に制御する両手法を併用する構成であ
る。
In the first embodiment, FIG. 1 or FIG.
Has been described with reference to the specific configuration example of the modulation analyzer shown in FIG. 7, but if desired, as shown in FIG. That is, the unknown power attenuation signal 51 is directly measured, the input attenuator 50 and the intermediate frequency variable gain amplifier 72 are appropriately controlled based on the measurement result, and then the fundamental wave component and the third harmonic are measured. In this configuration, both the methods of detecting a transition in which the difference between the wave component and the third harmonic changes to increase and controlling the input attenuator 50 to the optimal setting are used in combination.

【0031】[0031]

【発明の効果】本発明は、上述の説明内容から、下記に
記載される効果を奏する。第1に、上述実施例1の発明
構成によれば、入力減衰器50により減衰された未知電
力減衰信号51を直接測定して概略の減衰レンジを特定
し、更にパワー測定アプリケーションを用いて被測定信
号の電力を各々測定し、この結果をもとに測定系全体の
ゲインを所定の状態にすることで周波数変換部60のミ
キサ入力端を適正な入力レベルに制御可能となるので、
広帯域に分布した被測定周波数信号においても入力レベ
ルの適正化が的確容易に実現できることとなる。従っ
て、被測定信号が歪んで変調解析の誤差要因や電力測定
の誤差要因を生じる難点が解消できる大きな利点が得ら
れる。また、スペクトラムアナライザの構成の場合も、
同様にして入力レベルの適正化の利点が得られる。
According to the present invention, the following effects can be obtained from the above description. First, according to the configuration of the first embodiment, the unknown power attenuated signal 51 attenuated by the input attenuator 50 is directly measured to specify the approximate attenuation range, and the measured power is measured using the power measurement application. Since the power of the signal is measured and the gain of the entire measurement system is set to a predetermined state based on the result, the mixer input terminal of the frequency conversion unit 60 can be controlled to an appropriate input level.
The input level can be appropriately and easily adjusted even in the frequency signal to be measured distributed over a wide band. Accordingly, there is obtained a great advantage that a difficulty in which a signal to be measured is distorted and causes error factors in modulation analysis and error factors in power measurement can be eliminated. In the case of a spectrum analyzer configuration,
In the same manner, the advantage of optimizing the input level can be obtained.

【0032】第2に、上述実施例2の発明構成によれ
ば、入力減衰器50の減衰レンジを順次変えて、被測定
信号101を周波数変換した中間周波数信号IF2の基
本波成分と3次高調波成分との差を求め、この基本波成
分と3次高調波との差レベルの推移が増加に転じる減衰
レンジを特定することで、最適な減衰レンジが検出可能
となる結果、被測定信号が歪んで変調解析の誤差要因や
電力測定の誤差要因を生じる難点が解消できる大きな利
点が得られる。また、スペクトラムアナライザの構成の
場合も、同様にして入力レベルの適正化の利点が得られ
る。
Secondly, according to the configuration of the second embodiment described above, the attenuation range of the input attenuator 50 is sequentially changed, and the fundamental wave component and the third harmonic of the intermediate frequency signal IF2 obtained by frequency-converting the signal under test 101 are obtained. The difference between the fundamental component and the third harmonic is determined and the attenuation range in which the transition of the difference level starts to increase can be determined. As a result, the optimum attenuation range can be detected. There is obtained a great advantage that it is possible to eliminate the difficulty that distortion causes modulation analysis error factors and power measurement error factors. Also, in the case of the configuration of the spectrum analyzer, the advantage of optimizing the input level can be obtained in the same manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の、変調解析装置の構成例である。FIG. 1 is a configuration example of a modulation analysis device according to the present invention.

【図2】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 2 is another configuration example of the modulation analyzer according to the present invention.

【図3】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 3 is another configuration example of the modulation analysis device according to the present invention.

【図4】 本発明の、スペクトラムアナライザの構成例
である。
FIG. 4 is a configuration example of a spectrum analyzer of the present invention.

【図5】 従来の、変調解析装置の構成例である。FIG. 5 is a configuration example of a conventional modulation analyzer.

【図6】 広帯域に分布する周波数信号例と、基本波と
3次高調波との差のレベルの推移例である。
FIG. 6 shows an example of a frequency signal distributed over a wide band and an example of transition of a difference level between a fundamental wave and a third harmonic.

【図7】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 7 is another configuration example of the modulation analysis device of the present invention.

【図8】 本発明の、スペクトラムアナライザの他の構
成例である。
FIG. 8 is another configuration example of the spectrum analyzer of the present invention.

【図9】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 9 is another configuration example of the modulation analysis device of the present invention.

【図10】 本発明の、周波数スペクトラムからのパワ
ー測定例である。
FIG. 10 is an example of power measurement from a frequency spectrum according to the present invention.

【符号の説明】[Explanation of symbols]

20 高周波増幅器 25,76 検波部 30,86 切替器 50 入力減衰器 60,82 周波数変換部 70 IFフィルタ 72,84 可変ゲインアンプ 74 対数変換部 78,90 AD変換器 80 変調解析部 94 高速AD変換器 140 表示装置 98 信号処理部 100 被試験装置 120 表示処理部 Reference Signs List 20 high-frequency amplifier 25, 76 detector 30, 86 switch 50 input attenuator 60, 82 frequency converter 70 IF filter 72, 84 variable gain amplifier 74 logarithmic converter 78, 90 AD converter 80 modulation analyzer 94 high-speed AD conversion Instrument 140 Display device 98 Signal processing unit 100 Device under test 120 Display processing unit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年10月6日[Submission date] October 6, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 変調解析装置及びスペクトラムアナラ
イザ
Patent application title: Modulation Analysis Apparatus and Spectrum Analyzer

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被測定周波数信
号の入力レベルの最適化に関する。特にスペクトラム拡
散された広帯域に分布する被測定周波数信号の入力レベ
ルの最適化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optimization of an input level of a frequency signal to be measured. In particular, the present invention relates to optimization of an input level of a frequency signal to be measured distributed over a wide band which is spread spectrum.

【0002】[0002]

【従来の技術】従来技術例について図5の変調解析装置
の構成図を示して説明する。この変調解析装置は、スペ
クトラムアナライザを基本構成にし、この中間周波数信
号(IF信号)を受けて、被測定信号の各種変調に関わ
る解析機能を付加した構成例である。
2. Description of the Related Art A prior art example will be described with reference to a block diagram of a modulation analyzer shown in FIG. This modulation analyzer has a spectrum analyzer as a basic configuration, receives this intermediate frequency signal (IF signal), and adds an analysis function relating to various types of modulation of a signal under measurement.

【0003】構成は、被試験装置100と、入力減衰器
50と、周波数変換部60と、IFフィルタ70と、可
変ゲインアンプ72と、対数変換部74と、検波部76
と、AD変換器78と、変調解析部80と、表示処理部
120と、表示装置140とで成る。尚、スペクトラム
アナライザの構成は技術的に良く知られている為説明を
省略する。
[0003] The configuration includes a device under test 100, an input attenuator 50, a frequency converter 60, an IF filter 70, a variable gain amplifier 72, a logarithmic converter 74, and a detector 76.
, An AD converter 78, a modulation analysis unit 80, a display processing unit 120, and a display device 140. Since the configuration of the spectrum analyzer is well known in the art, the description is omitted.

【0004】変調解析部80の内部構成は、周波数変換
部82と、可変ゲインアンプ84と、AD変換器90
と、信号処理部98とで成る。この変調解析部は、周波
数変換部82により数MHzの低い中間周波数信号IF
2に変換し、可変ゲインアンプ84でAD変換器90の
最適レベルに増幅した中間周波数信号をAD変換器90
で高速サンプリングし、信号処理して各種の変調特性等
の解析や変調精度に係る測定と演算処理をするものであ
る。処理された結果は表示処理部120を介して表示装
置140で所望の表示をする。
[0004] The internal configuration of the modulation analysis section 80 is as follows: a frequency conversion section 82, a variable gain amplifier 84, an AD converter 90.
And a signal processing unit 98. This modulation analysis unit uses a frequency conversion unit 82 to output a low intermediate frequency signal IF of several MHz.
2 and the intermediate frequency signal amplified by the variable gain amplifier 84 to the optimum level of the AD converter 90
, Performs high-speed sampling, performs signal processing, analyzes various modulation characteristics and the like, and performs measurement and arithmetic processing relating to modulation accuracy. The processed result is displayed on the display device 140 via the display processing unit 120 as desired.

【0005】ところで変調測定に際して表示装置140
の管面上の表示レベルを使用者が定める必要がある。こ
の管面レベルを設定する一手順を説明する。ここで被試
験装置100が出力する被測定信号101は、図6
(a)に示す周波数信号201のように、CDMA(Co
de Division Multiple Access)等の広帯域に分布する
スペクトラム拡散された周波数信号の場合と仮定する。
先ず図6(a)に示す中心周波数fc付近に設定し、ゼ
ロスパン・モード(周波数を掃引しないモード)で入力
レベルを管面表示させる。そしてキー入力設定により、
スペクトラムレベルが大きく見易くなる所望の入力感度
及びリファレンスレベルに設定する。この設定の結果入
力減衰器50とIF信号用の可変ゲインアンプ72は所
定の減衰量及び増幅量に自動設定される。尚、入力減衰
器50は例えば10dBステップの減衰器であり、可変
ゲインアンプ72は例えば0.1dB/Div.ステップ
の細かな可変増幅器である。
[0005] By the way, at the time of modulation measurement, the display device 140
It is necessary for the user to determine the display level on the display screen. One procedure for setting the tube surface level will be described. The signal under test 101 output from the device under test 100 is shown in FIG.
As in the frequency signal 201 shown in FIG.
It is assumed that the signal is a spread-spectrum frequency signal distributed over a wide band such as de Division Multiple Access.
First, the input level is set near the center frequency fc shown in FIG. 6A, and the input level is displayed on the display panel in the zero span mode (mode in which the frequency is not swept). And by key input setting,
The desired input sensitivity and reference level are set so that the spectrum level is large and easy to see. As a result of this setting, the input attenuator 50 and the variable gain amplifier 72 for the IF signal are automatically set to predetermined attenuation and amplification amounts. The input attenuator 50 is, for example, an attenuator of 10 dB steps, and the variable gain amplifier 72 is, for example, 0.1 dB / Div. It is a variable amplifier with fine steps.

【0006】[0006]

【発明が解決しようとする課題】ところで、図6(a)
に示すように、広帯域に分散した周波数信号201の
為、各周波数点でのレベルは低い。この為、上述管面表
示レベルの設定に伴って、入力減衰器50の設定は小さ
い減衰量になっている。しかしながら広帯域に拡散した
全周波数の総電力は大きいレベルである。この結果、図
5に示す入力減衰器50で減衰した未知電力減衰信号5
1は比較的大きなレベルである。この信号が周波数変換
部60のミキサ回路の入力端に供給される。この結果、
ミキサ回路は過大な入力レベルとなる場合がある。もし
過大入力レベルの場合は、被測定周波数信号が歪んでN
次高調波を生じたり、周波数変換ゲインの直線性が大き
く変わる等の不具合を生じる。これら不具合は、被試験
装置の変調解析や電力測定の誤差を増長させる為、測定
装置としては好ましくなく、実用上の難点がある。尚、
図5に示す変調解析部80を有しない一般的なスペクト
ラムアナライザにおいても広帯域に分布あるいは離散し
た未知電力の周波数信号等においては、同様の難点があ
ることは言うまでもない。
FIG. 6 (a)
As shown in (1), the level at each frequency point is low because of the frequency signal 201 distributed over a wide band. Therefore, the setting of the input attenuator 50 is set to a small amount of attenuation in accordance with the setting of the above-described display surface level. However, the total power of all frequencies spread over a wide band is at a large level. As a result, the unknown power attenuated signal 5 attenuated by the input attenuator 50 shown in FIG.
1 is a relatively large level. This signal is supplied to the input terminal of the mixer circuit of the frequency conversion unit 60. As a result,
The mixer circuit may have an excessive input level. If the input level is excessive, the measured frequency signal is distorted and N
Inconveniences such as generation of second-order harmonics and significant change in linearity of frequency conversion gain occur. These disadvantages increase errors in modulation analysis and power measurement of the device under test, and therefore are not preferable as a measuring device and have practical problems. still,
It goes without saying that even a general spectrum analyzer having no modulation analysis unit 80 shown in FIG. 5 has the same disadvantages in frequency signals of unknown power distributed or dispersed over a wide band.

【0007】そこで、本発明が解決しようとする課題
は、広帯域に分布あるいは離散した被測定周波数信号に
おいても入力レベルの最適化を実現可能とした変調解析
装置及びスペクトラムアナライザを提供することであ
る。
It is an object of the present invention to provide a modulation analyzer and a spectrum analyzer which can realize an input level optimization even for a frequency signal to be measured distributed or dispersed over a wide band.

【0008】[0008]

【課題を解決するための手段】第1図あるいは第2図と
第10図は、本発明の変調解析装置に係る解決手段を示
している。第1に、上記課題を解決するために、本発明
の構成では、未知電力の被測定信号101を受けて、入
力減衰器50により減衰させ、減衰した未知電力減衰信
号51を受けて周波数変換部60で所定の中間周波数I
F1に周波数変換し、これをIFフィルタ70によりフ
ィルタし、変調解析部80に供給して変調解析を行う変
調解析装置において、入力減衰器50によって減衰した
未知電力減衰信号51を受けて、この信号を増幅し検波
して入力減衰器50の出力端における未知電力レベルを
検出する手段を具備し、第1に上記未知電力検出手段で
得た電力レベル値が所定上限値より高い場合は入力減衰
器50の減衰量を増加する方向に減衰レンジを設定制御
し、第2に上記未知電力検出手段で得た電力レベル値が
所定下限値より低い場合は入力減衰器50の減衰量を減
少する方向に減衰レンジを設定制御する粗調整の手段を
具備し、上述で得た減衰レンジ及び前後の減衰レンジに
おいて、被測定信号101のパワー測定帯域を含む区間
を周波数変換部60で周波数掃引して被測定信号101
の電力を各々測定算出し、この測定電力値から最適な減
衰レンジに設定制御する最適調整の手段を具備し、上記
減衰レンジの設定に連動して中間周波数の可変ゲインア
ンプ72のゲインを制御して測定系全体のゲインを所定
の状態にゲイン制御する手段を具備する構成手段であ
る。上述粗調整と最適調整の手段により、広帯域に分布
した被測定周波数信号に対しても入力レベルの最適化を
実現可能とした変調解析装置が実現できる。
FIG. 1 or FIG. 2 and FIG. 10 show the means for solving the problems related to the modulation analyzer of the present invention. First, in order to solve the above-mentioned problem, in the configuration of the present invention, the frequency conversion unit receives the signal under measurement 101 of unknown power, attenuates it by the input attenuator 50, and receives the attenuated unknown power attenuation signal 51. 60 and a predetermined intermediate frequency I
F1 is frequency-converted, filtered by an IF filter 70, and supplied to a modulation analysis unit 80 to perform modulation analysis. The modulation analysis device receives the unknown power attenuated signal 51 attenuated by the input attenuator 50. Amplifying and detecting the unknown power level at the output terminal of the input attenuator 50. First, when the power level value obtained by the unknown power detecting means is higher than a predetermined upper limit, the input attenuator is detected. Second, the attenuation range is set and controlled in a direction to increase the attenuation amount of the input attenuator 50. If the power level value obtained by the unknown power detection means is lower than a predetermined lower limit value, the attenuation amount of the input attenuator 50 is reduced. A coarse adjustment means for setting and controlling the attenuation range is provided. In the attenuation range obtained above and before and after the attenuation range, the section including the power measurement band of the signal under test 101 is converted to the frequency conversion unit 6. In a frequency sweep to the signal to be measured 101
Of the variable gain amplifier 72 at the intermediate frequency in conjunction with the setting of the attenuation range. Means for controlling the gain of the entire measurement system to a predetermined state. By means of the coarse adjustment and the optimal adjustment described above, it is possible to realize a modulation analyzer capable of optimizing an input level even for a frequency signal to be measured distributed over a wide band.

【0009】第4図は、本発明のスペクトラムアナライ
ザに係る解決手段を示している。第2に、上記課題を解
決するために、本発明の構成では、未知電力の被測定信
号101を受けて、入力減衰器50により減衰させ、減
衰した未知電力減衰信号51を受けて周波数変換部60
で所定の中間周波数IF1に周波数変換し、これをIF
フィルタ70によりフィルタして測定するスペクトラム
アナライザにおいて、入力減衰器50によって減衰した
未知電力減衰信号51を受けて、この信号を増幅し検波
して入力減衰器50の出力端における未知電力レベルを
検出する手段を具備し、第1に上記未知電力検出手段で
得た電力レベル値が所定上限値より高い場合は入力減衰
器50の減衰量を増加する方向に減衰レンジを設定制御
し、第2に上記未知電力検出手段で得た電力レベル値が
所定下限値より低い場合は入力減衰器50の減衰量を減
少する方向に減衰レンジを設定制御する粗調整の手段を
具備し、上述で得た減衰レンジ及び前後の減衰レンジに
おいて、被測定信号101のパワー測定帯域を含む区間
を周波数変換部60で周波数掃引して被測定信号101
の電力を各々測定算出し、この測定電力値から最適な減
衰レンジに設定制御する最適調整の手段を具備し、上記
減衰レンジの設定に連動して中間周波数の可変ゲインア
ンプ72のゲインを制御して測定系全体のゲインを所定
の状態にゲイン制御する手段を具備する構成手段
る。上述粗調整と最適調整の手段により、広帯域に分布
した被測定周波数信号に対しても入力レベルの最適化を
実現可能としたスペクトラムアナライザが実現できる。
FIG. 4 shows a solution according to the spectrum analyzer of the present invention. Secondly, in order to solve the above problem, in the configuration of the present invention, the unknown power attenuated signal 51 is received by the unknown power signal under measurement 101 and attenuated by the input attenuator 50. 60
To convert the frequency to a predetermined intermediate frequency IF1,
In a spectrum analyzer which is filtered and measured by a filter 70, an unknown power attenuated signal 51 attenuated by an input attenuator 50 is received, and this signal is amplified and detected to detect an unknown power level at an output terminal of the input attenuator 50. Firstly, when the power level value obtained by the unknown power detection means is higher than a predetermined upper limit value, the attenuation range is set and controlled in a direction to increase the amount of attenuation of the input attenuator 50; If the power level value obtained by the unknown power detection means is lower than a predetermined lower limit value, a coarse adjustment means for setting and controlling the attenuation range in a direction to decrease the attenuation of the input attenuator 50 is provided, and the attenuation range obtained above is provided. In the attenuation range before and after, the section including the power measurement band of the signal under test 101 is frequency-swept by the frequency conversion unit 60 and the signal under test 101
Of the variable gain amplifier 72 at the intermediate frequency in conjunction with the setting of the attenuation range. Oh the gain of the entire measurement system Te configuration means comprises means for gain control in a predetermined state <br/> Ru. By means of the coarse adjustment and the optimal adjustment described above, a spectrum analyzer can be realized that can optimize the input level even for a frequency signal to be measured distributed over a wide band.

【0010】第3図と第6図(b)は、本発明の変調解
析装置に係る解決手段を示している。第3に、上記課題
を解決するために、本発明の構成では、未知電力の被測
定信号101を受けて、入力減衰器50により減衰さ
せ、減衰した未知電力減衰信号51を受けて周波数変換
部60で所定の中間周波数IF1に周波数変換し、これ
をIFフィルタ70によりフィルタし、変調解析部80
に供給して変調解析を行う変調解析装置において、周波
数変換部60は周波数を非掃引(ゼロスパンモード)と
し、変調解析部80内の周波数変換部82で更に低い第
2の中間周波数信号IF2に変換した信号を受けて、第
2の中間周波数信号IF2の3次高調波成分まで信号処
理可能な高速AD変換器94を用いてデジタルデータに
変換して第2の中間周波数信号IF2の基本波成分と
次高調波成分を測定する手段を具備し、前記3次高調波
成分の測定手段により上記入力減衰器50の減衰レンジ
の減衰量を順次変えて各々基本波成分と3次高調波成分
を測定する手段を具備し、前記で得た3次高調波成分の
各減衰レンジ毎の値を受けて、3次高調波成分との差
増加に転ずる減衰レンジを特定し、これから入力減衰器
50の減衰レンジを最適レンジに設定する手段を具備
し、上記最適レンジ設定に連動して中間周波数の可変ゲ
インアンプ72のゲインを制御して測定系全体のゲイン
を所定の状態にゲイン制御する手段を具備する構成手段
がある。上述手法により、第2の中間周波数信号IF2
基本波成分と3次高調波成分との差が増加に転ずる推
移が検出可能となる結果、広帯域に分布した被測定周波
数信号においても入力レベルの最適化を実現可能とした
変調解析装置が実現できる。
FIG. 3 and FIG. 6 (b) show a solution according to the modulation analyzer of the present invention. Third, in order to solve the above-mentioned problem, in the configuration of the present invention, the frequency conversion unit receives the signal under measurement 101 of unknown power, attenuates it by the input attenuator 50, and receives the attenuated unknown power attenuated signal 51. At 60, the frequency is converted to a predetermined intermediate frequency IF1, which is filtered by an IF filter 70,
In the modulation analysis device that performs modulation analysis by supplying the signal to the frequency analysis unit 60, the frequency conversion unit 60 sets the frequency to non-sweep (zero span mode), and converts the frequency into a lower second intermediate frequency signal IF2 by the frequency conversion unit 82 in the modulation analysis unit 80 The received signal is converted to digital data using a high-speed AD converter 94 capable of processing the signal up to the third harmonic component of the second intermediate frequency signal IF2, and the fundamental wave component of the second intermediate frequency signal IF2 and 3
Means for measuring the second harmonic component, wherein the fundamental harmonic component and the third harmonic component are measured by sequentially changing the attenuation of the attenuation range of the input attenuator 50 by the third harmonic component measuring means. Means for determining the attenuation range in which the difference from the third harmonic component starts to increase in response to the value obtained for each attenuation range of the third harmonic component obtained above. Means for setting the range to the optimum range; means for controlling the gain of the intermediate frequency variable gain amplifier 72 in conjunction with the setting of the optimum range to control the gain of the entire measurement system to a predetermined state. There are configuration means. According to the above method, the second intermediate frequency signal IF2
Can detect the transition of the difference between the fundamental component and the third harmonic component of the signal into an increase, resulting in a modulation analyzer that can optimize the input level even for the frequency signal to be measured distributed over a wide band. it can.

【0011】第8図は、本発明のスペクトラムアナライ
ザに係る解決手段を示している。第4に、上記課題を解
決するために、本発明の構成では、未知電力の被測定信
号101を受けて、入力減衰器50により減衰させ、減
衰した未知電力減衰信号51を受けて周波数変換部60
で所定の中間周波数IF1に周波数変換し、これをIF
フィルタ70によりフィルタして測定するスペクトラム
アナライザにおいて、周波数変換部60は周波数を非掃
引(ゼロスパンモード)とし、変調解析部80内の周波
数変換部82で更に低い第2の中間周波数信号IF2に
変換した信号を受けて、第2の中間周波数信号IF2の
3次高調波成分まで信号処理可能な高速AD変換器94
を用いてデジタルデータに変換して第2の中間周波数信
号IF2の基本波成分と3次高調波成分を測定する手段
を具備し、前記3次高調波成分の測定手段により入力減
衰器50の減衰レンジの減衰量を順次変えて基本波成分
3次高調波成分を各々測定する手段を具備し、前記で
得た3次高調波成分の各減衰レンジ毎の値を受けて、3
次高調波成分との差が増加に転ずる減衰レンジを特定
し、これから入力減衰器50の減衰レンジを最適レンジ
に設定する手段を具備し、上記最適レンジ設定に連動し
て中間周波数の可変ゲインアンプ72のゲインを制御し
て測定系全体のゲインを所定の状態にゲイン制御する手
段を具備する構成手段がある。上述手法により、第2の
中間周波数信号IF2の基本波成分と3次高調波成分と
の差が増加に転ずる推移が検出可能となる結果、広帯域
に分布した被測定周波数信号においても入力レベルの最
適化を実現可能としたスペクトラムアナライザが実現で
きる。
FIG. 8 shows a solution according to the spectrum analyzer of the present invention. Fourth, in order to solve the above-described problem, in the configuration of the present invention, the frequency conversion unit receives the signal under measurement 101 of unknown power, attenuates it by the input attenuator 50, and receives the attenuated unknown power attenuated signal 51. 60
To convert the frequency to a predetermined intermediate frequency IF1,
In the spectrum analyzer that measures by filtering with the filter 70, the frequency conversion unit 60 sets the frequency to non-sweep (zero span mode), and converts the frequency to a lower second intermediate frequency signal IF2 by the frequency conversion unit 82 in the modulation analysis unit 80. High-speed AD converter 94 that can receive the signal and process the signal up to the third harmonic component of second intermediate frequency signal IF2
Means for measuring the fundamental wave component and the third harmonic component of the second intermediate frequency signal IF2 by converting the data into digital data by using the third harmonic component, and attenuating the input attenuator 50 by the third harmonic component measuring means. Fundamental wave component by sequentially changing the attenuation of the range
And means for measuring the third harmonic component, respectively, and receives the value of the third harmonic component obtained for each attenuation range, and
Means for specifying an attenuation range in which the difference with the next higher harmonic component is turned to increase, and setting the attenuation range of the input attenuator 50 to the optimum range from the specified attenuation range; There is a configuration unit that includes a unit that controls the gain of 72 and controls the gain of the entire measurement system to a predetermined state. The above method, the fundamental wave component of the second intermediate frequency signal IF2 and the third-order harmonic component
Results progression of difference in the starts to increase can be detected, a spectrum analyzer which enables realizing optimization of input level at the measured frequency signal distributed to a wide band can be realized.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を実施
例と共に図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings together with embodiments.

【0013】(実施例1)本発明実施例について図1の
変調解析装置の構成図を示して説明する。尚、従来構成
に対応する要素は同一符号を付す。本発明では第1段階
では入力減衰器50により減衰された未知電力減衰信号
51を直接測定して減衰レンジを粗調整し、第2段階で
は被測定信号101のパワー測定帯域を含む周波数区間
を周波数変換部60で周波数掃引して電力を測定し、こ
れに基づき最終的に入力減衰器50を最適レンジに設定
制御する。
(Embodiment 1) An embodiment of the present invention will be described with reference to the block diagram of the modulation analyzer shown in FIG. Elements corresponding to the conventional configuration are denoted by the same reference numerals. In the present invention, in the first stage, the unknown power attenuated signal 51 attenuated by the input attenuator 50 is directly measured to roughly adjust the attenuation range, and in the second stage, the frequency section including the power measurement band of the signal under test 101 is divided into frequencies. The frequency is swept by the converter 60 to measure the power, and based on this, the input attenuator 50 is finally set and controlled to the optimum range.

【0014】構成は、図1に示すように従来構成要素に
対して、高周波増幅器20と、検波部25と、切替器8
6とを追加した構成で成る。第1段階の粗調整における
変調解析の測定に先立って、以下に説明する手段により
入力減衰器50の減衰量設定の適正化を行う。このとき
切替器86は検波部25側に切替えておく。
As shown in FIG. 1, a high frequency amplifier 20, a detector 25, a switch 8
6 is added. Prior to the measurement of the modulation analysis in the first stage of the coarse adjustment, the setting of the attenuation of the input attenuator 50 is optimized by means described below. At this time, the switch 86 is switched to the detection unit 25 side.

【0015】高周波増幅器20は、入力減衰器50で減
衰されLPF(ローパスフィルタ)を通過した後の未知
電力減衰信号51を受けて、所定倍率に増幅して出力す
る。検波部25は、これを受けて検波し、検波した直流
電圧信号26dcを切替器86を介してAD変換器90
に供給する。そしてAD変換器90によりデジタル変換
した未知電力データDxを信号処理部98へ供給する。
The high-frequency amplifier 20 receives the unknown power attenuated signal 51 attenuated by the input attenuator 50 and passed through an LPF (low-pass filter), amplifies the signal by a predetermined factor, and outputs the amplified signal. The detection unit 25 receives this, detects it, and converts the detected DC voltage signal 26dc through the switch 86 into the AD converter 90.
To supply. Then, the unknown power data Dx digitally converted by the AD converter 90 is supplied to the signal processing unit 98.

【0016】信号処理部98では、前記未知電力データ
Dxを受けて、予め決めておいた上限レベルデータDlmt
と比較して過大入力状態か否かを判定し、この判定結果
により入力減衰器50の減衰レンジを適正値に切替え制
御する。尚、上記上限レベルデータDlmtは、周波数変
換部60のミキサ回路のばらつきを考慮し、裕度を持た
せた最大許容入力レベルを上限レベルデータDlmtとす
るが、所望により個々の機器毎にミキサ回路の許容入力
レベルを各々求め、これを上限レベルデータDlmtとし
て使用しても良い。
In response to the unknown power data Dx, the signal processing section 98 determines the predetermined upper limit level data Dlmt.
Then, it is determined whether or not the input state is excessive, and the attenuation range of the input attenuator 50 is switched to an appropriate value based on the determination result. The upper limit level data Dlmt is set to the maximum allowable input level with allowance in consideration of the variation of the mixer circuit of the frequency conversion unit 60, and the upper limit level data Dlmt is used. May be obtained and used as the upper limit level data Dlmt.

【0017】上記の減衰レンジの適正化制御において、
第1に、もし測定された未知電力データDxの値が上限
レベルデータDlmtより大きい場合には、過大入力レベ
ルであるから、入力減衰器50の減衰量を増加する方向
に減衰レンジを切替え制御し、この切替えに連動して中
間周波数の可変ゲインアンプ72のゲインを増加させ、
測定系全体のゲインを当初の所定増幅度となるように設
定制御する。第2に、もし未知電力データDxの値が上
限レベルデータDlmtから所定レベル(例えば10d
B)以上低い値の場合には、微少入力レベルであるか
ら、入力減衰器50の減衰量を減少する方向に減衰レン
ジを切替え制御し、この切替えに連動して中間周波数の
可変ゲインアンプ72のゲインを減少させ、測定系全体
のゲインを当初の所定増幅度となるように設定制御す
る。これにより未知電力減衰信号51は適正化される。
In the above-described control for optimizing the attenuation range,
First, if the measured value of the unknown power data Dx is larger than the upper limit level data Dlmt, it is an excessive input level, so that the attenuation range is switched and controlled so as to increase the attenuation of the input attenuator 50. In conjunction with this switching, the gain of the intermediate frequency variable gain amplifier 72 is increased,
The gain of the entire measurement system is set and controlled so as to become the initial predetermined amplification degree. Second, if the value of the unknown power data Dx is higher than the upper limit level data Dlmt by a predetermined level (for example, 10d
B) When the value is lower than this, since the input level is a minute input level, the attenuation range is switched and controlled in a direction in which the attenuation of the input attenuator 50 is reduced, and the intermediate frequency variable gain amplifier 72 is interlocked with this switching. The gain is reduced and the gain of the entire measurement system is set and controlled so as to be the initial predetermined amplification degree. As a result, the unknown power attenuation signal 51 is optimized.

【0018】上述検波部25のみの手段では必ずしも適
正ではない場合がある。この為測定装置の電力測定機能
を利用して第2段階の最適調整を行う。この第2段階の
最適調整は、測定対象とする信号の電力値を測定して最
適調整を実施する。即ち、被測定信号101のパワー測
定帯域を含む周波数区間を周波数変換部60で周波数掃
引して電力を測定し、この電力測定を入力減衰器50の
減衰レンジを上述第1段階の粗調整で得た減衰レンジの
設定状態から増減して減衰レンジを最適レンジに調整制
御する。
There is a case where the above-described means using only the detection unit 25 is not always appropriate. For this reason, the second-stage optimal adjustment is performed using the power measuring function of the measuring device. In the second stage of the optimal adjustment, the optimal adjustment is performed by measuring the power value of the signal to be measured. That is, the frequency section including the power measurement band of the signal under test 101 is frequency-swept by the frequency conversion unit 60 to measure the power, and this power measurement is obtained by the above-described first-step coarse adjustment of the attenuation range of the input attenuator 50. The attenuation range is adjusted to the optimum range by increasing or decreasing from the setting state of the attenuation range.

【0019】具体的には、図10の周波数スペクトラム
からのパワー測定例に示すように、一般的なパワー測定
アプリケーションを用いてこの区間のパワーを積分して
電力を算出する。例えばスペクトラム表示画面上におい
て周波数軸を1分割し、この分割中で、被測定信号1
01の中心周波数fcを5/10の位置にくるように測
定系の中心周波数を制御し、かつ2/10〜8/1
間の位置に被測定信号101の帯域成分が収まるように
掃引スパンを自動制御する。そしてこの区間のパワーを
積分して電力を得る。この電力測定で得た結果から被測
定信号の電力が得られ、上述第1段階による減衰レンジ
をもとに該減衰レンジの設定に連動して中間周波数の可
変ゲインアンプのゲインを制御して測定系全体のゲイン
を所定の状態にすることで歪みを生じない減衰レンジに
最適制御可能となる。この結果、周波数変換歪みが無
く、S/Nが良く、測定精度の良い減衰レンジの自動制
御が可能となる利点が得られる。
Specifically, as shown in an example of power measurement from the frequency spectrum in FIG. 10, power is calculated by integrating power in this section using a general power measurement application. For example the frequency axis 1 0 divide the spectrum display screen, in this division, signal 1 to be measured
01 the center frequency fc to control the center frequency of the measurement system to come to a position of 5/10, and 2/10 to 8/1 0 sweep span as band component of the measured signal 101 falls to the position of the section of the Automatic control. Then, the power in this section is integrated to obtain power. The power of the signal to be measured is obtained from the result obtained in the power measurement, and the gain of the intermediate frequency variable gain amplifier is controlled in accordance with the setting of the attenuation range based on the attenuation range in the first step. By setting the gain of the entire system to a predetermined state, it is possible to optimally control the attenuation range in which distortion does not occur. As a result, there is obtained an advantage that there is no frequency conversion distortion, the S / N is good, and the attenuation range with good measurement accuracy can be automatically controlled.

【0020】上述適正化を実施の後、切替器86を変調
解析側に切替えて本来の変調解析を実施する。尚、この
減衰量設定の適正化実施は、所望により変調解析測定の
合間、あるいは減衰量設定の適正化の実行を起動するキ
ー入力を受けた都度、あるいは随時実行するようにして
も良い。
After the above optimization, the switch 86 is switched to the modulation analysis side to perform the original modulation analysis. The adjustment of the attenuation amount may be appropriately performed between the modulation analysis and the measurement, or whenever a key input for starting the execution of the adjustment of the attenuation amount is received, or as needed.

【0021】上述発明の構成によれば、入力減衰器50
により減衰された未知電力減衰信号51を直接測定して
概略の減衰レンジを特定し、更にパワー測定アプリケー
ションを用いて被測定信号の電力を各々測定し、この結
果をもとに測定系全体のゲインを所定の状態にするた
め、周波数変換部60のミキサ入力端は適正な入力レベ
ルに制御可能となるので、広帯域に分布した被測定周波
数信号においても入力レベルの適正化が的確容易に実現
できることとなる。従って、被測定信号が歪んで変調解
析の誤差要因や電力測定の誤差要因を生じる難点が解消
できる大きな利点が得られる。
According to the configuration of the invention described above, the input attenuator 50
The unknown power attenuation signal 51 attenuated by the above is directly measured to specify the approximate attenuation range, and further, the power of the signal under measurement is measured using the power measurement application, and the gain of the entire measurement system is determined based on the result. To a predetermined state, the input terminal of the mixer of the frequency conversion unit 60 can be controlled to an appropriate input level, so that the input level can be appropriately and easily realized even in a frequency signal to be measured distributed over a wide band. Become. Accordingly, there is obtained a great advantage that a difficulty in which a signal to be measured is distorted and causes error factors in modulation analysis and error factors in power measurement can be eliminated.

【0022】(実施例2)本発明実施例について図3の
変調解析装置の構成図を示して説明する。尚、従来構成
に対応する要素は同一符号を付す。本発明では周波数変
換部60は周波数を非掃引(ゼロスパンモード)として
おき、中間周波数信号IF2の3次高調波成分まで信号
処理可能な高速AD変換器94を用いてデジタルデータ
に変換して第2の中間周波数信号IF2の基本波成分と
3次高調波成分との差を検出測定することで、得られた
前記基本波成分と3次高調波成分との差が増加に転ずる
減衰レンジを特定し、これから入力減衰器50を最適レ
ンジに設定制御する手法である。
(Embodiment 2) An embodiment of the present invention will be described with reference to the block diagram of the modulation analyzer shown in FIG. Elements corresponding to the conventional configuration are denoted by the same reference numerals. In the present invention, the frequency conversion section 60 sets the frequency to non-sweep (zero span mode), converts the frequency to digital data by using a high-speed AD converter 94 capable of processing up to the third harmonic component of the intermediate frequency signal IF2, and converts the data into the second data. By detecting and measuring the difference between the fundamental component and the third harmonic component of the intermediate frequency signal IF2, the attenuation range in which the obtained difference between the fundamental component and the third harmonic component starts to increase is specified. This is a method for setting and controlling the input attenuator 50 to the optimum range.

【0023】構成は、図3に示すように従来構成要素に
対して、変調解析部80内にLPF92と、高速AD変
換器94とを追加した構成で成る。
The configuration is such that an LPF 92 and a high-speed A / D converter 94 are added in a modulation analyzer 80 to the conventional components as shown in FIG.

【0024】実施例1と同様に、変調解析の測定に先立
って、以下に説明する手段により入力減衰器50の減衰
量設定の適正化を行う。但し、予め被測定信号101の
変調解析対象となる基本周波数は得ておく。先ず周波数
変換部60はゼロスパンモードとして周波数を非掃引に
する。この状態で周波数変換部82が出力する中間周波
数信号IF2の基本波成分と3次高調波成分を測定す
る。例えば中間周波数信号IF2を20MHzと仮定す
ると基本波成分は20MHzで3次高調波成分は60M
Hzである。この3次高調波成分を含んだ交流信号を高
速AD変換器94でデジタルデータに変換し、このデー
タをFFT処理して被測定信号101の基本波成分と3
次高調波成分の差を求める。この基本波成分と3次高調
波成分の差の測定処理を入力減衰器50の減衰レンジを
順次切替えて実施する。これらの測定結果を、図6
(b)の3次高調波レベルの推移例に示す。この推移図
ではポイント301が増加に転じ始めていることが判
る。この判定結果により、入力減衰器50の最適設定す
べき減衰レンジはポイント300として容易に求まる。
そしてこの減衰レンジの設定に連動して、実施例1と同
様に中間周波数の可変ゲインアンプ72のゲインを増減
させて、測定系全体のゲインを当初の所定増幅度となる
ように設定制御することは言うまでもない。これにより
周波数変換部60のミキサ回路への入力は最適な入力レ
ベルに設定制御される。
As in the first embodiment, prior to the measurement of the modulation analysis, the attenuation setting of the input attenuator 50 is optimized by means described below. However, the fundamental frequency to be subjected to the modulation analysis of the signal under measurement 101 is obtained in advance. First, the frequency conversion unit 60 sets the frequency to non-sweep in the zero span mode. In this state, the fundamental component and the third harmonic component of the intermediate frequency signal IF2 output from the frequency converter 82 are measured. For example, assuming that the intermediate frequency signal IF2 is 20 MHz, the fundamental component is 20 MHz and the third harmonic component is 60 MHz.
Hz. The AC signal containing the third harmonic component is converted into digital data by the high-speed AD converter 94, and this data is subjected to FFT processing to obtain the fundamental wave component of the signal under measurement 101
Find the difference between the second harmonic components. The measurement process of the difference between the fundamental component and the third harmonic component is performed by sequentially switching the attenuation range of the input attenuator 50. These measurement results are shown in FIG.
The transition example of the third harmonic level in (b) is shown. In this transition diagram, it can be seen that the point 301 has started to increase. From this determination result, the attenuation range to be optimally set by the input attenuator 50 can be easily obtained as the point 300.
In conjunction with the setting of the attenuation range, the gain of the intermediate frequency variable gain amplifier 72 is increased or decreased in the same manner as in the first embodiment, and the gain of the entire measurement system is set and controlled so as to become the initial predetermined amplification. Needless to say. As a result, the input to the mixer circuit of the frequency conversion unit 60 is set and controlled to an optimum input level.

【0025】上述発明の構成によれば、入力減衰器50
の減衰レンジを順次変えて、被測定信号101を周波数
変換した中間周波数信号IF2の基本波成分と3次高調
波成分の差を求め、この基本波成分と3次高調波の差レ
ベルの推移が増加に転じる減衰レンジを特定すること
で、最適な減衰レンジが検出可能となる結果、被測定信
号が歪んで変調解析の誤差要因や電力測定の誤差要因を
生じる難点が解消できる大きな利点が得られる。
According to the configuration of the invention described above, the input attenuator 50
, The difference between the fundamental wave component and the third harmonic component of the intermediate frequency signal IF2 obtained by frequency-converting the signal under test 101 is determined. By specifying the attenuation range that starts to increase, the optimal attenuation range can be detected, and as a result, a significant advantage is obtained in that the signal to be measured is distorted, which can cause errors in modulation analysis and error in power measurement. .

【0026】尚、上述実施例1では、図1に示す変調解
析装置の具体構成例により、入力減衰器50の出力端の
未知電力減衰信号51のレベルを直接測定する構成例と
していたが、所望により図2に示すように、高周波増幅
器20と検波部25と切替器30とによって未知電力減
衰信号51のレベルを直接測定する構成としても良く、
同様にして実施可能である。
In the first embodiment, the level of the unknown power attenuation signal 51 at the output terminal of the input attenuator 50 is directly measured by the specific configuration example of the modulation analyzer shown in FIG. 2, the level of the unknown power attenuated signal 51 may be directly measured by the high-frequency amplifier 20, the detector 25, and the switch 30, as shown in FIG.
It can be implemented in a similar manner.

【0027】尚、上述実施例2では、図3に示す変調解
析装置の具体構成例により、3次高調波成分を測定する
構成例としていたが、所望により図9に示すように、中
間周波数信号における一次レベル信号のみを通過させる
BPF(バンドパスフィルタ)を設けてフィルタし、こ
れを検波してレベルを測定し、更に中間周波数信号にお
ける三次レベル信号のみを通過させるBPF(バンドパ
スフィルタ)を設けてフィルタし、これを検波してレベ
ルを測定し、前記測定を減衰レンジを順次変えて一次レ
ベル信号と三次レベル信号の両者を求め、これから一次
と三次レベルとの差レベルが増加に転ずる減衰レンジが
特定できるので、同様にして入力減衰器50の減衰レン
ジを適正化制御する構成手段としても良い。
In the second embodiment described above, the third harmonic component is measured by the specific configuration example of the modulation analyzer shown in FIG. 3. However, if desired, as shown in FIG. A BPF (Band Pass Filter) that passes only the primary level signal is provided and filtered, the level is detected by detecting this, and a BPF (Band Pass Filter) that passes only the third level signal of the intermediate frequency signal is provided. The filter is then detected and the level is measured by detecting the same. The measurement is sequentially changed in the attenuation range to obtain both the primary level signal and the tertiary level signal, and from this the attenuation range in which the difference level between the primary and tertiary levels starts to increase Can be specified, and similarly, a configuration means for appropriately controlling the attenuation range of the input attenuator 50 may be used.

【0028】尚、上述実施例1の説明では、変調解析装
置に適用した具体例で説明していたが、図4に示すよう
に、高周波増幅器20と検波部25と切替器30を追加
したスペクトラムアナライザの構成とし、同様に入力減
衰器50により減衰された未知電力減衰信号51のレベ
ルを直接測定して減衰レンジを最適化制御することで、
同様にして入力レベルの最適化を実現可能であることは
明白である。
In the above description of the first embodiment, a specific example applied to a modulation analyzer has been described. However, as shown in FIG. 4, a spectrum in which a high-frequency amplifier 20, a detector 25, and a switch 30 are added. The analyzer is configured so that the level of the unknown power attenuated signal 51 similarly attenuated by the input attenuator 50 is directly measured and the attenuation range is optimized and controlled.
It is clear that input level optimization can be achieved in a similar manner.

【0029】尚、上述実施例2においても、変調解析装
置に適用した具体例で説明していたが、図8に示すよう
に、従来のスペクトラムアナライザの構成においても、
周波数変換部82とLPF92と高速AD変換器94を
設けて、上述実施例2の手法である基本波成分と3次高
調波成分との差を順次測定し、得た基本波成分と3次高
調波成分との差から増加に転ずる減衰レンジを特定し
て、入力減衰器50を適正化制御する手法を設けること
により実現可能である。
In the second embodiment, a specific example applied to a modulation analyzer has been described. However, as shown in FIG. 8, even in the configuration of a conventional spectrum analyzer,
The frequency converter 82, the LPF 92, and the high-speed AD converter 94 are provided, and the difference between the fundamental wave component and the third harmonic component, which is the method of the second embodiment, is sequentially measured. This can be realized by providing a method of specifying an attenuation range that starts to increase based on the difference from the wave component and appropriately controlling the input attenuator 50.

【0030】尚、上述実施例1では、図1あるいは図3
に示す変調解析装置の具体構成例で説明していたが、所
望により図7に示すように、両方の制御手段を併用する
構成としても良い。即ち、未知電力減衰信号51を直接
測定し、この測定結果に基づき入力減衰器50と中間周
波数の可変ゲインアンプ72を適正に制御した後、更に
基本波成分と3次高調波を測定して基本波成分と3次高
調波との差が増加に転ずる推移を検出して、最適な入力
減衰器50の設定に制御する両手法を併用する構成であ
る。
In the first embodiment, FIG. 1 or FIG.
Has been described with reference to the specific configuration example of the modulation analyzer shown in FIG. 7, but if desired, as shown in FIG. That is, the unknown power attenuation signal 51 is directly measured, the input attenuator 50 and the intermediate frequency variable gain amplifier 72 are appropriately controlled based on the measurement result, and then the fundamental wave component and the third harmonic are measured. In this configuration, both the methods of detecting a transition in which the difference between the wave component and the third harmonic changes to increase and controlling the input attenuator 50 to the optimal setting are used in combination.

【0031】[0031]

【発明の効果】本発明は、上述の説明内容から、下記に
記載される効果を奏する。第1に、上述実施例1の発明
構成によれば、入力減衰器50により減衰された未知電
力減衰信号51を直接測定して概略の減衰レンジを特定
し、更にパワー測定アプリケーションを用いて被測定信
号の電力を各々測定し、この結果をもとに測定系全体の
ゲインを所定の状態にすることで周波数変換部60のミ
キサ入力端を適正な入力レベルに制御可能となるので、
広帯域に分布した被測定周波数信号においても入力レベ
ルの適正化が的確容易に実現できることとなる。従っ
て、被測定信号が歪んで変調解析の誤差要因や電力測定
の誤差要因を生じる難点が解消できる大きな利点が得ら
れる。また、スペクトラムアナライザの構成の場合も、
同様にして入力レベルの適正化の利点が得られる。
According to the present invention, the following effects can be obtained from the above description. First, according to the configuration of the first embodiment, the unknown power attenuated signal 51 attenuated by the input attenuator 50 is directly measured to specify the approximate attenuation range, and the measured power is measured using the power measurement application. Since the power of the signal is measured and the gain of the entire measurement system is set to a predetermined state based on the result, the mixer input terminal of the frequency conversion unit 60 can be controlled to an appropriate input level.
The input level can be appropriately and easily adjusted even in the frequency signal to be measured distributed over a wide band. Accordingly, there is obtained a great advantage that a difficulty in which a signal to be measured is distorted and causes error factors in modulation analysis and error factors in power measurement can be eliminated. In the case of a spectrum analyzer configuration,
In the same manner, the advantage of optimizing the input level can be obtained.

【0032】第2に、上述実施例2の発明構成によれ
ば、入力減衰器50の減衰レンジを順次変えて、被測定
信号101を周波数変換した中間周波数信号IF2の基
本波成分と3次高調波成分との差を求め、この基本波成
分と3次高調波との差レベルの推移が増加に転じる減衰
レンジを特定することで、最適な減衰レンジが検出可能
となる結果、被測定信号が歪んで変調解析の誤差要因や
電力測定の誤差要因を生じる難点が解消できる大きな利
点が得られる。また、スペクトラムアナライザの構成の
場合も、同様にして入力レベルの適正化の利点が得られ
る。
Secondly, according to the configuration of the second embodiment described above, the attenuation range of the input attenuator 50 is sequentially changed, and the fundamental wave component and the third harmonic of the intermediate frequency signal IF2 obtained by frequency-converting the signal under test 101 are obtained. The difference between the fundamental component and the third harmonic is determined and the attenuation range in which the transition of the difference level starts to increase can be determined. As a result, the optimum attenuation range can be detected. There is obtained a great advantage that it is possible to eliminate the difficulty that distortion causes modulation analysis error factors and power measurement error factors. Also, in the case of the configuration of the spectrum analyzer, the advantage of optimizing the input level can be obtained in the same manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の、変調解析装置の構成例である。FIG. 1 is a configuration example of a modulation analysis device according to the present invention.

【図2】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 2 is another configuration example of the modulation analyzer according to the present invention.

【図3】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 3 is another configuration example of the modulation analysis device according to the present invention.

【図4】 本発明の、スペクトラムアナライザの構成例
である。
FIG. 4 is a configuration example of a spectrum analyzer of the present invention.

【図5】 従来の、変調解析装置の構成例である。FIG. 5 is a configuration example of a conventional modulation analyzer.

【図6】 広帯域に分布する周波数信号例と、基本波と
3次高調波との差のレベルの推移例である。
FIG. 6 shows an example of a frequency signal distributed over a wide band and an example of transition of a difference level between a fundamental wave and a third harmonic.

【図7】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 7 is another configuration example of the modulation analysis device of the present invention.

【図8】 本発明の、スペクトラムアナライザの他の構
成例である。
FIG. 8 is another configuration example of the spectrum analyzer of the present invention.

【図9】 本発明の、変調解析装置の他の構成例であ
る。
FIG. 9 is another configuration example of the modulation analysis device of the present invention.

【図10】 本発明の、周波数スペクトラムからのパワ
ー測定例である。
FIG. 10 is an example of power measurement from a frequency spectrum according to the present invention.

【符号の説明】 20 高周波増幅器 25,76 検波部 30,86 切替器 50 入力減衰器 60,82 周波数変換部 70 IFフィルタ 72,84 可変ゲインアンプ 74 対数変換部 78,90 AD変換器 80 変調解析部 94 高速AD変換器 140 表示装置 98 信号処理部 100 被試験装置 120 表示処理部[Description of Signs] 20 High frequency amplifier 25, 76 Detector 30, 86 Switcher 50 Input attenuator 60, 82 Frequency converter 70 IF filter 72, 84 Variable gain amplifier 74 Logarithmic converter 78, 90 AD converter 80 Modulation analysis Unit 94 high-speed AD converter 140 display device 98 signal processing unit 100 device under test 120 display processing unit

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図10[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図10】 FIG. 10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 未知電力の被測定信号を受けて、入力減
衰器により減衰させ、減衰した未知電力減衰信号を受け
て周波数変換部で所定の中間周波数に周波数変換し、こ
れをIFフィルタによりフィルタし、変調解析部に供給
して変調解析を行う変調解析装置において、 該入力減衰器によって減衰した未知電力減衰信号を受け
て、該信号を増幅し検波して該入力減衰器の出力端にお
ける未知電力レベルを検出する手段と、 第1に該未知電力検出手段で得た電力レベル値が所定上
限値より高い場合は該入力減衰器の減衰量を増加する方
向に減衰レンジを設定制御し、第2に該未知電力検出手
段で得た電力レベル値が所定下限値より低い場合は該入
力減衰器の減衰量を減少する方向に減衰レンジを設定制
御する手段と、 上述で得た減衰レンジ及び前後の減衰レンジにおいて、
被測定信号のパワー測定帯域を含む区間を周波数変換部
で周波数掃引して被測定信号の電力を各々測定算出し、
この測定電力値をもとに最適な減衰レンジに設定制御す
る手段と、 該減衰レンジの設定に連動して中間周波数の可変ゲイン
アンプのゲインを制御して測定系全体のゲインを所定の
状態にゲイン制御する手段と、 以上を具備していることを特徴とした変調解析装置。
An unknown power attenuated signal is received and attenuated by an input attenuator. The attenuated unknown power attenuated signal is received and frequency-converted to a predetermined intermediate frequency by a frequency conversion unit. A modulation analysis device that supplies the signal to a modulation analysis unit to perform modulation analysis, receives the unknown power attenuated signal attenuated by the input attenuator, amplifies and detects the signal, and detects an unknown power at an output terminal of the input attenuator. Means for detecting a power level; first, when the power level value obtained by the unknown power detecting means is higher than a predetermined upper limit value, setting and controlling an attenuation range in a direction to increase an attenuation amount of the input attenuator; (2) means for setting and controlling the attenuation range in a direction to decrease the amount of attenuation of the input attenuator when the power level value obtained by the unknown power detection means is lower than a predetermined lower limit value; In the later attenuation range,
The frequency range of the section including the power measurement band of the signal under measurement is swept by the frequency conversion unit, and the power of the signal under measurement is measured and calculated.
Means for setting and controlling the optimum attenuation range based on the measured power value; and controlling the gain of the intermediate frequency variable gain amplifier in conjunction with the setting of the attenuation range to bring the gain of the entire measurement system into a predetermined state. A modulation analyzer comprising: a means for controlling a gain;
【請求項2】 未知電力の被測定信号を受けて、入力減
衰器により減衰させ、減衰した未知電力減衰信号を受け
て周波数変換部で所定の中間周波数に周波数変換し、こ
れをIFフィルタによりフィルタして測定するスペクト
ラムアナライザにおいて、 該入力減衰器によって減衰した未知電力減衰信号を受け
て、該信号を増幅し検波して該入力減衰器の出力端にお
ける未知電力レベルを検出する手段と、 第1に該未知電力検出手段で得た電力レベル値が所定上
限値より高い場合は該入力減衰器の減衰量を増加する方
向に減衰レンジを適設定制御し、第2に該未知電力検出
手段で得た電力レベル値が所定下限値より低い場合は該
入力減衰器の減衰量を減少する方向に減衰レンジを設定
制御する手段と、 上述で得た減衰レンジ及び前後の減衰レンジにおいて、
被測定信号のパワー測定帯域を含む区間を周波数変換部
で周波数掃引して被測定信号の電力を各々測定算出し、
この測定電力値をもとに最適な減衰レンジに設定制御す
る手段と、 該減衰レンジの設定に連動して中間周波数の可変ゲイン
アンプのゲインを制御して測定系全体のゲインを所定の
状態にゲイン制御する手段と、 以上を具備していることを特徴としたスペクトラムアナ
ライザ。
2. A signal under measurement of unknown power is received and attenuated by an input attenuator. The attenuated unknown power signal is received and frequency-converted to a predetermined intermediate frequency by a frequency conversion unit. Means for receiving an unknown power attenuated signal attenuated by the input attenuator, amplifying and detecting the signal, and detecting an unknown power level at an output terminal of the input attenuator; If the power level value obtained by the unknown power detection means is higher than a predetermined upper limit, the attenuation range is appropriately set and controlled in a direction to increase the attenuation of the input attenuator. Means for setting and controlling the attenuation range in a direction to decrease the amount of attenuation of the input attenuator when the power level value is lower than a predetermined lower limit value; At
The frequency range of the section including the power measurement band of the signal under measurement is swept by the frequency conversion unit, and the power of the signal under measurement is measured and calculated.
Means for setting and controlling the optimum attenuation range based on the measured power value; and controlling the gain of the intermediate frequency variable gain amplifier in conjunction with the setting of the attenuation range to bring the gain of the entire measurement system into a predetermined state. A spectrum analyzer, comprising: means for controlling gain;
【請求項3】 未知電力の被測定信号を受けて、入力減
衰器により減衰させ、減衰した未知電力減衰信号を受け
て周波数変換部で所定の中間周波数に周波数変換し、こ
れをIFフィルタによりフィルタし、変調解析部に供給
して変調解析を行う変調解析装置において、 周波数変換部は周波数を非掃引とし、変調解析部内の周
波数変換部で更に低い第2の中間周波数信号に変換した
信号を受けて、該第2の中間周波数信号の3次高調波成
分まで信号処理可能な高速AD変換器を用いてデジタル
データに変換して該第2の中間周波数信号の3次高調波
成分を測定する手段と、 前記3次高調波成分の測定手段により該入力減衰器の減
衰レンジの減衰量を順次変えて各々3次高調波成分を測
定する手段と、 前記で得た3次高調波成分の各減衰レンジ毎の値を受け
て、3次高調波成分が増加に転ずる減衰レンジを特定
し、これから入力減衰器の減衰レンジを最適レンジに設
定する手段と、 該最適レンジ設定に連動して中間周波数の可変ゲインア
ンプのゲインを制御して測定系全体のゲインを所定の状
態にゲイン制御する手段と、 以上を具備していることを特徴とした変調解析装置。
3. An unknown power attenuated signal is received and attenuated by an input attenuator. The attenuated unknown power attenuated signal is received and frequency-converted to a predetermined intermediate frequency by a frequency conversion unit, which is filtered by an IF filter. In a modulation analysis apparatus for performing modulation analysis by supplying the signal to a modulation analysis unit, the frequency conversion unit sets the frequency to non-sweep and receives a signal converted to a lower second intermediate frequency signal by a frequency conversion unit in the modulation analysis unit. Means for converting the second intermediate frequency signal into digital data using a high-speed AD converter capable of processing up to the third harmonic component of the second intermediate frequency signal and measuring the third harmonic component of the second intermediate frequency signal Means for measuring the third harmonic component by sequentially changing the attenuation of the attenuation range of the input attenuator by the third harmonic component measuring means; and each attenuation of the third harmonic component obtained above. Per range Means for specifying the attenuation range in which the third harmonic component is turned to increase, and setting the attenuation range of the input attenuator to the optimum range from this value. Variable gain of the intermediate frequency in conjunction with the optimum range setting A means for controlling the gain of an amplifier to control the gain of the entire measurement system to a predetermined state, and a modulation analyzer comprising the above.
【請求項4】 未知電力の被測定信号を受けて、入力減
衰器により減衰させ、減衰した未知電力減衰信号を受け
て周波数変換部で所定の中間周波数に周波数変換し、こ
れをIFフィルタによりフィルタして測定するスペクト
ラムアナライザにおいて、 周波数変換部は周波数を非掃引とし、変調解析部内の周
波数変換部で更に低い第2の中間周波数信号に変換した
信号を受けて、該第2の中間周波数信号の3次高調波成
分まで信号処理可能な高速AD変換器を用いてデジタル
データに変換して該第2の中間周波数信号の3次高調波
成分を測定する手段と、 前記3次高調波成分の測定手段により該入力減衰器の減
衰レンジの減衰量を順次変えて3次高調波成分を各々測
定する手段と、 前記で得た3次高調波成分の各減衰レンジ毎の値を受け
て、3次高調波成分が増加に転ずる減衰レンジを特定
し、これから入力減衰器の減衰レンジを最適レンジに設
定する手段と、 該最適レンジ設定に連動して中間周波数の可変ゲインア
ンプのゲインを制御して測定系全体のゲインを所定の状
態にゲイン制御する手段と、 以上を具備していることを特徴としたスペクトラムアナ
ライザ。
4. A signal under measurement of unknown power is received and attenuated by an input attenuator. The attenuated unknown power attenuated signal is received and frequency-converted to a predetermined intermediate frequency by a frequency conversion unit. In the spectrum analyzer for measuring the frequency, the frequency conversion unit sets the frequency to non-sweep, receives the signal converted to a lower second intermediate frequency signal by the frequency conversion unit in the modulation analysis unit, and receives the second intermediate frequency signal. Means for converting the data into digital data using a high-speed AD converter capable of processing signals up to the third harmonic component and measuring the third harmonic component of the second intermediate frequency signal; and measuring the third harmonic component Means for measuring the third harmonic component by sequentially changing the attenuation amount of the attenuation range of the input attenuator, and receiving the value of the third harmonic component obtained for each attenuation range by 3 A means for specifying an attenuation range in which the next harmonic component starts to increase and for setting the attenuation range of the input attenuator to the optimum range, and controlling the gain of the intermediate frequency variable gain amplifier in conjunction with the setting of the optimum range. A spectrum analyzer comprising: a means for controlling the gain of the entire measurement system to a predetermined state;
JP9223474A 1997-08-20 1997-08-20 Modulation analysis device and spectrum analyzer Pending JPH1164405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9223474A JPH1164405A (en) 1997-08-20 1997-08-20 Modulation analysis device and spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9223474A JPH1164405A (en) 1997-08-20 1997-08-20 Modulation analysis device and spectrum analyzer

Publications (1)

Publication Number Publication Date
JPH1164405A true JPH1164405A (en) 1999-03-05

Family

ID=16798713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9223474A Pending JPH1164405A (en) 1997-08-20 1997-08-20 Modulation analysis device and spectrum analyzer

Country Status (1)

Country Link
JP (1) JPH1164405A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214259A (en) * 2001-01-22 2002-07-31 Toyo Commun Equip Co Ltd Frequency analyzer
WO2005073737A1 (en) * 2004-01-29 2005-08-11 Advantest Corporation Measurement device, method, program, and recording medium
JP2007033197A (en) * 2005-07-26 2007-02-08 Sony Corp Method and program for identifying generation source of electromagnetic wave interference signal
JP2010278911A (en) * 2009-05-29 2010-12-09 Sony Corp Signal processing device, signal processing method and reception system
JP2015042960A (en) * 2013-08-26 2015-03-05 横河電機株式会社 Light measuring apparatus
CN107994963A (en) * 2017-12-27 2018-05-04 京信通信系统(中国)有限公司 A kind of power detector extended detection range method and apparatus
JP2019052906A (en) * 2017-09-14 2019-04-04 アンリツ株式会社 Signal analyzer and method for optimizing dynamic range of signal analyzer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214259A (en) * 2001-01-22 2002-07-31 Toyo Commun Equip Co Ltd Frequency analyzer
WO2005073737A1 (en) * 2004-01-29 2005-08-11 Advantest Corporation Measurement device, method, program, and recording medium
KR100809947B1 (en) * 2004-01-29 2008-03-07 가부시키가이샤 아드반테스트 Measurement device, method and recording medium
JP2007033197A (en) * 2005-07-26 2007-02-08 Sony Corp Method and program for identifying generation source of electromagnetic wave interference signal
JP2010278911A (en) * 2009-05-29 2010-12-09 Sony Corp Signal processing device, signal processing method and reception system
EP2257006A3 (en) * 2009-05-29 2015-11-11 Sony Corporation Signal processing device, method and reception system for adjusting a measured power spectrum
JP2015042960A (en) * 2013-08-26 2015-03-05 横河電機株式会社 Light measuring apparatus
JP2019052906A (en) * 2017-09-14 2019-04-04 アンリツ株式会社 Signal analyzer and method for optimizing dynamic range of signal analyzer
CN107994963A (en) * 2017-12-27 2018-05-04 京信通信系统(中国)有限公司 A kind of power detector extended detection range method and apparatus
CN107994963B (en) * 2017-12-27 2023-11-24 京信网络系统股份有限公司 Method and device for expanding detection range of power detector

Similar Documents

Publication Publication Date Title
US6359429B1 (en) Measuring method using a spectrum analyzer
US20070201565A1 (en) Direct conversion rf transceiver for wireless communications
JPH058388B2 (en)
KR100809947B1 (en) Measurement device, method and recording medium
EP0877945B1 (en) A receiver for spectrum analysis
US6611150B1 (en) Leakage detector for use in combination with a signal level meter
US6480006B1 (en) Method for measuring phase noise using a low noise synthesizer
US6496017B2 (en) Measuring antenna signal strength with automatic gain control receiver
JPH1164405A (en) Modulation analysis device and spectrum analyzer
US7443924B2 (en) Residual carrier and side band processing system and method
JP2887394B2 (en) Network analyzer
JP4408967B2 (en) Spectrum analyzer
JPH09257843A (en) Spectrum analyzer
JP2000206165A (en) Device for measuring phase noise of measuring object
JP3190864B2 (en) Selection level measuring device
USH1619H (en) Frequency-modulated monitor hydrophone system
KR101043789B1 (en) Power Detector and Power Detecting Method using Digital Signal Processing, and Recording Media Recording Program for Implementation thereof
JPH05203686A (en) Spectrum analyzer
JP3001508B2 (en) Level measuring device
JP2615516B2 (en) Non-linear distortion factor measuring device
SU1619187A1 (en) Spectrum analyzer
JP2009510432A (en) System and method for automatic range adjustment in a test apparatus
GB2073894A (en) Automatic IM distortion test selector
JPH07321864A (en) Agc circuit for dual mode cellular mobile equipment
JPH0746020A (en) Apparatus and display for indicating receiving status of antenna for receiving satellite broadcast

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530