JPH1144721A - Sensing device - Google Patents

Sensing device

Info

Publication number
JPH1144721A
JPH1144721A JP19990897A JP19990897A JPH1144721A JP H1144721 A JPH1144721 A JP H1144721A JP 19990897 A JP19990897 A JP 19990897A JP 19990897 A JP19990897 A JP 19990897A JP H1144721 A JPH1144721 A JP H1144721A
Authority
JP
Japan
Prior art keywords
light
sensing device
optical
modulators
combining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19990897A
Other languages
Japanese (ja)
Other versions
JP3318706B2 (en
Inventor
Mitsukazu Kondo
充和 近藤
Haruhiko Tsuchiya
治彦 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP19990897A priority Critical patent/JP3318706B2/en
Publication of JPH1144721A publication Critical patent/JPH1144721A/en
Application granted granted Critical
Publication of JP3318706B2 publication Critical patent/JP3318706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sensing device capable of reducing the cost and power consumption and being miniaturized by using a linear polarized light source, and using a normal single-mode optical fiber as a transmission line. SOLUTION: The light emitted from a light source 46 and transmitted on an input side single-mode optical fiber 10 is separated into two perpendicular polarized components by polarizing separator 13. The polarized components are fed to two reflection type light modulators 11, 12 respectively. The AC voltage induced on an antenna 15 is concurrently applied to two light modulators 11, 12. Two polarized components are modulated respectively, and the modulated light is polarization-synthesized and guided to a light detector 47 through an output side single-mode optical fiber 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁波を光信号に
変換して検出するセンシング装置に関する。この種のセ
ンシング装置は、無線通信や放送などに使用される信号
電波を検出でき、またEMC分野で電波の強さや周波数
を検出したり、電磁ノイズを検出することもできるもの
である。
[0001] 1. Field of the Invention [0002] The present invention relates to a sensing device that converts electromagnetic waves into optical signals and detects the signals. This type of sensing device can detect a signal radio wave used for wireless communication and broadcasting, and can also detect the strength and frequency of a radio wave in the EMC field, and can also detect electromagnetic noise.

【0002】[0002]

【従来の技術】情報網の発展に伴い主要な情報伝送媒体
である電波の利用密度が増加し、より高周波域へと広が
っている。通信システムにおいても、高周波化が比較的
容易である光ファイバ伝送路と無線との融合が進んでい
る。
2. Description of the Related Art With the development of information networks, the use density of radio waves, which is a main information transmission medium, has increased, and has spread to higher frequency bands. In a communication system, fusion between an optical fiber transmission line, which is relatively easy to operate at a high frequency, and wireless communication is progressing.

【0003】また、コンピュータなどの情報機器や通信
装置、ロボットなどのFA機器、自動車の制御装置など
多くの電子装置は、外部から到来する電磁波の影響を受
けて誤動作する危険を常に持っている。外来電磁波の対
策を行うには、まず各装置や機器が発生する電磁波を正
確に測定することが重要である。そこで、光変調器にア
ンテナロッドを接続して電磁波を光信号に直接に変換
し、その光信号の強度や周波数などを検出することで電
磁波を測定するできるセンシング装置が開発されてい
る。
Also, many electronic devices such as information devices and communication devices such as computers, FA devices such as robots, and control devices for automobiles always have a risk of malfunctioning due to the influence of electromagnetic waves coming from the outside. In order to take measures against extraneous electromagnetic waves, it is important to accurately measure the electromagnetic waves generated by each device or device. Therefore, a sensing device has been developed that can connect an antenna rod to an optical modulator to directly convert an electromagnetic wave into an optical signal and detect the intensity and frequency of the optical signal to measure the electromagnetic wave.

【0004】図4は、従来のセンシング装置の構成の一
例を示す。図5はそのセンシング装置に用いられる反射
型光変調器の構成を示す。図において矢印付きの破線は
光が伝播される向きを示す(以下同じ)。ニオブ酸リチ
ウム結晶を基板81とし、その上にチタン拡散による入
出射光導波路85、位相シフト光導波路84と反射部8
6からなる反射型の分岐干渉型光導波路と分割構造の変
調電極82が形成されている。アンテナ44で誘起され
た交流電圧は変調電極82に導かれ、位相シフト光導波
路84に印加される。光源46からの光は光ファイバ4
8、光サーキュレータ72、光ファイバ49を通って反
射型光変調器42の入出射光導波路85に入射され、2
つの位相シフト光導波路84にエネルギーが分割され、
反射部86で反射され、再び入出射光導波路85を通っ
て光ファイバ49に出射される。その際、光ファイバ4
9に出射される出射光の強度は位相シフト光導波路84
に印加された交流電圧に応じて変化するので、その強度
の変化を光検出器47で検出することによりアンテナ4
4に印加される電波の強度や周波数、電波に含まれる信
号などを検出することができる。
FIG. 4 shows an example of the configuration of a conventional sensing device. FIG. 5 shows a configuration of a reflection type optical modulator used in the sensing device. In the drawing, a broken line with an arrow indicates a direction in which light is propagated (the same applies hereinafter). A lithium niobate crystal is used as a substrate 81, on which an input / output optical waveguide 85, a phase shift optical waveguide 84 and a reflecting section 8 are formed by titanium diffusion.
6, a reflection type branching interference type optical waveguide 6 and a modulation electrode 82 having a divided structure are formed. The AC voltage induced by the antenna 44 is guided to the modulation electrode 82 and applied to the phase shift optical waveguide 84. The light from the light source 46 is the optical fiber 4
8, through the optical circulator 72 and the optical fiber 49, enter the input / output optical waveguide 85 of the reflection type optical modulator 42, and
Energy is split into two phase-shifted optical waveguides 84,
The light is reflected by the reflecting portion 86 and is again emitted to the optical fiber 49 through the input / output optical waveguide 85. At this time, the optical fiber 4
The intensity of the outgoing light to be output to the phase shift optical waveguide 84
Change in intensity according to the AC voltage applied to the antenna 4.
4 can detect the intensity and frequency of a radio wave applied to the radio wave 4, a signal included in the radio wave, and the like.

【0005】[0005]

【発明が解決しようとする課題】上記従来のセンシング
装置においては、光変調器は一定の偏光成分に対しての
み動作するので光ファイバ48としては偏光保存光ファ
イバを使用する。通常のシングルモード光ファイバを使
用した場合には歪や温度変化などによる偏光状態の変化
が生ずるため、光変調器により変調される光のパワーが
変動するためである。しかし、偏光保存光ファイバは通
常のシングルモード光ファイバに比べて高価である。
In the above-mentioned conventional sensing device, a polarization maintaining optical fiber is used as the optical fiber 48 because the optical modulator operates only for a fixed polarization component. This is because, when a normal single mode optical fiber is used, the polarization state changes due to distortion, temperature change, etc., so that the power of the light modulated by the optical modulator fluctuates. However, polarization-maintaining optical fibers are more expensive than ordinary single-mode optical fibers.

【0006】またアンテナに接続される光変調器から光
源や光検出器を含む端末装置までの距離が離れており光
ファイバ48が長い場合は光源として2つの直線偏光光
源を合成してランダム偏光とし、シングルモード光ファ
イバを伝送路とする構成が特願平7−322938号に
述べられている。しかし、この構成では2つの直線偏光
光源を必要とするため装置が非常に高価になり、かつ消
費電力、形状も大きくなってしまう。
When the distance from the optical modulator connected to the antenna to the terminal device including the light source and the photodetector is long and the optical fiber 48 is long, two linearly polarized light sources are combined as a light source to generate random polarized light. A configuration using a single mode optical fiber as a transmission line is described in Japanese Patent Application No. 7-322938. However, this configuration requires two linearly polarized light sources, so that the device becomes very expensive, and the power consumption and the shape become large.

【0007】本発明の目的は、1つの直線偏光光源を使
用可能でかつ通常のシングルモード光ファイバーを伝送
路とすることにより、低価格化、低消費電力化、小型化
が可能なセンシング装置を提供することにある。
[0007] An object of the present invention is to provide a sensing device which can use one linearly polarized light source and which can use a normal single-mode optical fiber as a transmission line, thereby being able to reduce the cost, the power consumption, and the size. Is to do.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明によるセンシング装置は、電磁波に応じて交
流電圧を誘起するアンテナと、直線偏光を発生する光発
生手段と、前記直線偏光を複数の偏光成分に分離する光
分離手段と、前記交流電圧に応じて前記複数の偏光成分
を夫々変調して複数の変調光を生成する光変調手段と、
前記複数の変調光に応じて装置出力を生成する出力段と
を含むことを特徴とする。
In order to solve the above-mentioned problems, a sensing device according to the present invention comprises an antenna for inducing an alternating voltage in response to an electromagnetic wave, light generating means for generating linearly polarized light, A light separating unit that separates the light into a plurality of polarized light components, and a light modulating unit that modulates the plurality of polarized light components according to the AC voltage to generate a plurality of modulated lights,
An output stage for generating a device output according to the plurality of modulated lights.

【0009】好ましくは、前記出力段は、前記複数の変
調光を合成して合成光を生成する光合成手段と、前記合
成光を検出して前記装置出力を生成する光検出手段とを
含む。
Preferably, the output stage includes a light combining means for combining the plurality of modulated lights to generate a combined light, and a light detecting means for detecting the combined light and generating the output of the device.

【0010】前記光変調手段は前記光分離手段と前記光
合成手段との間に並列接続された複数の光変調器を含
み、前記複数の光変調器は前記複数の偏光成分が夫々入
力されかつ前記交流電圧が同時に印加されるように構成
されるとよい。
The light modulating means includes a plurality of light modulators connected in parallel between the light separating means and the light synthesizing means, wherein the plurality of light modulators receive the plurality of polarized light components respectively, and It is preferable that an AC voltage is applied simultaneously.

【0011】好ましくは、前記交流電圧は前記複数の光
変調器に同期して印加されるように構成される。
Preferably, the AC voltage is applied in synchronization with the plurality of optical modulators.

【0012】好ましくは、前記光分離手段と前記光合成
手段との間の光路は、異なる光変調器を通過するもの間
の光路長の差が長くとも1mである。
Preferably, an optical path between the light separating means and the light synthesizing means has a difference in optical path length between those passing through different optical modulators of at most 1 m.

【0013】好ましくは、前記光分離手段と前記光合成
手段との間の光路は、異なる光変調器を通過するもの間
の光路の損失の差が多くとも3dBである。
Preferably, an optical path between the light separating means and the light synthesizing means has an optical path loss difference of at most 3 dB between those passing through different optical modulators.

【0014】前記光分離手段と前記光合成手段との間の
光路に、異なる光変調器を通過するもの間の光路の損失
の差を多くとも3dBに制限する光減衰器を挿入しても
よい。
[0014] An optical attenuator may be inserted in the optical path between the light separating means and the light combining means to limit the difference in loss of the optical path between those passing through different optical modulators to at most 3 dB.

【0015】前記複数の光変調器の各々は入射光が内部
で反射されて入射端に戻るように構成された反射型光変
調器であり、前記光分離手段及び前記光合成手段は単一
の光分離合成器で構成されてもよい。
Each of the plurality of light modulators is a reflection type light modulator configured so that incident light is internally reflected and returns to the incident end, and the light separating means and the light synthesizing means are a single light modulator. It may be constituted by a separation / synthesizer.

【0016】前記光発生手段及び前記光検出手段の各々
と前記光分離合成器との間に光サーキュレータを挿入し
てもよい。
An optical circulator may be inserted between each of the light generating means and the light detecting means and the light separating / combining device.

【0017】前記光発生手段と前記光サーキュレータと
を入力側シングルモード光ファイバ伝送路で接続し、前
記光検出手段と前記光サーキュレータとを出力側シング
ルモード光ファイバ伝送路で接続してもよい。
The light generating means and the optical circulator may be connected by an input-side single-mode optical fiber transmission line, and the light detecting means and the optical circulator may be connected by an output-side single-mode optical fiber transmission line.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1は本発明の一実施例に係るセンシング
装置の構成を示す。光源46、光検出器47、光サーキ
ュレータ72は図4の従来のセンシング装置と同じであ
る。光サーキュレータ72の出射光を偏光分離器13に
より互いに直交する2つの偏光成分に分離し、2つの反
射型光変調器11、12に夫々入射する。ここで、反射
型光変調器11,12はともに図5に示すものと同一の
構成であり、それぞれの変調電極の端子16および17
はダイポールアンテナ15の出力端子に並列に接続され
ている。
FIG. 1 shows a configuration of a sensing device according to an embodiment of the present invention. The light source 46, the photodetector 47, and the optical circulator 72 are the same as those of the conventional sensing device of FIG. The light emitted from the optical circulator 72 is separated into two polarization components orthogonal to each other by the polarization separator 13, and is incident on the two reflection type optical modulators 11 and 12, respectively. Here, each of the reflection type optical modulators 11 and 12 has the same configuration as that shown in FIG. 5, and terminals 16 and 17 of the respective modulation electrodes.
Are connected in parallel to the output terminal of the dipole antenna 15.

【0020】光源46は光発生手段として働きレーザ光
等の直線偏光を発生する。光源46から出射した直線偏
光はシングルモード光ファイバ10を通過し偏光分離器
13により2つの互いに直交する偏光成分となる。この
とき偏光分離器13は光分離手段として働く。2つの偏
光成分は偏光方向を調整され反射型光変調器11,12
へ入射する。
The light source 46 functions as light generating means and generates linearly polarized light such as laser light. The linearly polarized light emitted from the light source 46 passes through the single mode optical fiber 10 and is converted into two mutually orthogonal polarized light components by the polarization separator 13. At this time, the polarization separator 13 functions as a light separation unit. The polarization directions of the two polarization components are adjusted and the reflection type optical modulators 11 and 12 are adjusted.
Incident on.

【0021】アンテナ15に誘起された交流電圧は同時
に反射型光変調器11,12の電極に印加される。アン
テナ15に誘起された交流電圧に応じて、反射型光変調
器11,12は2つの偏光成分からなる入射光18,1
9を同時に変調してそれぞれ変調光である2つの出射光
20,21を生成する。反射型光変調器11,12は合
せて光変調手段を構成する。
The AC voltage induced in the antenna 15 is simultaneously applied to the electrodes of the reflection type optical modulators 11 and 12. In accordance with the AC voltage induced in the antenna 15, the reflection type optical modulators 11 and 12 cause the incident lights 18 and 1 composed of two polarization components to be incident.
9 are simultaneously modulated to generate two outgoing lights 20 and 21 which are respectively modulated lights. The reflection type optical modulators 11 and 12 together constitute an optical modulation unit.

【0022】さらに出射光20,21は偏光分離器13
により偏光合成される。このとき偏光分離器13は光合
成手段として働く。偏光分離器13は光分離手段として
働いたり光合成手段として働いたりするため、光分離合
成器と見做すこともできる。偏光分離器13により偏光
合成された合成光は光サーキュレータ72に入射し、シ
ングルモード光ファイバ30を経由して光検出器47に
入射する。偏光分離器13からの光の出射の経路におい
て、偏光分離器13、光サーキュレータ72、シングル
モード光ファイバ30、及び光検出器47を纏めてここ
では出力段と呼ぶ。
Further, the outgoing lights 20 and 21 are supplied to the polarization separator 13.
Are polarized and synthesized. At this time, the polarization separator 13 functions as a light combining unit. Since the polarization splitter 13 functions as a light splitting unit or a light synthesizing unit, it can be regarded as a light splitting / synthesizing unit. The combined light polarized and combined by the polarization separator 13 enters the optical circulator 72, and enters the photodetector 47 via the single mode optical fiber 30. In the path of light emission from the polarization separator 13, the polarization separator 13, the optical circulator 72, the single mode optical fiber 30, and the photodetector 47 are collectively referred to as an output stage here.

【0023】なおアンテナ15で受けた信号が同期して
2つの反射型光変調器11,12に印加されるように,
アンテナ15とそれぞれの端子16と17を接続する線
路22,23は互いにほぼ等しい長さに設定されてい
る。また、変調された出射光20と21も同期して合成
されるように,2つの反射型光変調器11,12を通る
光路長は互いにほぼ等しい長さに設定される。ここで変
調周波数が20MHz程度、位相のずれの許容値を1/
10波長以下とすれば光ファイバ長の差は1m以下が要
求される。
Note that the signals received by the antenna 15 are synchronously applied to the two reflection type optical modulators 11 and 12,
The lines 22 and 23 connecting the antenna 15 and the terminals 16 and 17 are set to have substantially the same length. Further, the optical path lengths passing through the two reflective optical modulators 11 and 12 are set to be substantially equal to each other so that the modulated outgoing lights 20 and 21 are also synthesized in synchronization. Here, the modulation frequency is about 20 MHz, and the allowable value of the phase shift is 1 /
If the wavelength is 10 wavelengths or less, the difference in optical fiber length is required to be 1 m or less.

【0024】図1のセンシング装置において、シングル
モード光ファイバ伝送路10の中で歪や温度変化などに
よって偏光状態が変化すると入射光18と19の光パワ
ー比が変化するがその和は一定である。そこで反射型光
変調器11と12の挿入損失が同程度であれば光検出器
47への入射光パワーは一定となる。ここで反射型光変
調器11を通過する光路と反射型光変調器12を通過す
る光路との間で、光路の損失の差を多くとも3dBに設
定する。光変調器11,12の挿入損失の差を補償する
ように光路中に光減衰器を入れて光路の損失の差を多く
とも3dBに調整してもよい。
In the sensing device shown in FIG. 1, when the polarization state changes due to distortion or temperature change in the single-mode optical fiber transmission line 10, the optical power ratio between the incident lights 18 and 19 changes, but the sum is constant. . Therefore, if the insertion loss of the reflection type optical modulators 11 and 12 is almost the same, the power of the light incident on the photodetector 47 is constant. Here, the difference in optical path loss between the optical path passing through the reflective optical modulator 11 and the optical path passing through the reflective optical modulator 12 is set to at most 3 dB. An optical attenuator may be inserted in the optical path so as to compensate for the difference in insertion loss between the optical modulators 11 and 12, and the difference in optical path loss may be adjusted to at most 3 dB.

【0025】以上のように、図1のセンシング装置は1
つの直線偏光光源を使用可能でありかつ通常のシングル
モード光ファイバを伝送路とできるので、低価格化、低
消費電力化、小型化が可能となる。
As described above, the sensing device of FIG.
Since two linearly polarized light sources can be used and a normal single mode optical fiber can be used as a transmission line, cost reduction, power consumption reduction, and size reduction can be achieved.

【0026】図2は本発明の他の実施例に係るセンシン
グ装置を示す。このセンシング装置では光変調器として
通常の透過型光変調器31,32を用いる。このセンシ
ング装置で用い得る透過型光変調器の一例を図3に示
す。入射光導波路51への入射光は2つの位相シフト光
導波路52,53に分かれ、それぞれ変調電極54を通
過し出射光導波路55に合流することにより互いに干渉
して強度変調された光となり出射する。
FIG. 2 shows a sensing device according to another embodiment of the present invention. In this sensing device, ordinary transmission-type light modulators 31 and 32 are used as light modulators. FIG. 3 shows an example of a transmission optical modulator that can be used in this sensing device. Light incident on the incident optical waveguide 51 is split into two phase-shifted optical waveguides 52 and 53, passes through the modulating electrode 54 and merges with the output optical waveguide 55, and interferes with each other to be output as intensity-modulated light.

【0027】また、アンテナ44の出力端において透過
型光変調器31,32の電極との間で受動的な共振回路
33を構成し、特定の周波数領域における上記電極への
印加電圧を大きくし感度を高めている。
Further, a passive resonance circuit 33 is formed between the output terminal of the antenna 44 and the electrodes of the transmission type optical modulators 31 and 32 to increase the voltage applied to the electrodes in a specific frequency range to increase the sensitivity. Is increasing.

【0028】図2において、光源46のレーザ光などの
直線偏光よりなる出射光はシングルモード光ファイバ1
0を通り偏光分離器13により互いに直交する2つの偏
光成分となり透過型光変調器31,32に入射する。透
過型光変調器31,32はアンテナ44に誘起された交
流電圧に応じて2つの偏光成分を夫々変調して複数の変
調光を出射する。2つの光変調器31,32からの出射
光は偏光合成器25により合成されシングルモード光フ
ァイバ30を通り光検出器47に入射する。
In FIG. 2, the outgoing light composed of linearly polarized light, such as laser light from a light source 46, is applied to a single mode optical fiber 1.
The light passes through 0 and becomes two polarization components orthogonal to each other by the polarization separator 13 and enters the transmission type optical modulators 31 and 32. The transmissive light modulators 31 and 32 respectively modulate the two polarization components according to the AC voltage induced by the antenna 44 and emit a plurality of modulated lights. Outgoing lights from the two optical modulators 31 and 32 are combined by the polarization combiner 25 and pass through the single mode optical fiber 30 to enter the photodetector 47.

【0029】このセンシング装置においてもシングルモ
ード光ファイバ10を通過した光の偏光状態によらず光
検出器には一定の光パワーが入射されるので1つの光源
により装置を構成できる。
Also in this sensing device, a constant light power is incident on the photodetector irrespective of the polarization state of the light passing through the single mode optical fiber 10, so that the device can be constituted by one light source.

【0030】なお上述では1つの直線偏光を偏光分離器
13により互いに直交する2つの偏光成分に分離した例
を説明したが、3つ以上の偏光成分に分離しそれに対応
する数の光変調器を使用することでも同様に実施でき
る。
In the above description, an example in which one linearly polarized light is separated into two polarization components orthogonal to each other by the polarization separator 13 has been described. However, three or more polarization components are separated and a corresponding number of optical modulators are used. It can be similarly implemented by using.

【0031】また、図1の実施例において、光分離合成
器として働く偏光分離器13と光サーキュレータ72の
代わりに両機能を合わせもつデバイスを構成し使用して
もよい。
In the embodiment shown in FIG. 1, a device having both functions may be constructed and used in place of the polarization separator 13 and the optical circulator 72 functioning as an optical separator / combiner.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、1つの
直線偏光光源を使用可能でかつ通常のシングルモード光
ファイバを伝送路とすることにより低価格化、低消費電
力化、小型化が可能なセンシング装置が得られる。
As described above, according to the present invention, one linearly polarized light source can be used, and a normal single-mode optical fiber is used as a transmission line to reduce the cost, power consumption, and size. A sensing device capable of performing the above is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るセンシング装置の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of a sensing device according to one embodiment of the present invention.

【図2】本発明の他の実施例に係るセンシング装置の構
成を示す図である。
FIG. 2 is a diagram showing a configuration of a sensing device according to another embodiment of the present invention.

【図3】図2のセンシング装置に用いる透過型光変調器
の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a transmission type optical modulator used in the sensing device of FIG. 2;

【図4】従来のセンシング装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional sensing device.

【図5】図4のセンシング装置に用いる反射型光変調器
の構成を示す図である。
FIG. 5 is a diagram showing a configuration of a reflection type optical modulator used in the sensing device of FIG. 4;

【符号の説明】[Explanation of symbols]

46 光源 47 光検出器 10 入力側シングルモード光ファイバ 11,12,42 反射型光変調器 13 偏光分離器 15,44 アンテナ 25 偏光合成器 30 出力側シングルモード光ファイバ 31,32 透過型光変調器 33 共振回路 72 光サーキュレータ 81 基板 85 入出射光導波路 84,52,53 位相シフト光導波路 82,54 変調電極 Reference Signs List 46 light source 47 photodetector 10 input-side single-mode optical fiber 11, 12, 42 reflection-type optical modulator 13 polarization separator 15, 44 antenna 25 polarization combiner 30 output-side single-mode optical fiber 31, 32 transmission-type optical modulator 33 Resonance circuit 72 Optical circulator 81 Substrate 85 Input / output optical waveguide 84, 52, 53 Phase shift optical waveguide 82, 54 Modulation electrode

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 電磁波に応じて交流電圧を誘起するアン
テナと、直線偏光を発生する光発生手段と、前記直線偏
光を複数の偏光成分に分離する光分離手段と、前記交流
電圧に応じて前記複数の偏光成分を夫々変調して複数の
変調光を生成する光変調手段と、前記複数の変調光に応
じて装置出力を生成する出力段とを含むことを特徴とす
るセンシング装置。
An antenna for inducing an AC voltage in response to an electromagnetic wave; a light generating means for generating linearly polarized light; a light separating means for separating the linearly polarized light into a plurality of polarization components; A sensing device, comprising: a light modulation unit that modulates a plurality of polarization components to generate a plurality of modulated lights; and an output stage that generates a device output according to the plurality of modulated lights.
【請求項2】 前記出力段は、前記複数の変調光を合成
して合成光を生成する光合成手段と、前記合成光を検出
して前記装置出力を生成する光検出手段とを含む請求項
1記載のセンシング装置。
2. The output stage includes: a light combining unit that combines the plurality of modulated lights to generate a combined light; and a light detection unit that detects the combined light and generates the device output. The sensing device as described.
【請求項3】 前記光変調手段は前記光分離手段と前記
光合成手段との間に並列接続された複数の光変調器を含
み、前記複数の光変調器は前記複数の偏光成分が夫々入
力されかつ前記交流電圧が同時に印加されるように構成
されている請求項2記載のセンシング装置。
3. The light modulating means includes a plurality of light modulators connected in parallel between the light separating means and the light combining means, and the plurality of light modulators receive the plurality of polarization components, respectively. The sensing device according to claim 2, wherein the AC voltage is applied simultaneously.
【請求項4】 前記交流電圧は前記複数の光変調器に同
期して印加されるように構成されている請求項3記載の
センシング装置。
4. The sensing device according to claim 3, wherein the AC voltage is applied in synchronization with the plurality of optical modulators.
【請求項5】 前記光分離手段と前記光合成手段との間
の光路は、異なる光変調器を通過するもの間の光路長の
差が長くとも1mである請求項3記載のセンシング装
置。
5. The sensing device according to claim 3, wherein an optical path between the light separating means and the light synthesizing means has an optical path length difference of at most 1 m between those passing through different optical modulators.
【請求項6】 前記光分離手段と前記光合成手段との間
の光路は、異なる光変調器を通過するもの間の光路の損
失の差が多くとも3dBである請求項4記載のセンシン
グ装置。
6. The sensing device according to claim 4, wherein an optical path between the light separating means and the light combining means has a difference in loss of the optical path between those passing through different optical modulators of at most 3 dB.
【請求項7】 前記光分離手段と前記光合成手段との間
の光路に、異なる光変調器を通過するもの間の光路の損
失の差を多くとも3dBに制限する光減衰器を挿入した
請求項3記載のセンシング装置。
7. An optical attenuator for limiting a difference in loss of an optical path between light passing through different optical modulators to at most 3 dB is inserted in an optical path between the light separating means and the light combining means. 3. The sensing device according to 3.
【請求項8】 前記複数の光変調器の各々は入射光が内
部で反射されて入射端に戻るように構成された反射型光
変調器であり、前記光分離手段及び前記光合成手段は単
一の光分離合成器で構成されていることを特徴とする請
求項3−7のいずれかに記載のセンシング装置。
8. Each of the plurality of light modulators is a reflection type light modulator configured so that incident light is internally reflected and returns to an incident end, and the light separating unit and the light combining unit are a single unit. The sensing device according to any one of claims 3 to 7, wherein the sensing device is configured by a light separating / combining device.
【請求項9】 前記光発生手段及び前記光検出手段の各
々と前記光分離合成器との間に光サーキュレータを挿入
した請求項8記載のセンシング装置。
9. The sensing device according to claim 8, wherein an optical circulator is inserted between each of said light generating means and said light detecting means and said light separating / combining device.
【請求項10】 前記光発生手段と前記光サーキュレー
タとを入力側シングルモード光ファイバ伝送路で接続
し、前記光検出手段と前記光サーキュレータとを出力側
シングルモード光ファイバ伝送路で接続した請求項9記
載のセンシング装置。
10. The light generating means and the optical circulator are connected by an input-side single-mode optical fiber transmission line, and the light detecting means and the optical circulator are connected by an output-side single-mode optical fiber transmission line. 9. The sensing device according to 9.
JP19990897A 1997-07-25 1997-07-25 Sensing device Expired - Lifetime JP3318706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19990897A JP3318706B2 (en) 1997-07-25 1997-07-25 Sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19990897A JP3318706B2 (en) 1997-07-25 1997-07-25 Sensing device

Publications (2)

Publication Number Publication Date
JPH1144721A true JPH1144721A (en) 1999-02-16
JP3318706B2 JP3318706B2 (en) 2002-08-26

Family

ID=16415611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19990897A Expired - Lifetime JP3318706B2 (en) 1997-07-25 1997-07-25 Sensing device

Country Status (1)

Country Link
JP (1) JP3318706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578189A (en) * 2019-09-27 2021-03-30 中国科学院物理研究所 Self-driven photoelectric detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578189A (en) * 2019-09-27 2021-03-30 中国科学院物理研究所 Self-driven photoelectric detection system

Also Published As

Publication number Publication date
JP3318706B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
US6262834B1 (en) Wideband single sideband modulation of optical carriers
JPH09162810A (en) Optical transmission/reception antenna system
KR100288443B1 (en) Optical modulator using isolator and optical transmitter comprising it
EP0928079A1 (en) Optical transmitter
US6385217B1 (en) Compact wavelength-independent wavelength-locker for absolute wavelength stability of a laser diode
JP3913547B2 (en) Optical modulator and optical signal and radio signal converter using the same
JP3318706B2 (en) Sensing device
US20070047668A1 (en) Single side band modulator module and single side band modulator device using the same
JP2000097980A (en) Travelling wave type photoelectric field sensor
JP2003307533A (en) Field sensing device and optical transmission system
JPH11167090A (en) Optical modulating device and receiving device
JP2000214199A (en) Sensing apparatus
JP2000249734A (en) Sensing device
JPH0989961A (en) Electric field detecting device
US6587256B2 (en) RF combiner based on cascaded optical phase modulation
EP1160615A2 (en) Electro-optic device for adding/subtracting optical signals
JP3632714B2 (en) Electromagnetic wave receiving system
JP7174423B2 (en) Optical electric field sensor
JPH11160663A (en) Receiver
JP3673611B2 (en) Electric field sensor
JP2004080539A (en) Apparatus and method for passive optical transmission
JP4027875B2 (en) Electric field sensing optical transmission equipment
JP2014215180A (en) Optical transmission device and light source device
JPH11281940A (en) Optical modulator and reception equipment
JP2021110647A (en) Photoelectric field sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020515

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term