JPH11339866A - Photoelectric conversion element and pigment sensitizing solar battery - Google Patents

Photoelectric conversion element and pigment sensitizing solar battery

Info

Publication number
JPH11339866A
JPH11339866A JP10146790A JP14679098A JPH11339866A JP H11339866 A JPH11339866 A JP H11339866A JP 10146790 A JP10146790 A JP 10146790A JP 14679098 A JP14679098 A JP 14679098A JP H11339866 A JPH11339866 A JP H11339866A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
layer
counter electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10146790A
Other languages
Japanese (ja)
Inventor
Yuko Inoue
祐子 井上
Takatsugu Obata
孝嗣 小幡
Reigen Kan
礼元 韓
Tetsuya Yoneda
哲也 米田
Koichi Ui
幸一 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10146790A priority Critical patent/JPH11339866A/en
Publication of JPH11339866A publication Critical patent/JPH11339866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a leakage of an electrode and prevent a short circuit between a working film and a counter electrode by providing a working electrode having a semiconductor film covered with a pigment, the counter electrode arranged to face it, and a solid film made of a polymer porous film pinched between them, and holding the electrolyte in the voids of the solid film. SOLUTION: A working electrode 10 is provided with a light transmitting conductive layer 2 provided on the surface of a glass 1 and a semiconductor layer 3 covered with a pigment on it to form a photo-electrode. A counter electrode 11 is provided with a light transmitting conductive layer 7 carrying platinum 6 on the surface of a glass 8. An electrolyte 4 is filled in the voids of the semiconductor layer 3 and a solid layer 5 made of a polymer porous film. The polymer porous film made of polyethylene can be used for the solid layer 5. A semiconductor adsorbing the pigment is not limited in particular as far as it is generally used as a photoelectric converting material, and titanium oxide or zinc oxide can be used, for example.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換素子に関
し、特に太陽電池などに利用される光電変換素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element, and more particularly to a photoelectric conversion element used for a solar cell or the like.

【0002】[0002]

【従来の技術】光電変換材料とは、光が照射されるとそ
の材料内の原子に束縛されていた電子が光エネルギーに
より自由に動けるようになり、これにより自由電子と自
由電子の抜け孔(正孔)が発生し、これら自由電子と正
孔とが効率良く分離するために、連続的に電気エネルギ
ーを取り出すことができる材料、すなわち、光エネルギ
ーを電気エネルギーに変換することができる材料であ
る。このような光電変換材料は、例えば太陽電池などに
利用されている。
2. Description of the Related Art A photoelectric conversion material is such that, when irradiated with light, electrons bound to atoms in the material can move freely by light energy, whereby free electrons and holes for free electrons ( A material that can continuously extract electric energy, that is, a material that can convert light energy into electric energy in order to generate holes and efficiently separate these free electrons and holes. . Such a photoelectric conversion material is used for, for example, a solar cell.

【0003】有機化合物を用いた太陽電池にはpn接合
型太陽電池、ショットキー接合型太陽電池、色素増感型
太陽電池などがある。そのうち、色素増感型太陽電池は
高変換効率を示すため広く注目されている。色素増感型
太陽電池は、例えば、色素を吸着させた半導体電極及び
対極と、これら電極間に挟持された電解質層から主に構
成されており、半導体電極に光が照射されるとこの電極
側で電子が発生し、発生した電子が電気回路を通って対
極に移動し、対極に移動した電子が電解質中をイオンと
して移動して半導体電極に戻り、これが繰り返されて電
気エネルギーを取り出すことができるものである。
[0003] Solar cells using organic compounds include pn junction type solar cells, Schottky junction type solar cells, and dye-sensitized type solar cells. Among them, dye-sensitized solar cells have been widely noted because of their high conversion efficiency. Dye-sensitized solar cells are mainly composed of, for example, a semiconductor electrode and a counter electrode on which a dye is adsorbed, and an electrolyte layer sandwiched between these electrodes. Then, the generated electrons move to the counter electrode through the electric circuit, and the electrons that have moved to the counter electrode move as ions in the electrolyte and return to the semiconductor electrode, and this can be repeated to extract electric energy. Things.

【0004】この色素増感型太陽電池で用いられている
電解質は主として電解液が用いられている。しかし、電
解液を十分に保持できず、作用電極と対極のすき間から
電解液が漏れ出したり揮発したりしてしまうという問題
がある。また、作用電極と対極が接触し短絡するという
問題がある。
As an electrolyte used in the dye-sensitized solar cell, an electrolyte is mainly used. However, there is a problem that the electrolyte cannot be held sufficiently, and the electrolyte leaks or volatilizes from a gap between the working electrode and the counter electrode. In addition, there is a problem that the working electrode and the counter electrode come into contact with each other to cause a short circuit.

【0005】そこで、電解液の代わりに固体状の電解質
を用いたものも報告されている。例えば特開平7−28
8142号公報には、固体中に酸化還元系を含有してい
るイオン伝導体を用いた太陽電池が記載されている。特
開平8−236165号公報や特開平9−27352号
公報には高分子固体電解質を用いた太陽電池が記載され
ている。また、WO93/20569にも固体電解質を
用いた太陽電池が記載されている。
[0005] In view of the above, there has been reported a method using a solid electrolyte instead of an electrolytic solution. For example, JP-A-7-28
No. 8142 describes a solar cell using an ion conductor containing a redox system in a solid. JP-A-8-236165 and JP-A-9-27352 describe solar cells using a solid polymer electrolyte. WO 93/20569 also describes a solar cell using a solid electrolyte.

【0006】さらに、Solar Energy Materials and Sol
ar Cells,vol.44(1996),p.p.99-117にはアナターゼ型酸
化チタン電極層の上にルチル型酸化チタン層と、黒鉛か
らなる対極とを堆積し、色素を酸化チタンに吸着させた
後に3層を電解液で満たした構造の太陽電池が記載され
ている。
Further, Solar Energy Materials and Sol
ar Cells, vol. 44 (1996), pp99-117, a rutile-type titanium oxide layer and a counter electrode made of graphite were deposited on an anatase-type titanium oxide electrode layer. A solar cell having a structure in which a layer is filled with an electrolyte is described.

【0007】[0007]

【発明が解決しようとする課題】特開平7−28814
2号公報やWO93/20569のように固体状の電解
質を用いると液漏れという問題は解決するものの、特開
平7−288142号公報や特開平8−236165号
公報、特開平9−27352号公報ではイオン伝導体の
伝導度が低いため変換効率が低いという問題がある。ま
た、WO93/20569では作用電極と電解質層の接
触面積が小さいため電子の移動が効率良く行われないた
め変換効率が低いという問題がある。
Problems to be Solved by the Invention
Although the problem of liquid leakage can be solved by using a solid electrolyte as disclosed in Japanese Unexamined Patent Publication No. Hei 9-288352, Japanese Unexamined Patent Publication No. Hei 9-236165, Japanese Unexamined Patent Publication No. There is a problem that conversion efficiency is low due to low conductivity of the ionic conductor. Further, WO93 / 20569 has a problem that the conversion efficiency is low because electrons are not efficiently transferred because the contact area between the working electrode and the electrolyte layer is small.

【0008】さらに、Solar Energy Material and Sola
r Cells,vol.44(1996)p.p.99-117の方法では電極と対極
との間にルチル型酸化チタン層があるので短絡は防げる
ものの、酸化チタンなどの半導体を用いた場合には、電
解液が漏れ出したり揮発したりしてしまうという問題は
解決しておらず、また、ルチル型酸化チタン層が色素を
吸着してしまうので色素吸着効率が悪いという問題があ
る。
Further, Solar Energy Material and Sola
r Cells, vol. 44 (1996) pp99-117, a short circuit can be prevented because there is a rutile type titanium oxide layer between the electrode and the counter electrode, but when a semiconductor such as titanium oxide is used, the electrolytic solution is The problem of leakage or volatilization has not been solved, and the rutile-type titanium oxide layer adsorbs the dye, so that the dye adsorption efficiency is poor.

【0009】本発明は、上記課題に鑑みなされたもので
あり、高い導電率を示し作用電極と電解質層との接触面
積が大きい電解液を用いたまま、電解液を保持して液漏
れを軽減し、さらに作用電極と対極との短絡を防いだこ
とにより優れた光電変換効率を有する光電変換素子と、
この光電変換素子を使用した太陽電池を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a high conductivity and a large contact area between a working electrode and an electrolyte layer. And further, a photoelectric conversion element having excellent photoelectric conversion efficiency by preventing a short circuit between the working electrode and the counter electrode,
An object is to provide a solar cell using the photoelectric conversion element.

【0010】[0010]

【課題を解決するための手段】本発明の光電変換素子
は、色素で被覆された半導体膜を有する作用電極と、前
記作用電極に対向して設けられた対極と、前記作用電極
と前記対極の間に挟持された高分子多孔膜からなる固体
層とを有し、前記固体層の空隙に電解液を保持すること
を特徴とする。また、前記固体層は、導電性を有する高
分子多孔膜であることを特徴とする。また、前記固体層
の平均孔径は0.01〜5μmの範囲であることを特徴
とする。前記固体層の平均空孔率が30〜60%の範囲
であることを特徴とする。また、前記光電変換素子を用
いた色素増感型太陽電池を提供する。
According to the present invention, there is provided a photoelectric conversion element comprising: a working electrode having a semiconductor film coated with a dye; a counter electrode provided to face the working electrode; and a counter electrode provided between the working electrode and the counter electrode. A solid layer made of a polymer porous membrane sandwiched between the solid layers, wherein an electrolyte is held in a void of the solid layer. Further, the solid layer is a polymer porous membrane having conductivity. Further, the average pore diameter of the solid layer is in the range of 0.01 to 5 μm. The average porosity of the solid layer is in the range of 30 to 60%. Further, the present invention provides a dye-sensitized solar cell using the photoelectric conversion element.

【0011】[0011]

【発明の実施の形態】本発明に係る色素増感型太陽電池
の概念を模式的に説明図である図1を用いて構成を説明
する。本発明にかかる色素増感型太陽電池は、作用電極
10と、この作用電極10と対向する対極11と、作用
電極10と対極11の間に挟持された高分子多孔膜から
なる固体層5と、電解液4とから構成される。作用電極
10はガラス1の表面に設けられた光透過性導電層2と
その上に色素で被覆された半導体層3を設けて構成さ
れ、光電極を構成している。対極11はガラス8の表面
に白金6を坦持した光透過性導電層7を設けて構成され
ている。色素で被覆された半導体層3と高分子多孔膜か
らなる固体層5の空隙には、電解液4が充填される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a dye-sensitized solar cell according to the present invention will be described with reference to FIG. The dye-sensitized solar cell according to the present invention includes a working electrode 10, a counter electrode 11 facing the working electrode 10, and a solid layer 5 made of a polymer porous film sandwiched between the working electrode 10 and the counter electrode 11. , Electrolyte 4. The working electrode 10 is configured by providing a light-transmitting conductive layer 2 provided on the surface of glass 1 and a semiconductor layer 3 coated with a dye thereon, thereby forming a photoelectrode. The counter electrode 11 is configured by providing a light transmitting conductive layer 7 carrying platinum 6 on the surface of glass 8. The electrolyte 4 is filled in the gaps between the semiconductor layer 3 covered with the dye and the solid layer 5 composed of the polymer porous film.

【0012】本発明において、作用電極10と対極11
の間に挟持された高分子多孔膜からなる固体層5として
はポリエチレン、ポリプロピレンなどポリオレフィン系
樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロー
ス系などからなる高分子多孔膜などを用いることがで
き、単層でも同種もしくは異種の材料の積層でもよい。
In the present invention, the working electrode 10 and the counter electrode 11
As the solid layer 5 made of a polymer porous film sandwiched between the layers, a polymer porous film made of a polyolefin resin such as polyethylene or polypropylene, a polyamide resin, a polyimide resin, a cellulose resin, or the like can be used. It may be a layer or a laminate of the same or different materials.

【0013】特に光電変換素子として用いるためには、
高分子多孔膜からなる固体層が光に対して強い性質を持
つことが必要である。また、熱に対しても強いほうが好
ましい。光や熱に対して弱いと長期安定性が悪くなる問
題が生じる。また、高分子多孔膜からなる固体層は用い
られている電解液に不溶で、電解液中で形状や性質が変
わらないことが必要である。電解液に溶解したり反応し
たりすると、電解液を保持できなくなったり、電池の形
状が変化する問題が生じる。
Especially for use as a photoelectric conversion element,
It is necessary that the solid layer composed of the polymer porous membrane has a property strong against light. Moreover, it is preferable that it is strong against heat. If it is weak to light or heat, there is a problem that the long-term stability is deteriorated. Further, it is necessary that the solid layer composed of the polymer porous membrane is insoluble in the used electrolyte and does not change its shape or properties in the electrolyte. When dissolved or reacted in the electrolytic solution, there arise problems that the electrolytic solution cannot be held or the shape of the battery changes.

【0014】また、高分子多孔膜からなる固体層5は導
電性を有していてもよい。導電性を有する高分子として
はポリアセチレン、ポリ(D−フェニレン)、ポリピロ
ール、ポリチオフェン、ポリアニリン、などが挙げられ
るがこれらに限定されるものではない。これらの導電性
を有する高分子はドーパントが添加されていてもよい。
Further, the solid layer 5 composed of a polymer porous membrane may have conductivity. Examples of the conductive polymer include polyacetylene, poly (D-phenylene), polypyrrole, polythiophene, and polyaniline, but are not limited thereto. These conductive polymers may have a dopant added thereto.

【0015】本発明の固体層5の平均空孔率は30〜6
0%、好ましくは30〜55%、さらに好ましくは35
〜45%である。平均空孔率が30%未満では電解液の
担持量が少なくなるため、固体層5の電気抵抗が高くな
り電池としての性能が低下する。一方、平均空孔率が6
5%を越えると機械的強度や電解液の保持能力が低下す
る。
The average porosity of the solid layer 5 of the present invention is 30 to 6
0%, preferably 30-55%, more preferably 35%
~ 45%. When the average porosity is less than 30%, the carrying amount of the electrolyte decreases, so that the electric resistance of the solid layer 5 increases and the performance as a battery decreases. On the other hand, when the average porosity is 6
If it exceeds 5%, the mechanical strength and the ability to hold the electrolytic solution decrease.

【0016】また、本発明の固体層5の平均孔径は0.
01〜5μm、好ましくは0.05〜3μm、さらに好
ましくは0.1〜1μmである。平均孔径が0.01μ
m未満ではイオン透過性が低下し、電気抵抗が高くなり
電池としての機能が十分ではない。一方、平均孔径が5
μmを越えると電解液の保持能力が低下する。
The solid layer 5 of the present invention has an average pore size of 0.1.
It is from 0.01 to 5 μm, preferably from 0.05 to 3 μm, more preferably from 0.1 to 1 μm. Average pore size is 0.01μ
If it is less than m, the ion permeability decreases, the electric resistance increases, and the function as a battery is not sufficient. On the other hand, when the average pore size is 5
If it exceeds μm, the ability to hold the electrolytic solution is reduced.

【0017】固体層5の厚さとしては10〜50μmが
好ましく、15〜25μmがさらに好ましい。固体層5
の厚さが10μm未満では機械的強度が十分ではなく、
短絡を起こしやすいという問題も生じる。一方、固体層
5の厚さが50μmを越えると電池1個当たりの固体層
の閉める体積割合が高くなるため、電池容量が低下し好
ましくない。また、電極間の距離が離れるので、電荷の
拡散が悪くなる問題が生じる。
The thickness of the solid layer 5 is preferably 10 to 50 μm, more preferably 15 to 25 μm. Solid layer 5
If the thickness is less than 10 μm, the mechanical strength is not sufficient,
Another problem is that short circuits are likely to occur. On the other hand, if the thickness of the solid layer 5 exceeds 50 μm, the volume ratio of the closed solid layer per battery increases, which is not preferable because the battery capacity decreases. In addition, since the distance between the electrodes is large, there is a problem that the diffusion of the electric charge is deteriorated.

【0018】また、本実施の形態で用いた色素を吸着さ
せた半導体としては、一般に光電変換材料用に使用され
るものであれば特に限定されるものではなく、例えば、
酸化チタン、酸化亜鉛、酸化タングステン、チタン酸バ
リウム、チタン酸ストロンチウム、硫化カドミウム、な
ど公知の半導体の一種または二種以上を用いることがで
きる。なかでも、安定性、安全性の点から酸化チタンが
好ましい。なお、本発明で使用される酸化チタンは、ア
ナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸
化チタン、メタ酸化チタン、オルソ酸化チタンなどの種
々の酸化チタン、あるいは水酸化チタン、含酸化チタン
などのいずれでもよい。
The semiconductor to which the dye used in the present embodiment is adsorbed is not particularly limited as long as it is generally used for a photoelectric conversion material.
One or more known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide can be used. Among them, titanium oxide is preferred from the viewpoint of stability and safety. The titanium oxide used in the present invention includes various titanium oxides such as anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, meta-titanium oxide and ortho-titanium oxide, or titanium hydroxide, titanium-containing titanium oxide and the like. Either may be used.

【0019】半導体層に色素を被覆させる方法として
は、例えば基板上に形成された半導体膜を、色素を溶解
した溶液に浸漬する方法が挙げられる。ここで使用する
ことができる色素は光増感剤として機能する色素が好ま
しく、特に可視光領域および/または赤外光領域に吸収
を持ち、分子中にカルボキシル基、ヒドロキシアルキル
基、ヒドロキシル基、スルホン基、カルボキシアルキル
基、メルカプト基、ホスフィノ基またはホスホニル基な
どの結合基の1種または2種以上を、1つまたは2つ以
上有する有機色素が好ましい。太陽光のうち可視光およ
び/または赤外光を吸収し、励起して電子を発生させる
ことができるとともに、かかる結合基により半導体に強
固に吸着することができるからである。具体的には、メ
タルフリ−フタロシアニン系色素;NK1194、NK
3422(日本感光色素研究所製)などのシアニン系色
素;NK2426、NK2501(日本感光色素研究所
製)などのメロシアニン系色素;ローズベンガル、ロー
ダミンBなどのキサンテン系色素;マラカイトグリー
ン、クリスタルバイオレットなどのトリフェニルメタン
系色素;銅フタロシアニンまたはチタニルフタロシアニ
ンなどの金属フタロシアニン、クロロフィル、ヘミン、
またはルテニウム、オスミウム、鉄、亜鉛を1以上含有
する錯体(特開平1−220380号公報、特公平8−
15097号公報に記載)などの金属錯塩などが挙げら
れる。なかでも分光増感の効果や耐久性に優れているた
め金属錯体が好ましい。
As a method of coating the semiconductor layer with a dye, for example, there is a method of immersing a semiconductor film formed on a substrate in a solution in which the dye is dissolved. The dye that can be used here is preferably a dye that functions as a photosensitizer, and particularly has an absorption in a visible light region and / or an infrared light region and has a carboxyl group, a hydroxyalkyl group, a hydroxyl group, a sulfone in a molecule. Organic dyes having one or more bonding groups such as a group, a carboxyalkyl group, a mercapto group, a phosphino group or a phosphonyl group are preferred. This is because visible light and / or infrared light of sunlight can be absorbed and excited to generate electrons, and the bonding group can firmly adsorb the semiconductor. Specifically, metal-free phthalocyanine dyes; NK1194, NK
Cyanine dyes such as 3422 (manufactured by Japan Photochromic Research Laboratories); merocyanine dyes such as NK2426 and NK2501 (manufactured by Japan Photochromic Research Institute); xanthene dyes such as rose bengal and rhodamine B; malachite green and crystal violet Triphenylmethane dyes; metal phthalocyanines such as copper phthalocyanine or titanyl phthalocyanine, chlorophyll, hemin,
Or a complex containing at least one of ruthenium, osmium, iron, and zinc (Japanese Unexamined Patent Publication No. Hei.
No. 15097) and metal complex salts. Among them, metal complexes are preferred because of their excellent spectral sensitizing effect and durability.

【0020】また、電極として使用する導電膜は特に限
定されるものではないが、例えば、ITO、SnO2
どの透明導電膜が好ましい。これら電極の製造方法及び
膜厚などは適宜選択することができる。
The conductive film used as the electrode is not particularly limited. For example, a transparent conductive film such as ITO and SnO 2 is preferable. The manufacturing method and the film thickness of these electrodes can be appropriately selected.

【0021】電解液4としては、特に限定されるもので
はなく、レドックス系(電荷移動リレー)を含むのが好
ましい。好ましいレドックス系としては、ヨウ素
(I2)/ヨウ素(I3 -)溶液、臭素(Br2)/臭素
(Br3 -)溶液、ヒドロキシ溶液、または未結合電子を
運搬する遷移金属錯体溶液を挙げることができる。電解
液中に存在する電荷移動リレーは電荷を一方の電極から
他方の電極へと運搬する。電荷移動リレーは純粋な仲介
物質として作用し、電池の作動の間には化学的変化を受
けない。本発明の光電変換素子における電解液は半導体
に被覆した色素が不溶性を示すような有機溶剤中に溶解
しているのが好ましい。これは、長期安定性を有すると
いう利点を与える。
The electrolyte 4 is not particularly limited, and preferably contains a redox system (charge transfer relay). Preferred redox systems include iodine (I 2 ) / iodine (I 3 ) solutions, bromine (Br 2 ) / bromine (Br 3 ) solutions, hydroxy solutions, or transition metal complex solutions that carry unbound electrons. be able to. Charge transfer relays present in the electrolyte transport charge from one electrode to the other. Charge transfer relays act as pure mediators and do not undergo chemical changes during battery operation. The electrolyte in the photoelectric conversion element of the present invention is preferably dissolved in an organic solvent in which the dye coated on the semiconductor is insoluble. This offers the advantage of having long-term stability.

【0022】電解液に好ましい溶剤としては、限定的で
はないが、水、アルコール及びその混合物、炭酸プロピ
レン、炭酸エチレンおよびメチルピロリドンのような非
揮発性有機溶剤、非揮発性有機溶剤と例えばアセトニト
リル、エチルアセテートまたはテトラヒドロフランのよ
うな粘性低下剤との混合物などを挙げることができる。
別の溶剤としては、ジメチルスルホキシドまたはジクロ
ロエタンを挙げることができる。混和性であるならば、
上記溶剤の任意の混合内を使用することができる。
Preferred solvents for the electrolyte include, but are not limited to, water, alcohols and mixtures thereof, non-volatile organic solvents such as propylene carbonate, ethylene carbonate and methylpyrrolidone, and non-volatile organic solvents such as acetonitrile, Mixtures with viscosity reducing agents such as ethyl acetate or tetrahydrofuran and the like can be mentioned.
Other solvents can include dimethyl sulfoxide or dichloroethane. If miscible,
Any mixture of the above solvents can be used.

【0023】このような構成を有する太陽電池におい
て、光電変換材料用半導体に吸着した色素に太陽光を照
射すると、色素は可視領域の光を吸収して励起する。こ
の励起によって発生した電子は半導体さらに外部回路を
通って対極11に移動する。対極11に移動した電子は
電解液中の酸化還元系を還元する。一方、半導体に電子
を移動させた色素は酸化体の状態になっている。このよ
うにして電子が流れ、本発明の光電変換素子を用いた太
陽電池を構成することができる。
In a solar cell having such a configuration, when the dye adsorbed on the semiconductor for a photoelectric conversion material is irradiated with sunlight, the dye absorbs light in the visible region to excite it. The electrons generated by the excitation move to the counter electrode 11 through the semiconductor and the external circuit. The electrons transferred to the counter electrode 11 reduce the oxidation-reduction system in the electrolyte. On the other hand, the dye that has transferred electrons to the semiconductor is in an oxidized state. In this manner, electrons flow and a solar cell using the photoelectric conversion element of the present invention can be formed.

【0024】以下に本発明の光電変換素子および太陽電
池の実施例を説明するが、本発明はこれに限定されるも
のではない。 (実施例1)市販の酸化チタン粒子(テイカ株式会社
製、商品名AMT−600、アナターゼ型結晶、平均粗
径20nm、比表面積50m2/g)4.0gとジエチ
レングリコールモノメチルエーテル20mlをガラスビ
ーズを使用し、ペイントシェイカーで6時間分散させ酸
化チタン懸濁液とした。
Hereinafter, embodiments of the photoelectric conversion element and the solar cell of the present invention will be described, but the present invention is not limited thereto. (Example 1) 4.0 g of commercially available titanium oxide particles (manufactured by Teica Co., Ltd., trade name: AMT-600, anatase type crystal, average coarse diameter: 20 nm, specific surface area: 50 m 2 / g) and 20 ml of diethylene glycol monomethyl ether were mixed with glass beads. It was used and dispersed with a paint shaker for 6 hours to obtain a titanium oxide suspension.

【0025】次いで、この酸化チタン懸濁液をドクター
ブレードを用いて、10μm程度の膜厚でガラス板に塗
布し、100℃で30分予備乾燥した後、500℃で4
0分焼成し、膜厚8μm程度の酸化チタン膜を得た。
Next, this titanium oxide suspension is applied to a glass plate having a thickness of about 10 μm using a doctor blade, and is preliminarily dried at 100 ° C. for 30 minutes.
After baking for 0 minutes, a titanium oxide film having a thickness of about 8 μm was obtained.

【0026】さらに、式(1):Further, formula (1):

【0027】[0027]

【化1】 Embedded image

【0028】で表された色素をエタノールに溶解した。
この色素の濃度は2×10-4モル/lであった。
The dye represented by the formula was dissolved in ethanol.
The concentration of this dye was 2 × 10 -4 mol / l.

【0029】続いて、上述で得られた酸化チタン膜を具
備したガラス基板を、上記色素溶液に30分間浸漬し、
光電変換材料用半導体(試料A)を得た。次いで、試料
Aを一方の電極とし、対極として白金を担持した透明導
電性ガラス板を用いた。これら2つの電極の間に厚さ1
5μmのポリエチレン多孔膜を挟持し、電解液を入れ、
この側面を樹脂で封入した後、リード線を取付けて、本
発明の光電変換素子(試料B)を作成した。なお、前記
電解液は、体積比が1:4であるアセトニトリル/炭酸
エチレンの混合溶媒に、テトラプロピルアンモニウムア
イオダイドとヨウ素とを、それぞれの濃度が0.46モ
ル/l、0.06モル/lとなるように溶解したものを
用いた。
Subsequently, the glass substrate provided with the titanium oxide film obtained above was immersed in the dye solution for 30 minutes.
A semiconductor for a photoelectric conversion material (sample A) was obtained. Next, Sample A was used as one electrode, and a transparent conductive glass plate supporting platinum was used as a counter electrode. A thickness of 1 between these two electrodes
A 5 μm polyethylene porous membrane is sandwiched, and an electrolytic solution is put therein.
After encapsulating this side surface with resin, a lead wire was attached, and a photoelectric conversion element (sample B) of the present invention was prepared. The electrolytic solution was prepared by mixing tetrapropylammonium iodide and iodine in a mixed solvent of acetonitrile / ethylene carbonate having a volume ratio of 1: 4 at a concentration of 0.46 mol / l and 0.06 mol / l, respectively. 1 was used.

【0030】得られた試料Bの光電変換素子にソーラー
シュミレーターで100W/m2の強度の光を照射した
ところ、η(変換効率)は1.7%であり、太陽電池と
して有用であることがわかった。この試料Bを1ケ月室
温、大気中、暗下で放置後、ソーラーシュミレーターで
100W/m2の強度の光を照射したところ、η(変換
効率)は1.6%であった。
When the obtained photoelectric conversion element of sample B was irradiated with light having an intensity of 100 W / m 2 by a solar simulator, η (conversion efficiency) was 1.7%, which was useful as a solar cell. all right. After leaving this sample B for one month at room temperature, in the air and in the dark, it was irradiated with light having an intensity of 100 W / m 2 by a solar simulator. As a result, η (conversion efficiency) was 1.6%.

【0031】(比較例1)試料Aを一方の電極とし、対
極として白金を担持した透明導電性ガラス板を用いた。
これら2つの電極の間に実施例1と同様の電解液を入
れ、この側面を樹脂で封入した後、リード線を取付け
て、試料Dを得た。この試料Dにソーラーシュミレータ
ーで100W/m2の強度の光を照射したところ、ηは
1.8%であった。この試料Dを1ケ月室温、大気中、
暗下で放置後、ソーラーシュミレーターで100W/m
2の強度の光を照射したところ、η(変換効率)は0.
3%であった。
Comparative Example 1 Sample A was used as one electrode, and a transparent conductive glass plate carrying platinum was used as a counter electrode.
The same electrolytic solution as in Example 1 was put between these two electrodes, the side surface was sealed with resin, and a lead wire was attached to obtain a sample D. When this sample D was irradiated with light having an intensity of 100 W / m 2 by a solar simulator, η was 1.8%. This sample D was stored at room temperature for one month in air.
After standing in the dark, use a solar simulator at 100 W / m
Irradiation of light having an intensity of 2 resulted in η (conversion efficiency) of 0.3.
3%.

【0032】実施例1および比較例1から明らかなよう
に、作用電極と対極の間に挟持された高分子多孔膜から
なる固体層を設けると、長期間安定した光電変換効率を
示す光電変換素子を得られる。
As is clear from Example 1 and Comparative Example 1, when a solid layer composed of a polymer porous membrane sandwiched between a working electrode and a counter electrode is provided, a photoelectric conversion element exhibiting long-term stable photoelectric conversion efficiency is provided. Can be obtained.

【0033】(実施例2)実施例1においてポリエチレ
ン多孔膜を導電性を有するヨウ素を添加したポリアセチ
レン多孔膜にした以外は実施例1と同様にして本発明の
光電変換素子(試料E)を作成した。得られた試料Eの
光電変換素子にソーラーシュミレーターで100W/m
2の強度の光を照射したところ、η(変換効率)は2.
1%であり、太陽電池として有用であることがわかっ
た。この試料Eを1ケ月間室温、大気中、暗下で放置
後、ソーラーシュミレーターで100W/m2の強度の
光を照射したところ、η(変換効率)は1.8%であっ
た。
Example 2 A photoelectric conversion device (sample E) of the present invention was prepared in the same manner as in Example 1 except that the porous polyethylene film was replaced with a porous polyacetylene film to which iodine having conductivity was added. did. 100 W / m of the obtained photoelectric conversion element of sample E was measured with a solar simulator.
Irradiation with light of intensity 2 resulted in η (conversion efficiency) of 2.
1%, which proved to be useful as a solar cell. After leaving this sample E for one month at room temperature, in the air, and in the dark, it was irradiated with light having an intensity of 100 W / m 2 by a solar simulator. As a result, η (conversion efficiency) was 1.8%.

【0034】実施例2および実施例1より明らかなよう
に、作用電極と対極の間に挟持された導電性を有する高
分子多孔膜からなる固体層を設けると、光電変換効率が
向上し、長期間安定した光電変換効率を示す光電変換素
子を得られることがわかった。
As is clear from Examples 2 and 1, when a solid layer made of a conductive polymer porous membrane sandwiched between the working electrode and the counter electrode is provided, the photoelectric conversion efficiency is improved, It was found that a photoelectric conversion element exhibiting photoelectric conversion efficiency that was stable for a period could be obtained.

【0035】上述のようにして得られた光電変換素子
は、本実施の形態で説明したような太陽電池に限らず、
光スイッチング装置、センサなどの光電変換装置に好適
に使用することができる。
The photoelectric conversion element obtained as described above is not limited to the solar cell described in the present embodiment,
It can be suitably used for photoelectric conversion devices such as optical switching devices and sensors.

【0036】[0036]

【発明の効果】本発明によれば、高分子多孔膜によって
電解液が洩れ出したり揮発したりすることが減少し、電
解液を十分保持することができ、さらに短絡を防ぐこと
ができ、長期間安定した光電変換効率を示す光電変換素
子を得ることが可能となる。また、高分子多孔膜は色素
吸着後に電極間に挟持されるので、色素吸着を妨げな
い。
According to the present invention, leakage and volatilization of the electrolytic solution by the polymer porous membrane are reduced, the electrolytic solution can be sufficiently retained, and short-circuit can be prevented. It is possible to obtain a photoelectric conversion element exhibiting photoelectric conversion efficiency that is stable for a period. In addition, since the polymer porous membrane is sandwiched between the electrodes after dye adsorption, it does not hinder dye adsorption.

【0037】さらに導電性を有する高分子多孔膜を用い
ると電解液だけではなく高分子多孔膜を通って電子が移
動するので、変換効率が向上する。
Further, when a conductive polymer porous membrane is used, electrons move not only through the electrolytic solution but also through the polymer porous membrane, so that the conversion efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換素子の層構成を模式的に示し
た断面図である。
FIG. 1 is a cross-sectional view schematically showing a layer configuration of a photoelectric conversion element of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス 2 光透過性導電層 3 色素で被覆された半導体層 4 電解液 5 高分子多孔膜からなる固体層 6 白金 7 光透過性導電層 8 ガラス 10 作用電極 11 対極 DESCRIPTION OF SYMBOLS 1 Glass 2 Light-transmitting conductive layer 3 Dye-coated semiconductor layer 4 Electrolyte 5 Solid layer made of polymer porous film 6 Platinum 7 Light-transmitting conductive layer 8 Glass 10 Working electrode 11 Counter electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 哲也 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 宇井 幸一 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuya Yoneda 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Koichi Ui 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 色素で被覆された半導体膜を有する作用
電極と、前記作用電極に対向して設けられた対極と、前
記作用電極と前記対極の間に挟持された高分子多孔膜か
らなる固体層とを有し、前記固体層の空隙に電解液を保
持することを特徴とする光電変換素子。
1. A solid body comprising a working electrode having a semiconductor film coated with a dye, a counter electrode provided opposite to the working electrode, and a polymer porous film sandwiched between the working electrode and the counter electrode. And an electrolyte solution is held in the voids of the solid layer.
【請求項2】 前記固体層は、導電性を有する高分子多
孔膜であることを特徴とする請求項1に記載の光電変換
素子。
2. The photoelectric conversion device according to claim 1, wherein the solid layer is a polymer porous film having conductivity.
【請求項3】 前記固体層の平均孔径が0.01〜5μ
mの範囲であることを特徴とする請求項1又は2に記載
の光電変換素子。
3. The solid layer has an average pore size of 0.01 to 5 μm.
The photoelectric conversion device according to claim 1, wherein the range is m.
【請求項4】 前記固体層の平均空孔率が30〜60%
の範囲であることを特徴とする請求項1乃至3のいずれ
かに記載の光電変換素子。
4. The solid layer has an average porosity of 30 to 60%.
The photoelectric conversion device according to claim 1, wherein:
【請求項5】 前記請求項1乃至4のいずれかに記載の
光電変換素子を用いた色素増感型太陽電池。
5. A dye-sensitized solar cell using the photoelectric conversion element according to claim 1.
JP10146790A 1998-05-28 1998-05-28 Photoelectric conversion element and pigment sensitizing solar battery Pending JPH11339866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146790A JPH11339866A (en) 1998-05-28 1998-05-28 Photoelectric conversion element and pigment sensitizing solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146790A JPH11339866A (en) 1998-05-28 1998-05-28 Photoelectric conversion element and pigment sensitizing solar battery

Publications (1)

Publication Number Publication Date
JPH11339866A true JPH11339866A (en) 1999-12-10

Family

ID=15415606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146790A Pending JPH11339866A (en) 1998-05-28 1998-05-28 Photoelectric conversion element and pigment sensitizing solar battery

Country Status (1)

Country Link
JP (1) JPH11339866A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053355A (en) * 1999-08-06 2001-02-23 Sharp Corp Optielectronic transducer, manufacture thereof and solar cell
WO2001048833A1 (en) * 1999-12-27 2001-07-05 Seiko Epson Corporation Solar cell and solar cell unit
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
JP2002110262A (en) * 2000-10-03 2002-04-12 Nippon Kayaku Co Ltd Photoelectric transducer element using hydrous electrolyte
JP2004247158A (en) * 2003-02-13 2004-09-02 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell
JP2006269168A (en) * 2005-03-23 2006-10-05 Kyocera Corp Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2008243618A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Photoelectric conversion element
DE112006002294T5 (en) 2005-09-02 2008-10-30 Kyocera Corp. A photoelectric conversion device and a method of manufacturing the same, and a photoelectric power generation device
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2267831A1 (en) * 2008-04-08 2010-12-29 Sharp Corporation Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2012070562A1 (en) * 2010-11-24 2012-05-31 シャープ株式会社 Photoelectric transducer and production method therefor
JP2013020830A (en) * 2011-07-12 2013-01-31 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053355A (en) * 1999-08-06 2001-02-23 Sharp Corp Optielectronic transducer, manufacture thereof and solar cell
WO2001048833A1 (en) * 1999-12-27 2001-07-05 Seiko Epson Corporation Solar cell and solar cell unit
USRE39445E1 (en) 1999-12-27 2006-12-26 Seiko Epson Corporation Solar cell and solar cell unit
JP4613468B2 (en) * 1999-12-27 2011-01-19 セイコーエプソン株式会社 Solar cell and solar cell unit
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
JP2002110262A (en) * 2000-10-03 2002-04-12 Nippon Kayaku Co Ltd Photoelectric transducer element using hydrous electrolyte
JP4493921B2 (en) * 2003-02-13 2010-06-30 株式会社豊田中央研究所 Dye-sensitized solar cell
JP2004247158A (en) * 2003-02-13 2004-09-02 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell
JP2006269168A (en) * 2005-03-23 2006-10-05 Kyocera Corp Photoelectric conversion device, its manufacturing method, and optical power generation device
DE112006002294T5 (en) 2005-09-02 2008-10-30 Kyocera Corp. A photoelectric conversion device and a method of manufacturing the same, and a photoelectric power generation device
JP2008243618A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Photoelectric conversion element
EP2267831A1 (en) * 2008-04-08 2010-12-29 Sharp Corporation Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
CN101983454A (en) * 2008-04-08 2011-03-02 夏普株式会社 Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
US9076598B2 (en) 2008-04-08 2015-07-07 Sharp Corporation Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
EP2267831A4 (en) * 2008-04-08 2011-08-03 Sharp Kk Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2012070562A1 (en) * 2010-11-24 2012-05-31 シャープ株式会社 Photoelectric transducer and production method therefor
JP5956929B2 (en) * 2010-11-24 2016-07-27 シャープ株式会社 Photoelectric conversion element and manufacturing method thereof
JP2013020830A (en) * 2011-07-12 2013-01-31 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
JP3579078B2 (en) Semiconductors for photoelectric conversion materials
JP4415448B2 (en) Photoelectric conversion element
JP4415481B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JPH11339866A (en) Photoelectric conversion element and pigment sensitizing solar battery
WO2006013830A1 (en) Photoelectrode, dye sensitizing solar cell using the same, and dye sensitizing solar cell module
JP4448478B2 (en) Dye-sensitized solar cell module
JP2004152613A (en) Dye-sensitized solar cell
JP2002222971A (en) Photoelectric converter
CN112955992B (en) Dye sensitized photovoltaic cell
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP4479108B2 (en) Photoelectric conversion element
JP4507914B2 (en) Photoelectric conversion device
JP2008027860A (en) Photoelectric conversion element
JP2004235011A (en) Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
CA2879197C (en) Photoelectric conversion layer composition and photoelectric conversion element
JPH10290018A (en) Semiconductor for photoelectric conversion material and chemical cell using thereof
JP2002237611A (en) Photoelectric conversion element
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2007179822A (en) Electrode and dye-sensitized solar cell using it for counter electrode
JP2005268107A (en) Dye-sensitized solar cell and its manufacturing method
JP4776182B2 (en) Dye-sensitized solar cell
JP4559065B2 (en) Photoelectric conversion element structure
JP4455868B2 (en) Dye-sensitized solar cell
JPH11102734A (en) Semiconductor of photoelectric conversion material, its manufacture and solar cell