JP2004152613A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2004152613A
JP2004152613A JP2002316356A JP2002316356A JP2004152613A JP 2004152613 A JP2004152613 A JP 2004152613A JP 2002316356 A JP2002316356 A JP 2002316356A JP 2002316356 A JP2002316356 A JP 2002316356A JP 2004152613 A JP2004152613 A JP 2004152613A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316356A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takeda
康彦 竹田
Kazuo Higuchi
和夫 樋口
Akihiro Takechi
晃洋 武市
Naohiko Kato
直彦 加藤
Tatsuo Toyoda
竜生 豊田
Junji Nakajima
淳二 中島
Tomoyuki Toyama
智之 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP2002316356A priority Critical patent/JP2004152613A/en
Publication of JP2004152613A publication Critical patent/JP2004152613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell by which high photoelectric conversion ability can be obtained in the initial period and which excels in durability obtaining sufficient photoelectric conversion efficiency, even when operated over a long period of time or when operated after being stored for a long period of time. <P>SOLUTION: The dye-sensitized solar cell 20 is provided with a photoelectric electrode 10 provided with a semi-conductive electrode 2 with a light receiving surface F2, a transparent electrode 1 installed adjacent to it on the light receiving surface F2, and a counter electrode CE. A structure where the semi-conductive electrode 2 and the counter electrode CE are installed in face to face with each other through electrolyte E is provided. Furthermore, at least zinc iodide is contained in the electrolyte E. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は色素増感型太陽電池に関する。
【0002】
【従来の技術】
近年、地球温暖化やエネルギー問題に対する関心の高まりとともに太陽電池の様々な開発が進められている。その太陽電池の中でも、色素増感型太陽電池はグレッツェルらにより提案されて以来、使用する材料が安価であること、比較的シンプルなプロセスで製造できること等の利点からその実用化が期待されている。
【0003】
また、このような色素増感型太陽電池においては、変換効率(電池特性)の向上を図る一方で、電池寿命を実用レベルにまで向上させることが実用化に向けた重要な課題となっている。すなわち、色素増感型太陽電池の長期使用による変換効率の低下を抑制し、優れた変換効率を長期にわたり持続する耐久性を得ることである。
【0004】
従来の色素増感型太陽電池では、I /Iからなる酸化還元対を含む電解質(例えば、電解質溶液)を調製する際に、ヨウ化リチウムを添加すると光電流が増加し、光電変換効率が向上することが知られている(例えば、特開2001−52766号公報)。
【0005】
電解液中においてヨウ化リチウムから生じるリチウムカチオンは、例えば、負に帯電した半導体電極(光電極)の表面に引き寄せられた際に、その正電荷により半導体電極表面のフェルミ準位を下げる働き(より正の電位の側にシフトさせる働き)があると考えられている。これにより、半導体電極表面のフェルミ準位と増感色素の励起準位との電位差が拡げられ、その結果、色素から酸化物半導体への電子移動が速やかに進行するようになり、光電流が増加すると考えられている。
【0006】
また、色素増感型太陽電池において、色素は光を捕捉する役割があり、色素の劣化を防止することが電池寿命を伸ばし、光電変換効率を長期にわたって安定的に得るためには重要であると考えられている。
【0007】
【特許文献1】
特開2001−52766号公報
【0008】
【発明が解決しようとする課題】
しかしながら、本発明者らは、電解質を調製する際にヨウ化リチウムを添加した色素増感型太陽電池においては、電池を長期にわたり作動させた場合の光電変換効率の経時的な低下が著しく、作動耐久性において未だ不充分であることを見出した。また、電池を長期にわたり保存した後に起動させた場合の光電変換効率が充分ではなく、保存耐久性においても未だ不充分であることを見出した。
【0009】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電池製造後の初期において高い光電変換効率を得ることができ、しかも長期にわたって作動させた場合、又は長期にわたって保存した後に作動させた場合であっても、充分な光電変換効率を得ることができる耐久性に優れた色素増感型太陽電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ヨウ化亜鉛を電解質に添加することにより、初期において高い光電変換効率を得ることができ、しかも長期にわたって作動させた場合、又は長期にわたって保存した後に作動させた場合であっても、充分な光電変換効率を維持することができる耐久性に優れた色素増感型太陽電池ができることを見出し、本発明に到達した。
【0011】
すなわち、本発明の色素増感型太陽電池は、受光面を有する半導体電極と当該受光面上に隣接して配置された透明電極とを有する光電極と、対極とを有しており、半導体電極と対極とが電解質を介して対向配置された色素増感型太陽電池であって、電解質には、ヨウ化亜鉛(ZnI)が少なくとも含有されていること、を特徴とするものである。
【0012】
本発明によれば、ヨウ化リチウムの代わりにヨウ化亜鉛を電解質中に含有させることにより、初期において高い光電変換効率を得ることができ、しかも長期にわたって作動させた場合、又は長期にわたって保存した後に作動させた場合であっても、初期に得られる光電変換効率の低下が充分に防止され、充分な光電変換効率を維持することができる耐久性に優れた色素増感型太陽電池を容易に構成することができる。
【0013】
上述のように、ヨウ化亜鉛を電解質(例えば、電解液)中に含有させることにより、色素の劣化が十分に防止される理由については明確には解明されていない。しかしながら、本発明者らは、リチウムカチオンに比べて亜鉛カチオン(Zn2+)は、色素又は電解質の構成成分の分解反応(特に、色素増感型太陽電池の寿命に大きく影響するとされている色素の分解反応)に対する反応活性が低いためである、と考えている。
【0014】
すなわち、本発明者らは、亜鉛カチオンはリチウムカチオンと比較すると有機化合物との反応性が低いことから、電解質中の色素又は他の電解質構成成分との反応性も低い、と考えている。
【0015】
従って、本発明者らは、亜鉛カチオンがリチウムカチオンに比べて色素を劣化させる能力が低いと考えられることから、初期において高い光電変換効率を得ることができ、しかも長期にわたって作動させた場合、又は長期にわたって保存した後に作動させた場合であっても、初期に得られる光電変換効率の低下が充分に防止され、充分な光電変換効率を維持することができる耐久性に優れた色素増感型太陽電池を得ることができたと考えている。
【0016】
これに対して、本発明者らは、従来の色素増感型太陽電池の電解液中に添加されていたヨウ化リチウムから生じるリチウムカチオン(Li)は、例えば、アルキル化合物及びアリール化合物などの有機化合物との反応性が高いことが知られており、電解液中の金属錯体色素及び有機色素などの色素又は他の化合物と反応することにより、先に述べた問題の大きな要因の1つになっていると考えている。
【0017】
また、本発明の色素増感型太陽電池は、半導体電極と対極との間に絶縁性の多孔体材料からなる多孔体層が更に配置されており、当該多孔体層中に電解質が含有されていること、を特徴としていてもよい。
【0018】
上記本発明の色素増感型太陽電池は、電解質中におけるヨウ化亜鉛の濃度が5〜100mmol/Lであること、が好ましい。
【0019】
ここで、本発明において、「色素」とは、金属錯体色素及び有機色素を示す。また、「電解質」とは、電解質溶液(以下、必要に応じて「電解液」という)、電解質溶液にゲル化剤を添加してゲル化したもの、及び、固体電解質を示す。
【0020】
【発明の実施の形態】
以下、図面を参照しながら本発明の光電極及び色素増感型太陽電池の好適な実施形態について詳細に説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。
【0021】
[第1実施形態]
図1は、本発明の色素増感型太陽電池の第1実施形態の基本構成を示す模式断面図である。
【0022】
図1に示す色素増感型太陽電池20は、主として、光電極10と、対極CEと、スペーサSにより光電極10と対極CEとの間に形成される間隙に充填された電解液Eと、から構成されている。また、図1に示す光電極10は、主として、受光面F2を有する半導体電極2と、当該半導体電極2の受光面F2上に隣接して配置された透明電極1と、から構成されている。そして、半導体電極2は、受光面F2と反対側の裏面F22において電解液Eと接触している。
【0023】
この色素増感型太陽電池20は、透明電極1を透過して半導体電極2に照射される光L10によって、半導体電極2内に吸着されている増感色素が励起され、この増感色素から半導体電極2へ電子が注入される。そして、半導体電極2において注入された電子は、透明電極1に集められて外部に取り出される。
【0024】
透明電極1の構成は特に限定されるものではなく、通常の色素増感型太陽電池に搭載される透明電極を使用できる。例えば、図1に示す透明電極1は、ガラス基板等の透明基板4の半導体電極2の側にいわゆる透明導電膜3をコートした構成を有する。この透明導電膜3としては、液晶パネル等に用いられる透明電極を用いればよい。
【0025】
例えば、フッ素ドープSnOコートガラス、ITOコートガラス、ZnO:Alコートガラス、アンチモンドープ酸化スズ(SnO−Sb)、等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものでもよい。
【0026】
透明基板4としては、液晶パネル等に用いられる透明基板を用いてよい。具体的には透明なガラス基板、ガラス基板表面を適当に荒らすなどして光の反射を防止したもの、すりガラス状の半透明のガラス基板など光を透過するものが透明基板材料として挙げられる。なお、光を透過するものであれば材質はガラスでなくてもよく、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などでもよい。
【0027】
図1に示す半導体電極2は、酸化物半導体粒子を構成材料とする酸化物半導体層からなる。半導体電極2に含有される酸化物半導体粒子は特に限定されるものではなく、公知の酸化物半導体等を使用することができる。酸化物半導体としては、例えば、TiO,ZnO,SnO,Nb,In,WO,ZrO,La,Ta,SrTiO,BaTiO等を用いることができる。これらの酸化物半導体の中でもアナターゼ型TiOが好ましい。
【0028】
また、半導体電極2に含有される増感色素は、可視光領域および/または赤外光領域に吸収を持つ色素であれば特に限定されるものではない。より好ましくは、少なくとも200nm〜2μmの波長の光により励起されて電子を放出するものであればよい。このような増感色素としては、金属錯体や有機色素等を用いることができる。
【0029】
金属錯体としては銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィルまたはその誘導体、ヘミン、ルテニウム、オスミウム、鉄及び亜鉛の錯体(例えば、シス−ジシアネート−N,N’−ビス(2、2’−ビピリジル−4、4’−ジカルボキシレート)ルテニウム(II))等が挙げられる。有機色素としては,メタルフリーフタロシアニン,シアニン系色素,メロシアニン系色素,キサンテン系色素,トリフェニルメタン系色素等を用いることができる。
【0030】
また、対極CEは、電解質中の酸化還元対(例えば、I /I等)に高効率で電子を渡すことができる材料から構成されるものであれば特に限定されるものではなく、例えば、シリコン太陽電池、液晶パネル等に通常用いられている対極と同じものを用いることが可能である。例えば、前述の透明電極1と同じ構成を有するものであってもよく、透明電極1と同様の透明導電膜3上にPt等の金属薄膜電極を形成し、金属薄膜電極を電解液Eの側に向けて配置させるものであってもよい。また、透明電極1の透明導電膜3に白金を少量付着させたものであってもよく、白金などの金属薄膜、炭素などの導電性膜などであってもよい。
【0031】
更に、電解液Eは、先に述べたヨウ化亜鉛を少なくとも含み、かつ、光励起され半導体への電子注入を果した後の色素を還元するための酸化還元種を含んでいれば特に限定されず、例えば、液状の電解質であってもよく、これに公知のゲル化剤(高分子或いは低分子のゲル化剤)を添加して得られるゲル状の電解質であってもよい。
【0032】
また、電解液Eに使用される溶媒としては、溶質成分を溶解できる化合物であれば特に制限はないが、電気化学的に不活性で、比誘電率が高くかつ粘度が低い溶媒(およびこれらの混合溶媒)が好ましく、例えば,メトキシアセトニトリル、メトキシプロピオニトリルやアセトニトリルのようなニトリル化合物,γ−ブチロラクトンやバレロラクトンのようなラクトン化合物,エチレンカーボネートやプロピレンカーボネートのようなカーボネート化合物、炭酸プロピレン等が挙げられる。
【0033】
電解液Eに使用される液状電解質の溶質としては,半導体電極2に担持された色素や対極CEと電子の受け渡しを行える酸化還元対(I /I系の電解質、Br /Br系の電解質、ハイドロキノン/キノン系の電解質などのレドックス電解質)や、この電子の受け渡しを助長する作用を有する化合物等が挙げられ、これらがそれぞれ単独あるいは複数組み合せて含まれていてもよい。
【0034】
より具体的には、酸化還元対を構成する物質としては、例えば,ヨウ素,臭素,塩素などのハロゲン,ヨウ化−1,2−ジメチル−3−プロピルイミダゾリウム,ヨウ化テトラプロピルアンモニウムなどが挙げられる。なお、耐久性が大きく低下しない範囲の量(例えば、5mmol/L以下)のヨウ化リチウムを含有させてもよいが、ヨウ化リチウムは含有させない方が好ましい。また、電子の受け渡しを効率よく行うための添加剤としては、4−t−ブチルピリジンが通常用いられる。
【0035】
また、電解質Eに使用されるヨウ化亜鉛において、電解液中において電離した亜鉛カチオン(Zn2+)は、リチウムカチオンと同様に負に帯電した半導体電極(光電極)の表面に引き寄せられた際に、その正電荷により半導体電極表面のフェルミ準位を下げる働き(より正の電位の側にシフトさせる働き)がある、と本発明者らは推察する。
【0036】
これにより、半導体電極表面のフェルミ準位と増感色素の励起準位との電位差が拡げられ、その結果、色素から酸化物半導体への電子移動が速やかに進行するようになり、光電流が増加する、と本発明者らは推察する。また、亜鉛カチオンは有機化合物との反応性が低く、電解質E中の色素又は他の化合物との反応性も低いと考えられる。
【0037】
従って、ヨウ化亜鉛を含む電解質Eを採用することにより、初期において高い光電変換効率を得ることができ、しかも長期にわたって作動させた場合、又は長期にわたって保存した後に作動させた場合であっても、初期に得られる光電変換効率の低下が充分に防止され、充分な光電変換効率を維持することができる耐久性に優れた色素増感型太陽電池を得ることができる。
【0038】
このような電解質E中におけるヨウ化亜鉛の濃度は、5〜100mmol/Lであることが好ましく、5〜20mmol/Lであることがより好ましい。ここで、ヨウ化亜鉛の濃度が5mmol/L未満であると、上記のヨウ化亜鉛添加の効果が不充分であるため、充分な光電変換効率が得られない傾向があり、他方、ヨウ化亜鉛の濃度が100mmol/Lを超えると、短絡電流は増加するものの開放電圧及びF.F.が低下するため、光電変換効率が低下する傾向がある。
【0039】
また、スペーサSの構成材料は特に限定されるものではなく、例えば、シリカビーズ等を用いることができる。
【0040】
また、電解液Eを密封する目的で光電極10、対極CE及びスペーサSを一体化するために使用する封止材としては、電解液Eの成分ができる限り外部に漏洩しないように封止できるものであればよく、特に制限されないが、例えば、エポキシ樹脂、シリコーン樹脂、エチレン/メタクリル酸共重合体、表面処理ポリエチレンからなる熱可塑性樹脂などを用いることができる。
【0041】
次に、図1に示した色素増感型太陽電池20の製造方法の一例について説明する。
【0042】
透明電極1を製造する場合は、ガラス基板等の基板4上に先に述べたフッ素ドープSnO等の透明導電膜3をスプレーコートする等の公知の薄膜製造技術を用いて形成することができる。例えば、この他にも、真空蒸着法、スパッタリング法、CVD法及びゾルゲル法の公知の薄膜製造技術を用いて形成することができる。
【0043】
透明電極1の透明導電膜3上に半導体電極2を形成する方法としては、例えば、以下の方法がある。すなわち、先ず、所定の大きさ(例えば粒子径が10〜30nm程度)を有する酸化物半導体粒子を分散させた分散液を調製する。この分散液の溶媒は水、有機溶媒、または両者の混合溶媒など酸化物半導体粒子を分散できるものなら特に限定されない。また、分散液中には必要に応じて界面活性剤、粘度調節剤を加えてもよい。
【0044】
次に、分散液を透明電極1の透明導電膜3上に塗布し、次いで乾燥する。このときの塗布方法としてはバーコーター法、印刷法などを用いることができる。そして、乾燥した後、空気中、不活性ガス或いは窒素中で加熱、焼成して半導体電極2(多孔質半導体膜)を形成する。
【0045】
次に、半導体電極2中に浸着法等の公知の技術により増感色素を含有させる。増感色素は半導体電極2に付着(化学吸着、物理吸着または堆積など)させることにより含有させる。この付着方法は、例えば色素を含む溶液中に半導体電極2を浸漬するなどの方法を用いることができる。この際、溶液を加熱し還流させるなどして増感色素の吸着、堆積を促進することができる。なお、このとき、色素の他に必要に応じて、銀等の金属やアルミナ等の金属酸化物を半導体電極2中に含有させてもよい。
【0046】
なお、半導体電極2内に含まれる光電変換反応を阻害する不純物を除去する表面酸化処理を、各層それぞれの形成時毎、或いは、各層全てを形成した時などに公知の方法により適宜施してもよい。
【0047】
また、透明電極1の透明導電膜3上に半導体電極2を形成する他の方法としては、以下の方法がある。すなわち、透明電極1の透明導電膜3上にTiO等の半導体を膜状に蒸着させる方法を用いてもよい。透明導電膜3上に半導体を膜状に蒸着させる方法としては公知の薄膜製造技術を用いることができる。例えば、電子ビーム蒸着、抵抗加熱蒸着、スパッタ蒸着、クラスタイオンビーム蒸着等の物理蒸着法を用いてもよく、酸素等の反応性ガス中で金属等を蒸発させ、反応生成物を透明導電膜3上に堆積させる反応蒸着法を用いてもよい。更に、反応ガスの流れを制御する等してCVD等の化学蒸着法を用いることもできる。
【0048】
このようにして光電極10を作製した後は、例えば、光電極10の作製に用いた方法と同様の公知の薄膜製造技術により対極CEを作製し、図1に示すように、光電極10と、対極CEとを、スペーサSを介して対向させるように組み上げる。このとき、スペーサSにより光電極10と対極CEとの間に形成される空間に、支持電解質としてヨウ化亜鉛を含有する電解液Eを充填し、色素増感型太陽電池20を完成させる。
【0049】
[第2実施形態]
図2は、本発明の色素増感型太陽電池の第2実施形態を示す模式断面図である。以下、図2に示す色素増感型太陽電池30について説明する。なお、上述の図1に示した色素増感型太陽電池20に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。
【0050】
図2に示す色素増感型太陽電池30は、図1に示した光電極10を使用し、図1に示した対極CEと同様の対極CEを使用している。そして、図1に示した色素増感型太陽電池20においてはスペーサSにより光電極10と対極CEとの間に形成される空間に電解液Eを充填したのに比較して、図2に示す色素増感型太陽電池30においては、光電極10と対極CEとの間に多孔体層PSを配置している。
【0051】
この多孔体層PSは多数の細孔を有した構造を有しており、この多孔体層PSの内部には、図1に示した色素増感型太陽電池20に使用したものと同様のヨウ化亜鉛を含有する電解液Eが充填されて保持されている。
【0052】
また、この電解液Eは半導体電極2内や、使用する構成材料(例えば、炭素等の多孔質の導電性膜)によっては対極CEにも保持されている。そして、図2に示す色素増感型太陽電池30の半導体電極2及び多孔体層PSの側面は、電解液Eが、半導体電極2及び多孔体層PSの側面から外部に漏れることを防止するためにシール材5により被覆されている。
【0053】
多孔体層PSは、電解液Eを保持可能であり、電子伝導性を有さない多孔体であれば特に限定されない。例えば、ルチル型の酸化チタン粒子により形成した多孔体を使用してもよい。また、ルチル型の酸化チタン以外の構成材料としては、ジルコニア、アルミナ、シリカ等が挙げられる。
【0054】
また、シール材5としては、例えば、ポリエチレン等の熱可塑性樹脂フィルム、あるいはエポキシ系接着剤を使用することができる。
【0055】
次に、図2に示す色素増感型太陽電池30の製造方法の一例について説明する。先ず、図1に示した色素増感型太陽電池20と同様にして光電極10を作製する。次に、光電極10の半導体電極2を作製する場合と同様の手順により、光電極10の半導体電極2の面F22上に多孔体層PSを形成する。例えば、ルチル型の酸化チタン等の多孔体層PSの構成材料を含む分散液(スラリー)を調製し、これを半導体電極2の面F22上に塗布し乾燥させることにより形成してもよい。
【0056】
また、対極CEについても、例えば、炭素等の多孔質の導電性膜を対極CEとする場合には、例えば、カーボンペーストを調製し、これを多孔体層PSの面上に塗布し乾燥させることにより形成し、公知の薄膜製造技術により導電性膜の多孔体層PSの側と反対の側の面上に基板を形成し対極CEとしてもよい、そして半導体電極2及び多孔体層PSの側面をシール材5で被覆して色素増感型太陽電池30を完成する。なお、このような対極CEの一部である基板としては、通常の基板を用いてもよく、透明基板でもよい。
【0057】
[第3実施形態]
図3は、本発明の色素増感型太陽電池の第3実施形態を示す模式断面図である。以下、図3に示す色素増感型太陽電池40について説明する。なお、上述の図1に示した色素増感型太陽電池20又は図2に示した色素増感型太陽電池30に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。
【0058】
図3に示す色素増感型太陽電池40は、以下に示す多孔体層PSの形状と対極CEの構成以外は図2に示した色素増感型太陽電池30と同様の構成を有している。すなわち、図3に示す色素増感型太陽電池40の場合、多孔体層PSが半導体電極2の裏面F22を覆う部分の他に半導体電極2の側面を密着して覆う鍔状の縁部分を有している。この鍔状の縁部分は、光電極10の透明電極1の受光面F1の法線方向に略平行となる方向にのびてその先端が透明電極1に接続されている。
【0059】
この透明電極1と多孔体層PSとの接続部についてより詳細に説明すると、この接続部において、透明電極1の透明導電膜3の部分は、例えばレーザスクライブ等の技術により完全に削りとられ、透明基板4の表面があらわれる深さの溝9が形成されている。そして、この溝9の部分に多孔体層PSの鍔状に形成された縁部分が挿入されている。
【0060】
また、対極CEは多孔体層PSに隣接して配置される炭素電極8と、この炭素電極8の多孔体層PSと反対側の面上に隣接して配置される基板6とから構成されている。ここで炭素電極8は、カーボンブラック粒子と、グラファイト粒子と、アナターゼ型の酸化チタン粒子よりも電気抵抗率の低い導電性酸化物粒子とを少なくとも構成材料として形成された多孔質の電極であることが好ましい。そして、この対極CEにも、多孔体層PSの鍔状の縁部分を密着して覆うための鍔状の縁部分が形成されている。この対極CEの鍔状の縁部分も、光電極10の透明電極1の受光面F1の法線方向に略平行となる方向にのびてその先端が透明電極1の透明導電膜3の表面に密着するように接続されている。
【0061】
また、半導体電極2の側面のうち多孔体層PSの鍔状の縁部分で覆われていない部分、及び、多孔体層PSの側面のうち、対極CEの鍔状の縁部分で覆われていない部分は、図2に示した色素増感型太陽電池30に使用されているものと同様のシール材5を密着させて配置することによりシールされている。更に、対極CEの鍔状の縁部分の外表面に対しても図2に示した色素増感型太陽電池30に使用されているものと同様のシール材5が密着するように配置されている。
【0062】
基板6とシール材5とを配置することにより、半導体電極2及び多孔体層PSのそれぞれの内部に含有されている電解質の電池40外部への逸散を充分に防止することができる。なお、必要に応じて、基板6と炭素電極8との間にもシール材5を密着させて配置しておいてもよい。これにより、対極CE内部に含有されている電解質の電池40外部への逸散をより充分に防止することができる。
【0063】
以上のように、この色素増感型太陽電池40は、光電極10の透明電極1に多孔体層PSと対極CEとがそれぞれ一体化された構成を有している。そして、多孔体層PSの鍔状の縁部分により、光電極10と対極CEとの電気的な接触が防止されている。なお、光電極10と対極CEとの電気的な接触(光電極10と対極CEとの間での電子移動)が充分に防止されるのであれば、図3において、多孔体層PSの鍔状の縁部分を設けずに、半導体電極2の側面と対極CEの鍔状の縁部分の内側面とが見かけ接触している状態の構成としてもよい。この場合、溝9内には半導体電極2の構成材料が挿入される。
【0064】
この色素増感型太陽電池40は、光電極10を形成する際に、上記の溝9をレーザスクライブ等の公知の技術により形成し、多孔体層PS及び対極CEの形成時にそれぞれ上述の鍔状の縁部分が形成されるように原料となるスラリー(或いはペースト)を塗布し、その後基板6を公知の方法により形成させたこと以外は図2に示した色素増感型太陽電池30と同様の製造方法により形成することができる。
【0065】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【0066】
例えば、本発明の色素増感型太陽電池は、例えば、図4に示す色素増感型太陽電池50のように、複数の電池を併設したモジュールの形態を有していてもよい。図4に示す色素増感型太陽電池50は、図2に示した色素増感型太陽電池30又は図3に示した色素増感型太陽電池40をそれぞれ複数個直列に併設する場合の一例を示している。
【0067】
図2に示した色素増感型太陽電池30に比較して、図4に示す色素増感型太陽電池50は、隣り合う太陽電池の単セルの光電極10間に設けられるシール材5と一方の単セル(以下、単セルAという)の光電極10との間に溝9が形成されている。
【0068】
この溝9は、単セルAの半導体電極2を、例えばレーザスクライブなどの技術により削りとることにより形成される。この溝9のうちのシール材5の近傍部分は、半導体電極2の部分を完全に除去して透明電極1の透明導電膜3の層があらわれる深さまで達している。また、この溝9のうちの単セルAの半導体電極2の近傍部分は、半導体電極2の部分と透明導電膜3の部分を完全に除去して、透明電極1の透明基板4の層があらわれる深さまで達している。
【0069】
そして、この溝のうちのシール材5の近傍部分には、隣り合う光電極10の透明導電膜3及び該透明導電膜3上の半導体電極2の部分同士が電気的に接触しないように、これらの部分の間に単セルAの多孔体層PSの鍔状に形成された縁部分が透明電極1の透明基板4に接触するようにして挿入されている。
【0070】
更に、この溝のうちの単セルAの半導体電極2の近傍部分、すなわち、単セルAの多孔体層PSとシール材5との間の部分には、単セルAの対極CEの鍔状に形成された縁部分が、もう一方の単セルAの透明電極1の透明導電膜3に接触するようにして挿入されている。この色素増感型太陽電池50は、図3に示した色素増感型太陽電池40と同様の製造方法により形成することができる。
【0071】
【実施例】
以下、実施例及び比較例を挙げて本発明の色素増感型太陽電池について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0072】
(実施例1)
以下に示す手順により、図1に示した光電極10と同様の構成を有する光電極(ただし、半導体電極2を2層構造とした。)を作製し、更に、この光電極を用いた以外は図1に示した色素増感型太陽電池20と同様の構成を有する色素増感型太陽電池(半導体電極2の受光面F2の面積:1cm)を作製した。なお、2層構造を有する半導体電極2の各層について、透明電極1に近い側に配置される層を「第1の層」、多孔体層PSに近い側に配置される層を「第2の層」という。
【0073】
先ず、市販のアナターゼ型の酸化チタン粒子(平均粒子径:25nm、以下、「P25」という)と、これと粒子径の異なるアナターゼ型の酸化チタン粒子(平均粒子径:200nm、以下、「P200」という)とを用い、P25とP200の合計の含有量が15質量%で、P25とP200との質量比が、P25:P200=30:70となるように、これらにアセチルアセトン、イオン交換水、界面活性剤(東京化成社製、商品名;「Triton−X」)を加え、混練して第2の層形成用のスラリー(P25の含有量;7.5質量%、P200の含有量;7.5質量%、以下、「スラリー1」とする)を調製した。
【0074】
次に、P200を使用せず、P25のみを使用したこと以外は前述のスラリー1と同様の調製手順により第1の層形成用のスラリー(P1の含有量;15質量%、以下、「スラリー2」とする)を調製した。
【0075】
一方、ガラス基板(透明導電性ガラス)上にフッ素ドープされたSnO導電膜(膜厚:700nm)を形成した透明電極(厚さ:1.1mm)を準備した。そして、このSnO導電膜上に、上述のスラリー2をバーコーダを用いて塗布し、次いで乾燥させた。その後、大気中、450℃の条件のもとで30分間焼成した。このようにして、透明電極上に、半導体電極2の第1の層を形成した。
【0076】
更に、スラリー1を用いて、上述と同様の塗布と焼成とを繰り返すことにより、第1の層上に、第2の層を形成した。このようにして、SnO導電膜上に半導体電極2(受光面の面積;1.0cm、層厚:10μm、第1の層の層厚:3μm、第2の層の層厚:7μm)を形成し、増感色素を含有していない状態の光電極10を作製した。
【0077】
その後、半導体電極の裏面に色素を以下のようにして吸着させた。先ず、増感色素としてルテニウム錯体[cis−Di(thiocyanato)−N,N’−bis(2,2’−bipyridyl−4,4’dicarboxylic acid)−ruthenium(II)]を用い、これのエタノール溶液(増感色素の濃度;3×10−4mol/L)を調製した。
【0078】
次に、この溶液に半導体電極を浸漬し、80℃の温度条件のもとで20時間放置した。これにより、半導体電極の内部に増感色素を約1.0×10−7mol/cm吸着させた。次に、開放電圧Vocを向上させるために、ルテニウム錯体吸着後の半導体電極を4−tert−ブチルピリジンのアセトニトリル溶液に15分浸漬した後、25℃に保持した窒素気流中において乾燥させ、光電極10を完成させた。
【0079】
次に、上記の光電極と同様の形状と大きさを有する対極CEを作製した。先ず、透明導電性ガラス上に、塩化白金酸六水和物のイソプロパノール溶液を滴下し、大気中で乾燥した後に450℃で30分焼成処理することにより、白金焼結対極CEを得た。なお、この対極CEには予め電解質Eの注入用の孔(直径1mm)を設けておいた。
【0080】
次に、溶媒となるメトキシアセトニトリルに、ヨウ化亜鉛と、ヨウ化−1,2−ジメチル−3−プロピルイミダゾリウムと、ヨウ素と、4−tert−ブチルピリジンとを溶解させて液状電解質(ヨウ化亜鉛の濃度:10mmol/L、ヨウ化ジメチルプロピルイミダゾリウムの濃度:0.6mol/L、ヨウ素の濃度:0.05mol/L、4−tert−ブチルピリジン濃度:1mol/L)を調製した。
【0081】
次に、半導体電極の大きさに合わせた形状を有する三井デュポンポリケミカル社製のスペーサS(商品名:「ハイミラン」,エチレン/メタクリル酸ランダム共重合体アイオノマーフィルム)を準備し、図1に示すように光電極と対極とをスペーサを介して対向させ、それぞれを熱溶着により張り合わせて電池の筐体(電解質未充填)を得た。
【0082】
次に、液状電解質を対極の孔から筐体内に注入した後、孔をスペーサと同素材の部材で塞ぎ、更に対極の孔にこの部材を熱溶着させて孔を封止し、色素増感型太陽電池を完成させた。
【0083】
(実施例2)
液状電解質におけるヨウ化亜鉛の濃度を50mmol/Lとしたこと以外は、実施例1と同様の手順及び条件で色素増感型太陽電池を作製した。
【0084】
(比較例1)
液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を20mmol/Lとしたこと以外は、実施例1と同様の手順及び条件で色素増感型太陽電池を作製した。
【0085】
(比較例2)
液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を100mmol/Lとしたこと以外は、実施例1と同様の手順及び条件で色素増感型太陽電池を作製した。
【0086】
[電池特性評価試験]
以下の手順により電池特性評価試験を行ない、実施例1、実施例2、比較例1及び比較例2の色素増感型太陽電池の短絡電流(Jsc)、開放電圧(Voc)、フィルファクタ(F.F.)、及び起動初期の光電変換効率(η(%))を測定した。なお、色素増感型太陽電池の光電変換効率(η(%))は、下記式(A)で表される。ここで、下記式(A)中、Pは入射光強度[mWcm−2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm−2]、F.F.は曲線因子(Filling Factor)を示す。
η=100×(Voc×Jsc×F.F.)/P…(A)
【0087】
電池特性評価試験は、ソーラーシミュレータ(ワコム製、商品名;「WXS−85−H型」)を用い、AMフィルター(AM1.5)を通したキセノンランプ光源からの疑似太陽光の照射条件を、100mW/cmとする(いわゆる「1Sun」の照射条件)測定条件の下で行った。
【0088】
各色素増感型太陽電池について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、開放電圧(Voc/V)、短絡電流(Jsc/mA・cm−2)、曲線因子(F.F.)を求め、これらから光電変換効率η[%]を求めた。得られた結果を表1(1Sunの照射条件)に示す。また、60℃、1Sun照射で、10Ω負荷での作動条件で実施例1〜2及び比較例1〜2の光電変換効率η[%]の経時変化を調べた耐久性評価試験の結果を図5に示す。
【0089】
【表1】

Figure 2004152613
【0090】
表1に示した結果から明らかなように、電解質にヨウ化亜鉛を添加した実施例1及び実施例2の色素増感型太陽電池は、起動初期において、ヨウ化リチウムを添加した比較例1及び比較例2と同等の光電変換効率を有するものであることが確認された。また、図5に示した結果から明らかなように比較例1及び比較例2の色素増感型太陽電池は、長期にわたって作動させた場合の光電変換効率の経時的な低下が著しいのに対し、実施例1及び実施例2の色素増感型太陽電池は、長期にわたって作動させた場合であっても、初期に得られる光電変換効率の低下が充分に防止され、充分な光電変換効率を得ることができる耐久性に優れたものであることが確認された。
【0091】
【発明の効果】
以上説明したように、本発明によれば、初期において高い光電変換効率を得ることができ、しかも長期にわたって作動させた場合、又は長期にわたって保存した後に作動させた場合であっても、充分な光電変換効率を得ることができる耐久性に優れた色素増感型太陽電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の色素増感型太陽電池の第1実施形態の基本構成を示す模式断面図である。
【図2】本発明の色素増感型太陽電池の第2実施形態の基本構成を示す模式断面図である。
【図3】本発明の色素増感型太陽電池の第3実施形態の基本構成を示す模式断面図である。
【図4】図2又は図3に示した色素増感型太陽電池を複数併設する場合の一例を示す模式断面図である。
【図5】実施例1〜2及び比較例1〜2で得られた色素増感型太陽電池の光電変換効率η[%]の経時変化を示すグラフである。
【符号の説明】
1…透明電極、2…半導体電極、3…透明導電膜、4…透明基板、5…シール材、6・・・基板、8・・・炭素電極、9・・・レーザスクライブにより形成された溝、10…光電極、20,30,40,50…色素増感型太陽電池、CE…対極、E…電解質、F1,F2,F3…受光面、F22…半導体電極2の裏面、S…スペーサ、PS…多孔体層。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dye-sensitized solar cell.
[0002]
[Prior art]
2. Description of the Related Art In recent years, various developments of solar cells have been promoted with increasing interest in global warming and energy problems. Among these solar cells, dye-sensitized solar cells have been expected to be put to practical use because of their advantages such as low cost of materials used and the fact that they can be manufactured by a relatively simple process since they were proposed by Gretzel et al. .
[0003]
Further, in such a dye-sensitized solar cell, while improving conversion efficiency (battery characteristics), improving the battery life to a practical level is an important issue for practical use. . That is, it is an object of the present invention to suppress a decrease in conversion efficiency due to long-term use of the dye-sensitized solar cell, and to obtain durability that maintains excellent conversion efficiency for a long period of time.
[0004]
In a conventional dye-sensitized solar cell, I3 / IIt is known that adding lithium iodide when preparing an electrolyte (for example, an electrolyte solution) containing a redox couple consisting of: increases the photocurrent and improves the photoelectric conversion efficiency (for example, JP-A-2001-2001). No. 52766).
[0005]
Lithium cations generated from lithium iodide in an electrolyte, for example, when attracted to the surface of a negatively charged semiconductor electrode (photoelectrode), reduce the Fermi level of the semiconductor electrode surface by its positive charge (more (A function of shifting to the positive potential side). As a result, the potential difference between the Fermi level on the surface of the semiconductor electrode and the excitation level of the sensitizing dye is widened, and as a result, the electron transfer from the dye to the oxide semiconductor proceeds rapidly, increasing the photocurrent. It is believed that.
[0006]
In the dye-sensitized solar cell, the dye has a role of capturing light, and it is important to prevent the deterioration of the dye in order to prolong the battery life and to stably obtain photoelectric conversion efficiency over a long period of time. It is considered.
[0007]
[Patent Document 1]
JP 2001-52766 A
[0008]
[Problems to be solved by the invention]
However, the present inventors have found that in a dye-sensitized solar cell to which lithium iodide was added when preparing an electrolyte, the photoelectric conversion efficiency when the battery was operated for a long period of time markedly decreased over time, and the It was found that the durability was still insufficient. Further, they found that the photoelectric conversion efficiency when the battery was started after being stored for a long period of time was not sufficient, and the storage durability was still insufficient.
[0009]
The present invention has been made in view of the above-mentioned problems of the related art, and can obtain high photoelectric conversion efficiency in an early stage after manufacturing a battery, and further, when operated for a long period of time, or operated after being stored for a long period of time. It is an object of the present invention to provide a dye-sensitized solar cell having excellent durability and capable of obtaining a sufficient photoelectric conversion efficiency even in the case where it is performed.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, by adding zinc iodide to the electrolyte, it is possible to obtain a high photoelectric conversion efficiency in the initial stage, and when operated for a long time, Alternatively, the present inventors have found that a dye-sensitized solar cell having excellent durability capable of maintaining sufficient photoelectric conversion efficiency even when operated after being stored for a long period of time, and arrived at the present invention.
[0011]
That is, the dye-sensitized solar cell of the present invention has a semiconductor electrode having a light-receiving surface, a photoelectrode having a transparent electrode disposed adjacent to the light-receiving surface, and a counter electrode. And a counter electrode are disposed opposite each other with an electrolyte interposed therebetween, wherein the electrolyte comprises zinc iodide (ZnI).2) Is at least contained.
[0012]
According to the present invention, by including zinc iodide in the electrolyte instead of lithium iodide, a high photoelectric conversion efficiency can be obtained at the initial stage, and furthermore, when operated for a long time, or after being stored for a long time, Even when activated, a reduction in the photoelectric conversion efficiency obtained at the initial stage is sufficiently prevented, and a highly durable dye-sensitized solar cell capable of maintaining sufficient photoelectric conversion efficiency can be easily configured. can do.
[0013]
As described above, the reason why the pigment is sufficiently prevented from being deteriorated by including zinc iodide in an electrolyte (for example, an electrolytic solution) has not been clearly elucidated. However, we have found that zinc cations (Zn2+) Is considered to be due to a low reaction activity with respect to a decomposition reaction of a dye or a component of an electrolyte (particularly, a decomposition reaction of a dye which is considered to greatly affect the life of the dye-sensitized solar cell).
[0014]
That is, the present inventors believe that the zinc cation has a lower reactivity with the organic compound than the lithium cation, and thus has a lower reactivity with the dye or other electrolyte constituents in the electrolyte.
[0015]
Therefore, the present inventors believe that the zinc cation is considered to have a lower ability to degrade the dye than the lithium cation, so that a high photoelectric conversion efficiency can be obtained at the initial stage, and furthermore, when operated for a long time, or Even when operated after being stored for a long period of time, a reduction in the photoelectric conversion efficiency obtained at the initial stage is sufficiently prevented, and a dye-sensitized solar with excellent durability capable of maintaining a sufficient photoelectric conversion efficiency. We think that we were able to get battery.
[0016]
In contrast, the present inventors have proposed a lithium cation (Li) generated from lithium iodide which has been added to the electrolyte of a conventional dye-sensitized solar cell.+) Is known to have high reactivity with, for example, organic compounds such as alkyl compounds and aryl compounds. By reacting with a dye such as a metal complex dye and an organic dye in an electrolytic solution or other compounds, We believe that this is one of the major causes of the above-mentioned problem.
[0017]
In the dye-sensitized solar cell of the present invention, a porous layer made of an insulating porous material is further disposed between the semiconductor electrode and the counter electrode, and the porous layer contains an electrolyte. May be characterized.
[0018]
In the dye-sensitized solar cell of the present invention, the concentration of zinc iodide in the electrolyte is preferably 5 to 100 mmol / L.
[0019]
Here, in the present invention, “dye” refers to a metal complex dye and an organic dye. The term “electrolyte” refers to an electrolyte solution (hereinafter, referred to as “electrolyte solution” as necessary), a solution obtained by adding a gelling agent to the electrolyte solution to form a gel, and a solid electrolyte.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the photoelectrode and the dye-sensitized solar cell of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts will be denoted by the same reference characters, without redundant description.
[0021]
[First Embodiment]
FIG. 1 is a schematic sectional view showing a basic configuration of a first embodiment of the dye-sensitized solar cell of the present invention.
[0022]
The dye-sensitized solar cell 20 shown in FIG. 1 mainly includes a photoelectrode 10, a counter electrode CE, and an electrolytic solution E filled in a gap formed between the photoelectrode 10 and the counter electrode CE by a spacer S; It is composed of The photoelectrode 10 shown in FIG. 1 mainly includes a semiconductor electrode 2 having a light receiving surface F2 and a transparent electrode 1 disposed adjacent to the light receiving surface F2 of the semiconductor electrode 2. The semiconductor electrode 2 is in contact with the electrolytic solution E on the back surface F22 opposite to the light receiving surface F2.
[0023]
In the dye-sensitized solar cell 20, the sensitizing dye adsorbed in the semiconductor electrode 2 is excited by the light L10 transmitted through the transparent electrode 1 and irradiated to the semiconductor electrode 2, and the semiconductor sensitizing dye is excited by the light L10. Electrons are injected into the electrode 2. Then, the electrons injected into the semiconductor electrode 2 are collected by the transparent electrode 1 and taken out.
[0024]
The configuration of the transparent electrode 1 is not particularly limited, and a transparent electrode mounted on an ordinary dye-sensitized solar cell can be used. For example, the transparent electrode 1 shown in FIG. 1 has a configuration in which a so-called transparent conductive film 3 is coated on a semiconductor substrate 2 side of a transparent substrate 4 such as a glass substrate. As the transparent conductive film 3, a transparent electrode used for a liquid crystal panel or the like may be used.
[0025]
For example, fluorine-doped SnO2Coated glass, ITO coated glass, ZnO: Al coated glass, antimony-doped tin oxide (SnO2—Sb), and the like. Further, a transparent electrode in which tin oxide or indium oxide is doped with a cation or anion having a different valence, a metal electrode having a structure capable of transmitting light such as a mesh or a stripe, and provided on a substrate such as a glass substrate may be used. Good.
[0026]
As the transparent substrate 4, a transparent substrate used for a liquid crystal panel or the like may be used. Specific examples of the transparent substrate material include a transparent glass substrate, a substrate in which light reflection is prevented by appropriately roughening the surface of the glass substrate, and a substrate that transmits light such as a frosted glass-like translucent glass substrate. The material may not be glass as long as it transmits light, and may be a transparent plastic plate, a transparent plastic film, an inorganic transparent crystal, or the like.
[0027]
The semiconductor electrode 2 shown in FIG. 1 includes an oxide semiconductor layer containing oxide semiconductor particles as a constituent material. The oxide semiconductor particles contained in the semiconductor electrode 2 are not particularly limited, and a known oxide semiconductor or the like can be used. As an oxide semiconductor, for example, TiO2, ZnO, SnO2, Nb2O5, In2O3, WO3, ZrO2, La2O3, Ta2O5, SrTiO3, BaTiO3Etc. can be used. Among these oxide semiconductors, anatase type TiO2Is preferred.
[0028]
The sensitizing dye contained in the semiconductor electrode 2 is not particularly limited as long as the dye has absorption in a visible light region and / or an infrared light region. More preferably, any material that emits electrons when excited by light having a wavelength of at least 200 nm to 2 μm may be used. As such a sensitizing dye, a metal complex, an organic dye, or the like can be used.
[0029]
Examples of the metal complex include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll or derivatives thereof, hemin, ruthenium, osmium, iron and zinc complexes (for example, cis-dicyanate-N, N′-bis (2,2′-bipyridyl) -4,4'-dicarboxylate) ruthenium (II)) and the like. As the organic dye, metal free phthalocyanine, cyanine dye, merocyanine dye, xanthene dye, triphenylmethane dye, and the like can be used.
[0030]
Further, the counter electrode CE is connected to a redox couple (for example, I3 / IEtc.) are not particularly limited as long as they are made of a material that can pass electrons with high efficiency. For example, the same counter electrode as that usually used for silicon solar cells, liquid crystal panels, etc. is used. It is possible. For example, it may have the same configuration as the above-mentioned transparent electrode 1. A thin metal electrode such as Pt is formed on the same transparent conductive film 3 as the transparent electrode 1, and the thin metal electrode is placed on the side of the electrolyte E. May be arranged to face. Also, a small amount of platinum may be adhered to the transparent conductive film 3 of the transparent electrode 1, or a metal thin film of platinum or the like, or a conductive film of carbon or the like may be used.
[0031]
Further, the electrolytic solution E is not particularly limited as long as it contains at least the above-described zinc iodide, and contains a redox species for reducing a dye after photoexcitation and electron injection into a semiconductor. For example, a liquid electrolyte may be used, or a gel electrolyte obtained by adding a known gelling agent (a high-molecular or low-molecular gelling agent) to this may be used.
[0032]
The solvent used for the electrolytic solution E is not particularly limited as long as it is a compound capable of dissolving a solute component. However, the solvent is electrochemically inert, has a high relative dielectric constant and a low viscosity (and these solvents). Mixed solvents), and preferred are, for example, nitrile compounds such as methoxyacetonitrile, methoxypropionitrile and acetonitrile, lactone compounds such as γ-butyrolactone and valerolactone, carbonate compounds such as ethylene carbonate and propylene carbonate, and propylene carbonate. No.
[0033]
As a solute of the liquid electrolyte used for the electrolytic solution E, a redox couple (I) capable of transferring electrons to and from the dye or counter electrode CE supported on the semiconductor electrode 2.3 / ISystem electrolyte, Br3 / BrElectrolytes, redox electrolytes such as hydroquinone / quinone-based electrolytes), compounds having an action to promote the transfer of electrons, and the like, each of which may be included alone or in combination.
[0034]
More specifically, examples of the substance constituting the redox couple include halogens such as iodine, bromine and chlorine, -1,2-dimethyl-3-propylimidazolium iodide, and tetrapropylammonium iodide. Can be Note that lithium iodide may be contained in an amount (for example, 5 mmol / L or less) in a range where the durability is not significantly reduced, but it is preferable that lithium iodide is not contained. As an additive for efficiently transferring electrons, 4-t-butylpyridine is generally used.
[0035]
Further, in the zinc iodide used for the electrolyte E, the ionized zinc cation (Zn2+) Acts to lower the Fermi level of the semiconductor electrode surface due to its positive charge when attracted to the surface of the negatively charged semiconductor electrode (photoelectrode) as in the case of lithium cation (shifts to a more positive potential side). The present inventors presume that there is a function to cause this to occur.
[0036]
As a result, the potential difference between the Fermi level on the surface of the semiconductor electrode and the excitation level of the sensitizing dye is widened, and as a result, the electron transfer from the dye to the oxide semiconductor proceeds rapidly, increasing the photocurrent. The present inventors presume to do so. Further, it is considered that the zinc cation has low reactivity with the organic compound and low reactivity with the dye or other compound in the electrolyte E.
[0037]
Therefore, by adopting the electrolyte E containing zinc iodide, a high photoelectric conversion efficiency can be obtained in the initial stage, and even when the device is operated for a long period of time, or when the device is operated after being stored for a long period of time, It is possible to obtain a dye-sensitized solar cell with excellent durability, which can sufficiently prevent a decrease in photoelectric conversion efficiency obtained at an early stage and can maintain sufficient photoelectric conversion efficiency.
[0038]
The concentration of zinc iodide in such an electrolyte E is preferably from 5 to 100 mmol / L, more preferably from 5 to 20 mmol / L. Here, if the concentration of zinc iodide is less than 5 mmol / L, the effect of the addition of zinc iodide is insufficient, so that sufficient photoelectric conversion efficiency tends not to be obtained. When the concentration exceeds 100 mmol / L, the short-circuit current increases, but the open-circuit voltage and F.I. F. , The photoelectric conversion efficiency tends to decrease.
[0039]
The constituent material of the spacer S is not particularly limited, and for example, silica beads or the like can be used.
[0040]
The sealing material used to integrate the photoelectrode 10, the counter electrode CE, and the spacer S for the purpose of sealing the electrolytic solution E can be sealed so that components of the electrolytic solution E do not leak to the outside as much as possible. It is not particularly limited as long as it is a resin, and for example, an epoxy resin, a silicone resin, an ethylene / methacrylic acid copolymer, and a thermoplastic resin made of surface-treated polyethylene can be used.
[0041]
Next, an example of a method for manufacturing the dye-sensitized solar cell 20 shown in FIG. 1 will be described.
[0042]
When the transparent electrode 1 is manufactured, the above-mentioned fluorine-doped SnO is formed on a substrate 4 such as a glass substrate.2Can be formed by using a known thin film manufacturing technique such as spray coating the transparent conductive film 3. For example, in addition to this, it can be formed by using a known thin film manufacturing technique such as a vacuum deposition method, a sputtering method, a CVD method, and a sol-gel method.
[0043]
As a method of forming the semiconductor electrode 2 on the transparent conductive film 3 of the transparent electrode 1, for example, there is the following method. That is, first, a dispersion liquid in which oxide semiconductor particles having a predetermined size (for example, a particle diameter of about 10 to 30 nm) is dispersed is prepared. The solvent of this dispersion is not particularly limited as long as it can disperse the oxide semiconductor particles, such as water, an organic solvent, or a mixed solvent of both. Further, a surfactant and a viscosity modifier may be added to the dispersion as needed.
[0044]
Next, the dispersion is applied onto the transparent conductive film 3 of the transparent electrode 1 and then dried. As a coating method at this time, a bar coater method, a printing method, or the like can be used. Then, after drying, the semiconductor electrode 2 (porous semiconductor film) is formed by heating and baking in air, inert gas or nitrogen.
[0045]
Next, a sensitizing dye is contained in the semiconductor electrode 2 by a known technique such as an immersion method. The sensitizing dye is contained by being attached to the semiconductor electrode 2 (chemical adsorption, physical adsorption, deposition, or the like). For this attachment method, for example, a method of immersing the semiconductor electrode 2 in a solution containing a dye can be used. At this time, the adsorption and deposition of the sensitizing dye can be promoted by heating and refluxing the solution. At this time, in addition to the dye, a metal such as silver or a metal oxide such as alumina may be contained in the semiconductor electrode 2 as necessary.
[0046]
The surface oxidation treatment for removing impurities that inhibit the photoelectric conversion reaction contained in the semiconductor electrode 2 may be appropriately performed by a known method every time each layer is formed or when all the layers are formed. .
[0047]
Another method for forming the semiconductor electrode 2 on the transparent conductive film 3 of the transparent electrode 1 is as follows. That is, TiO is formed on the transparent conductive film 3 of the transparent electrode 1.2Alternatively, a method of depositing a semiconductor in the form of a film may be used. As a method of depositing a semiconductor in a film on the transparent conductive film 3, a known thin film manufacturing technique can be used. For example, physical vapor deposition methods such as electron beam vapor deposition, resistance heating vapor deposition, sputter vapor deposition, cluster ion beam vapor deposition, etc. may be used. A reactive vapor deposition method of depositing on top may be used. Further, a chemical vapor deposition method such as CVD can be used by controlling the flow of the reaction gas.
[0048]
After manufacturing the photoelectrode 10 in this way, for example, a counter electrode CE is manufactured by a known thin film manufacturing technique similar to the method used for manufacturing the photoelectrode 10, and as shown in FIG. , And the counter electrode CE are assembled so as to face each other via the spacer S. At this time, the space formed between the photoelectrode 10 and the counter electrode CE by the spacer S is filled with the electrolytic solution E containing zinc iodide as a supporting electrolyte, and the dye-sensitized solar cell 20 is completed.
[0049]
[Second embodiment]
FIG. 2 is a schematic sectional view showing a second embodiment of the dye-sensitized solar cell of the present invention. Hereinafter, the dye-sensitized solar cell 30 shown in FIG. 2 will be described. The same components as those described with respect to the dye-sensitized solar cell 20 shown in FIG. 1 described above are denoted by the same reference numerals, and redundant description will be omitted.
[0050]
The dye-sensitized solar cell 30 shown in FIG. 2 uses the photoelectrode 10 shown in FIG. 1 and uses the same counter electrode CE as the counter electrode CE shown in FIG. In the dye-sensitized solar cell 20 shown in FIG. 1, the space formed between the photoelectrode 10 and the counter electrode CE by the spacer S is filled with the electrolytic solution E, as shown in FIG. In the dye-sensitized solar cell 30, the porous layer PS is disposed between the photoelectrode 10 and the counter electrode CE.
[0051]
The porous layer PS has a structure having a large number of pores, and inside the porous layer PS, the same iodine as that used in the dye-sensitized solar cell 20 shown in FIG. The electrolytic solution E containing zinc oxide is filled and held.
[0052]
The electrolytic solution E is also retained in the semiconductor electrode 2 and the counter electrode CE depending on the constituent material used (for example, a porous conductive film such as carbon). The side surfaces of the semiconductor electrode 2 and the porous layer PS of the dye-sensitized solar cell 30 shown in FIG. 2 are used to prevent the electrolyte solution E from leaking outside from the side surfaces of the semiconductor electrode 2 and the porous layer PS. Is covered with a sealing material 5.
[0053]
The porous material layer PS is not particularly limited as long as it can hold the electrolytic solution E and is a porous material having no electron conductivity. For example, a porous body formed of rutile-type titanium oxide particles may be used. In addition, as a constituent material other than the rutile type titanium oxide, zirconia, alumina, silica, and the like can be given.
[0054]
Further, as the sealing material 5, for example, a thermoplastic resin film such as polyethylene or an epoxy-based adhesive can be used.
[0055]
Next, an example of a method for manufacturing the dye-sensitized solar cell 30 shown in FIG. 2 will be described. First, the photoelectrode 10 is manufactured in the same manner as the dye-sensitized solar cell 20 shown in FIG. Next, the porous layer PS is formed on the surface F22 of the semiconductor electrode 2 of the photoelectrode 10 by the same procedure as that for manufacturing the semiconductor electrode 2 of the photoelectrode 10. For example, it may be formed by preparing a dispersion (slurry) containing a constituent material of the porous layer PS such as rutile-type titanium oxide, applying the dispersion on the surface F22 of the semiconductor electrode 2, and drying.
[0056]
For the counter electrode CE, for example, when a porous conductive film of carbon or the like is used as the counter electrode CE, for example, a carbon paste is prepared, and this is coated on the surface of the porous layer PS and dried. The substrate may be formed on the surface of the conductive film on the side opposite to the porous layer PS by a known thin film manufacturing technique to serve as a counter electrode CE, and the side surfaces of the semiconductor electrode 2 and the porous layer PS may be formed. The dye-sensitized solar cell 30 is completed by covering with the sealing material 5. In addition, as a substrate which is a part of such a counter electrode CE, a normal substrate may be used, or a transparent substrate may be used.
[0057]
[Third embodiment]
FIG. 3 is a schematic sectional view showing a third embodiment of the dye-sensitized solar cell of the present invention. Hereinafter, the dye-sensitized solar cell 40 shown in FIG. 3 will be described. Note that the same elements as those described with respect to the dye-sensitized solar cell 20 shown in FIG. 1 or the dye-sensitized solar cell 30 shown in FIG. Omitted.
[0058]
The dye-sensitized solar cell 40 illustrated in FIG. 3 has the same configuration as the dye-sensitized solar cell 30 illustrated in FIG. 2 except for the shape of the porous layer PS and the configuration of the counter electrode CE described below. . That is, in the case of the dye-sensitized solar cell 40 shown in FIG. 3, in addition to the portion where the porous layer PS covers the back surface F <b> 22 of the semiconductor electrode 2, there is a flange-shaped edge portion that tightly covers the side surface of the semiconductor electrode 2. are doing. The brim-shaped edge portion extends in a direction substantially parallel to the normal direction of the light receiving surface F1 of the transparent electrode 1 of the photoelectrode 10, and the tip is connected to the transparent electrode 1.
[0059]
The connection between the transparent electrode 1 and the porous layer PS will be described in more detail. At this connection, the portion of the transparent conductive film 3 of the transparent electrode 1 is completely removed by a technique such as laser scribe, for example. A groove 9 having a depth at which the surface of the transparent substrate 4 appears is formed. Then, an edge portion formed in a flange shape of the porous material layer PS is inserted into the groove 9 portion.
[0060]
The counter electrode CE includes a carbon electrode 8 disposed adjacent to the porous layer PS, and a substrate 6 disposed adjacent to the surface of the carbon electrode 8 opposite to the porous layer PS. I have. Here, the carbon electrode 8 is a porous electrode formed of at least carbon black particles, graphite particles, and conductive oxide particles having a lower electrical resistivity than anatase-type titanium oxide particles. Is preferred. The counter electrode CE also has a flange-shaped edge portion for closely covering the flange-shaped edge portion of the porous layer PS. The flange-shaped edge portion of the counter electrode CE also extends in a direction substantially parallel to the normal direction of the light receiving surface F1 of the transparent electrode 1 of the photoelectrode 10, and its tip is in close contact with the surface of the transparent conductive film 3 of the transparent electrode 1. Connected to be.
[0061]
In addition, a portion of the side surface of the semiconductor electrode 2 that is not covered by the flange-shaped edge portion of the porous layer PS, and a portion of the side surface of the porous layer PS that is not covered by the flange-shaped edge portion of the counter electrode CE. The portion is sealed by closely attaching a sealing material 5 similar to that used in the dye-sensitized solar cell 30 shown in FIG. Further, the same sealing material 5 as that used in the dye-sensitized solar cell 30 shown in FIG. 2 is arranged so as to be in close contact with the outer surface of the flange-shaped edge portion of the counter electrode CE. .
[0062]
By disposing the substrate 6 and the sealing material 5, it is possible to sufficiently prevent the electrolyte contained in each of the semiconductor electrode 2 and the porous material layer PS from escaping to the outside of the battery 40. If necessary, the sealing material 5 may be disposed between the substrate 6 and the carbon electrode 8 in close contact with each other. Thereby, the escape of the electrolyte contained in the counter electrode CE to the outside of the battery 40 can be more sufficiently prevented.
[0063]
As described above, the dye-sensitized solar cell 40 has a configuration in which the porous layer PS and the counter electrode CE are integrated with the transparent electrode 1 of the photoelectrode 10. The flange-shaped edge portion of the porous layer PS prevents electrical contact between the photoelectrode 10 and the counter electrode CE. In addition, if electrical contact between the photoelectrode 10 and the counter electrode CE (electron transfer between the photoelectrode 10 and the counter electrode CE) is sufficiently prevented, the flange-shaped porous layer PS shown in FIG. , The side surface of the semiconductor electrode 2 may be apparently in contact with the inner surface of the flange-shaped edge portion of the counter electrode CE. In this case, the constituent material of the semiconductor electrode 2 is inserted into the groove 9.
[0064]
In the dye-sensitized solar cell 40, when the photoelectrode 10 is formed, the groove 9 is formed by a known technique such as laser scribing, and when the porous layer PS and the counter electrode CE are formed, each of the above-described flanges is formed. The same as the dye-sensitized solar cell 30 shown in FIG. 2 except that a slurry (or paste) as a raw material is applied so that an edge portion is formed, and then the substrate 6 is formed by a known method. It can be formed by a manufacturing method.
[0065]
As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to the above embodiments.
[0066]
For example, the dye-sensitized solar cell of the present invention may have the form of a module in which a plurality of cells are provided in parallel, such as the dye-sensitized solar cell 50 shown in FIG. The dye-sensitized solar cell 50 illustrated in FIG. 4 is an example in which a plurality of the dye-sensitized solar cells 30 illustrated in FIG. 2 or the dye-sensitized solar cells 40 illustrated in FIG. Is shown.
[0067]
Compared to the dye-sensitized solar cell 30 shown in FIG. 2, the dye-sensitized solar cell 50 shown in FIG. 4 has one side of the sealing material 5 provided between the photoelectrodes 10 of the single cells of the adjacent solar cells. The groove 9 is formed between the photoelectrode 10 of the single cell (hereinafter, referred to as a single cell A).
[0068]
The groove 9 is formed by shaving the semiconductor electrode 2 of the single cell A by a technique such as laser scribing. The portion of the groove 9 near the sealing material 5 has reached the depth at which the layer of the transparent conductive film 3 of the transparent electrode 1 appears by completely removing the semiconductor electrode 2 portion. Further, in the portion of the trench 9 near the semiconductor electrode 2 of the single cell A, the portion of the semiconductor electrode 2 and the portion of the transparent conductive film 3 are completely removed, and the layer of the transparent substrate 4 of the transparent electrode 1 appears. To the depth.
[0069]
The transparent conductive film 3 of the adjacent photoelectrode 10 and the portion of the semiconductor electrode 2 on the transparent conductive film 3 are not in electrical contact with the portion of the groove near the sealing material 5 so that these portions are not in electrical contact with each other. Are inserted in such a manner that the brim-shaped edge portion of the porous layer PS of the single cell A is in contact with the transparent substrate 4 of the transparent electrode 1.
[0070]
Further, a portion of the groove near the semiconductor electrode 2 of the single cell A, that is, a portion between the porous layer PS of the single cell A and the sealing material 5 is formed in a flange shape of the counter electrode CE of the single cell A. The formed edge portion is inserted so as to contact the transparent conductive film 3 of the transparent electrode 1 of the other single cell A. The dye-sensitized solar cell 50 can be formed by the same manufacturing method as the dye-sensitized solar cell 40 shown in FIG.
[0071]
【Example】
Hereinafter, the dye-sensitized solar cell of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0072]
(Example 1)
A photoelectrode having a configuration similar to that of the photoelectrode 10 shown in FIG. 1 (however, the semiconductor electrode 2 has a two-layer structure) is manufactured by the following procedure, and further, this photoelectrode is used. A dye-sensitized solar cell having the same configuration as the dye-sensitized solar cell 20 shown in FIG.2) Was prepared. In each of the layers of the semiconductor electrode 2 having a two-layer structure, the layer disposed on the side closer to the transparent electrode 1 is referred to as “first layer”, and the layer disposed on the side closer to the porous layer PS is referred to as “second layer”. Layers.
[0073]
First, commercially available anatase-type titanium oxide particles (average particle diameter: 25 nm, hereinafter, referred to as “P25”) and anatase-type titanium oxide particles having different particle diameters (average particle diameter: 200 nm, hereinafter, “P200”) Acetylacetone, ion-exchanged water, interface, 6. Add an activator (trade name: "Triton-X", manufactured by Tokyo Chemical Industry Co., Ltd.), knead the mixture, and form a slurry for forming a second layer (P25 content; 7.5% by mass; P200 content; 5% by mass, hereinafter referred to as “slurry 1”).
[0074]
Next, a slurry for forming a first layer (P1 content: 15% by mass, hereinafter referred to as “slurry 2”) was prepared in the same preparation procedure as that for the slurry 1 except that only P25 was used without using P200. ") Was prepared.
[0075]
On the other hand, a glass substrate (transparent conductive glass) is doped with fluorine-doped SnO.2A transparent electrode (thickness: 1.1 mm) on which a conductive film (thickness: 700 nm) was formed was prepared. And this SnO2The slurry 2 was applied on the conductive film using a bar coder, and then dried. Then, it baked for 30 minutes under the conditions of 450 degreeC in air | atmosphere. Thus, the first layer of the semiconductor electrode 2 was formed on the transparent electrode.
[0076]
Further, by using the slurry 1 and repeating the same application and baking as described above, a second layer was formed on the first layer. In this way, SnO2Semiconductor electrode 2 (area of light receiving surface; 1.0 cm) on conductive film2, A layer thickness of 10 μm, a layer thickness of the first layer: 3 μm, and a layer thickness of the second layer: 7 μm) to produce a photoelectrode 10 containing no sensitizing dye.
[0077]
Thereafter, the dye was adsorbed on the back surface of the semiconductor electrode as follows. First, a ruthenium complex [cis-Di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'dicarboxylic acid) -ruthenium (II)] was used as a sensitizing dye, and an ethanol solution thereof was used. (Concentration of sensitizing dye; 3 × 10-4mol / L).
[0078]
Next, the semiconductor electrode was immersed in this solution, and was left under a temperature condition of 80 ° C. for 20 hours. As a result, about 1.0 × 10-7mol / cm2Adsorbed. Next, in order to improve the open-circuit voltage Voc, the semiconductor electrode after the adsorption of the ruthenium complex was immersed in an acetonitrile solution of 4-tert-butylpyridine for 15 minutes, and then dried in a nitrogen gas stream maintained at 25 ° C. 10 was completed.
[0079]
Next, a counter electrode CE having the same shape and size as the above photoelectrode was manufactured. First, a solution of chloroplatinic acid hexahydrate in isopropanol was dropped on a transparent conductive glass, dried in the air, and baked at 450 ° C. for 30 minutes to obtain a platinum sintered counter electrode CE. The counter electrode CE was provided with a hole (1 mm in diameter) for injecting the electrolyte E in advance.
[0080]
Next, zinc iodide, 1,2-dimethyl-3-propylimidazolium iodide, iodine, and 4-tert-butylpyridine are dissolved in methoxyacetonitrile as a solvent, and a liquid electrolyte (iodide) is dissolved. (Zinc concentration: 10 mmol / L, dimethylpropyl imidazolium iodide concentration: 0.6 mol / L, iodine concentration: 0.05 mol / L, 4-tert-butylpyridine concentration: 1 mol / L).
[0081]
Next, a spacer S (trade name: "Himilan", an ethylene / methacrylic acid random copolymer ionomer film) manufactured by Du Pont-Mitsui Polychemical Co., Ltd. having a shape corresponding to the size of the semiconductor electrode was prepared, and is shown in FIG. As described above, the photoelectrode and the counter electrode were opposed to each other with the spacer interposed therebetween, and they were bonded to each other by thermal welding to obtain a battery housing (not filled with electrolyte).
[0082]
Next, after injecting the liquid electrolyte into the housing from the counter electrode hole, the hole is closed with a member of the same material as the spacer, and this member is heat-welded to the counter electrode hole to seal the hole, and the dye-sensitized type The solar cell was completed.
[0083]
(Example 2)
A dye-sensitized solar cell was manufactured in the same procedure and under the same conditions as in Example 1 except that the concentration of zinc iodide in the liquid electrolyte was changed to 50 mmol / L.
[0084]
(Comparative Example 1)
A dye-sensitized solar cell was prepared in the same procedure and under the same conditions as in Example 1, except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was adjusted to 20 mmol / L. Was prepared.
[0085]
(Comparative Example 2)
A dye-sensitized solar cell was prepared in the same procedure and under the same conditions as in Example 1, except that lithium iodide was added instead of zinc iodide in the liquid electrolyte, and the concentration of lithium iodide in the liquid electrolyte was adjusted to 100 mmol / L. Was prepared.
[0086]
[Battery characteristics evaluation test]
A battery characteristic evaluation test was performed according to the following procedure, and the short-circuit current (Jsc), open-circuit voltage (Voc), and fill factor (F) of the dye-sensitized solar cells of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were measured. .F.) And the photoelectric conversion efficiency (η (%)) at the initial stage of startup. The photoelectric conversion efficiency (η (%)) of the dye-sensitized solar cell is represented by the following formula (A). Here, in the following equation (A), P0Is the incident light intensity [mWcm-2], Voc is the open circuit voltage [V], Jsc is the short circuit current density [mA · cm]-2F.]. F. Indicates a Filling Factor.
η = 100 × (Voc × Jsc × FF) / P0… (A)
[0087]
The battery characteristics evaluation test was performed by using a solar simulator (trade name: “WXS-85-H”, manufactured by Wacom) and simulating sunlight irradiation conditions from a xenon lamp light source through an AM filter (AM1.5). 100mW / cm2(Irradiation conditions of so-called “1 Sun”).
[0088]
Current-voltage characteristics of each dye-sensitized solar cell were measured at room temperature using an IV tester, and the open-circuit voltage (Voc / V) and short-circuit current (Jsc / mA · cm) were measured.-2) And fill factor (FF), and the photoelectric conversion efficiency η [%] was determined from these. The obtained results are shown in Table 1 (1 Sun irradiation conditions). FIG. 5 shows the results of a durability evaluation test in which the changes with time in the photoelectric conversion efficiencies η [%] of Examples 1 and 2 and Comparative Examples 1 and 2 were examined under operating conditions of 60 ° C., 1 Sun irradiation, and 10 Ω load. Shown in
[0089]
[Table 1]
Figure 2004152613
[0090]
As is evident from the results shown in Table 1, the dye-sensitized solar cells of Examples 1 and 2 in which zinc iodide was added to the electrolyte were Comparative Examples 1 and 2 in which lithium iodide was added in the initial stage of startup. It was confirmed that it had a photoelectric conversion efficiency equivalent to that of Comparative Example 2. Further, as is clear from the results shown in FIG. 5, the dye-sensitized solar cells of Comparative Examples 1 and 2 show a significant decrease in photoelectric conversion efficiency over time when operated over a long period, Even when the dye-sensitized solar cells of Examples 1 and 2 are operated for a long period of time, a decrease in the photoelectric conversion efficiency obtained at the initial stage is sufficiently prevented, and sufficient photoelectric conversion efficiency is obtained. It was confirmed that the film had excellent durability.
[0091]
【The invention's effect】
As described above, according to the present invention, a high photoelectric conversion efficiency can be obtained at an early stage, and even when the device is operated for a long period of time or after being stored for a long period of time, a sufficient photoelectric conversion efficiency is obtained. It is possible to obtain a dye-sensitized solar cell having excellent durability and capable of obtaining conversion efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a basic configuration of a first embodiment of a dye-sensitized solar cell of the present invention.
FIG. 2 is a schematic cross-sectional view showing a basic configuration of a second embodiment of the dye-sensitized solar cell of the present invention.
FIG. 3 is a schematic sectional view showing a basic configuration of a third embodiment of the dye-sensitized solar cell of the present invention.
FIG. 4 is a schematic cross-sectional view showing an example of a case where a plurality of the dye-sensitized solar cells shown in FIG.
FIG. 5 is a graph showing the change over time in the photoelectric conversion efficiency η [%] of the dye-sensitized solar cells obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transparent electrode, 2 ... Semiconductor electrode, 3 ... Transparent conductive film, 4 ... Transparent substrate, 5 ... Seal material, 6 ... Substrate, 8 ... Carbon electrode, 9 ... Groove formed by laser scribe 10, photoelectrode, 20, 30, 40, 50: dye-sensitized solar cell, CE: counter electrode, E: electrolyte, F1, F2, F3: light receiving surface, F22: back surface of semiconductor electrode 2, S: spacer, PS: porous body layer.

Claims (3)

受光面を有する半導体電極と当該受光面上に隣接して配置された透明電極とを有する光電極と、対極とを有しており、前記半導体電極と前記対極とが電解質を介して対向配置された色素増感型太陽電池であって、
前記電解質には、ヨウ化亜鉛が少なくとも含有されていること、
を特徴とする色素増感型太陽電池。
A photoelectrode having a semiconductor electrode having a light receiving surface and a transparent electrode disposed adjacently on the light receiving surface, and a counter electrode, wherein the semiconductor electrode and the counter electrode are arranged to face each other via an electrolyte; Dye-sensitized solar cell,
The electrolyte contains at least zinc iodide,
A dye-sensitized solar cell comprising:
前記半導体電極と前記対極との間に絶縁性の多孔体材料からなる多孔体層が更に配置されており、当該多孔体層中に前記電解質が含有されていること、を特徴とする請求項1に記載の色素増感型太陽電池。2. A porous layer made of an insulating porous material is further disposed between the semiconductor electrode and the counter electrode, and the electrolyte is contained in the porous layer. 2. The dye-sensitized solar cell according to 1. 前記電解質中における前記ヨウ化亜鉛の濃度が5〜100mmol/Lであること、
を特徴とする請求項1又は2に記載の色素増感型太陽電池。
The concentration of the zinc iodide in the electrolyte is 5 to 100 mmol / L;
The dye-sensitized solar cell according to claim 1, wherein:
JP2002316356A 2002-10-30 2002-10-30 Dye-sensitized solar cell Pending JP2004152613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316356A JP2004152613A (en) 2002-10-30 2002-10-30 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316356A JP2004152613A (en) 2002-10-30 2002-10-30 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2004152613A true JP2004152613A (en) 2004-05-27

Family

ID=32460094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316356A Pending JP2004152613A (en) 2002-10-30 2002-10-30 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2004152613A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236960A (en) * 2005-01-28 2006-09-07 Fujikura Ltd Dye-sensitized solar cell and its manufacturing method
WO2007026927A1 (en) * 2005-09-02 2007-03-08 Kyocera Corporation Photo-electric conversion device, its fabrication method, and photovoltaic generation device
WO2007043533A1 (en) * 2005-10-11 2007-04-19 Kyocera Corporation Photoelectric transducer, process for producing the same, and photovoltaic apparatus
WO2009145140A1 (en) * 2008-05-27 2009-12-03 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
WO2012117995A1 (en) * 2011-02-28 2012-09-07 シャープ株式会社 Photoelectric conversion element and photoelectric conversion element module
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
JP2013206825A (en) * 2012-03-29 2013-10-07 Osaka Gas Co Ltd Porous oxide semiconductor layer for photoelectric conversion element, and method of manufacturing the same
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236960A (en) * 2005-01-28 2006-09-07 Fujikura Ltd Dye-sensitized solar cell and its manufacturing method
JP4856079B2 (en) * 2005-09-02 2012-01-18 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
WO2007026927A1 (en) * 2005-09-02 2007-03-08 Kyocera Corporation Photo-electric conversion device, its fabrication method, and photovoltaic generation device
WO2007043533A1 (en) * 2005-10-11 2007-04-19 Kyocera Corporation Photoelectric transducer, process for producing the same, and photovoltaic apparatus
JP4856089B2 (en) * 2005-10-11 2012-01-18 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
WO2009145140A1 (en) * 2008-05-27 2009-12-03 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
WO2012117995A1 (en) * 2011-02-28 2012-09-07 シャープ株式会社 Photoelectric conversion element and photoelectric conversion element module
JP2012178297A (en) * 2011-02-28 2012-09-13 Sharp Corp Photoelectric conversion element and photoelectric conversion element module
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
JP2013206825A (en) * 2012-03-29 2013-10-07 Osaka Gas Co Ltd Porous oxide semiconductor layer for photoelectric conversion element, and method of manufacturing the same
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye

Similar Documents

Publication Publication Date Title
JP4177172B2 (en) Dye-sensitized solar cell
JP2004152613A (en) Dye-sensitized solar cell
US10014122B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5493369B2 (en) Composition for forming underlayer, method for producing underlayer, method for producing photoelectrode, and method for producing solar cell
JP2007066526A (en) Semiconductor electrode, dye-sensitized solar cell, and its manufacturing method
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP4777592B2 (en) Counter electrode and dye-sensitized solar cell having the same
JP4493921B2 (en) Dye-sensitized solar cell
JP4322491B2 (en) Method for producing dye-sensitized solar cell and dye-sensitized solar cell
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP4220205B2 (en) Dye-sensitized solar cell
JP4677704B2 (en) Dye-sensitized solar cell
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP4102054B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP2007073198A (en) Dye-sensitized solar battery
JP2007179822A (en) Electrode and dye-sensitized solar cell using it for counter electrode
JP4116825B2 (en) Dye-sensitized solar cell
JP2004253333A (en) Dye-sensitized solar cell
JP5189869B2 (en) Electrolytic solution and dye-sensitized solar cell
JP4808560B2 (en) Titanium oxide particle-containing composition, method for producing photoelectrode, and method for producing solar cell
JP4537693B2 (en) Dye-sensitized solar cell
JP5786326B2 (en) Dye-sensitized solar cell
US10916382B2 (en) Photoelectric conversion element and photoelectric conversion element module