JPH11330899A - Saw device and manufacture of the same - Google Patents

Saw device and manufacture of the same

Info

Publication number
JPH11330899A
JPH11330899A JP13641098A JP13641098A JPH11330899A JP H11330899 A JPH11330899 A JP H11330899A JP 13641098 A JP13641098 A JP 13641098A JP 13641098 A JP13641098 A JP 13641098A JP H11330899 A JPH11330899 A JP H11330899A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric substrate
saw device
saw
interdigital transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13641098A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Furukawa
光弘 古川
Ryoichi Takayama
了一 高山
Yuji Murashima
祐二 村嶋
Kazunari Nishihara
和成 西原
Koji Nomura
幸治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13641098A priority Critical patent/JPH11330899A/en
Publication of JPH11330899A publication Critical patent/JPH11330899A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the structure of an SAW device with excellent electric power resistance, and a method for manufacturing this device. SOLUTION: This SAW device is constituted so that one part or the entire part of a piezoelectric substrate 1 is made thin. Heat generated during the operation of the SAW device is transferred through the thin substrate to the outside part so that the increase of temperature due to the heat accumulation of an SAW chip can be prevented, and the increase of the temperature of the chip can be reduced, and the power resistance of the SAW device can be improved. Moreover, since this SAW device is constituted so that only one part of the substrate 1 is made thin like a groove, a conventional pattern forming technique and process can be used, and cracks of the substrate 1 in the process can be hardly generated, and simple handling can be realized, and the influence of the reflection of a bulk wave when this substrate is made thin can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特にSAWデバイス
の耐電力性を改善する基板構造に関するもので、SAW
デバイスおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate structure for improving the power durability of a SAW device.
The present invention relates to a device and a method for manufacturing the device.

【0002】[0002]

【従来の技術】一般に、SAWデバイスは圧電基板の表
面上にアルミニウム膜よりなる電極を櫛形形状に設けて
インターデジタルトランスデューサを形成し、フィルタ
や共振器を構成している。
2. Description of the Related Art Generally, a SAW device forms an interdigital transducer by arranging an electrode made of an aluminum film in a comb shape on the surface of a piezoelectric substrate to constitute a filter or a resonator.

【0003】近年、移動体通信の高周波化にともない、
SAWデバイスの動作周波数も数百MHzから数GHzと高
周波化するとともに、高出力化が望まれている。高周波
化によりインターデジタルトランスデューサ電極のパタ
ーン幅も微細化が必要となり、中心周波数1.5GHz帯
フィルタでは電極線幅は約0.7μmに形成する必要が
ある。
In recent years, with the increase in the frequency of mobile communication,
The operating frequency of the SAW device is also increased from several hundred MHz to several GHz, and high output is desired. As the frequency increases, the pattern width of the interdigital transducer electrode also needs to be reduced, and the electrode line width needs to be formed to about 0.7 μm in a center frequency 1.5 GHz band filter.

【0004】このように微細な線幅を形成したSAWデ
バイスに大きな電力を印加すると、配線抵抗によるジュ
ール熱や、一部振動の熱への変換により、150℃を優
に越えて発熱する。また、弾性表面波によって生じる歪
みが電極膜に応力を発生させ、その応力が電極膜の限界
応力を越えると応力を緩和させるため、電極材料である
アルミニウム原子が結晶粒界を移動(ストレスマイグレ
ーション)し、その結果、突起(ヒロック)や空隙(ボ
イド)を発生させて電極の破壊が生じ、SAWデバイス
の特性劣化に至る。高温状態においては、基板と電極膜
の熱膨張係数の差によるストレスが電極膜に付加される
ため、また、比抵抗が上昇するため、電極膜の破壊が加
速される。
When a large electric power is applied to a SAW device having such a fine line width, heat is generated well over 150 ° C. due to conversion of Joule heat due to wiring resistance and partial vibration into heat. In addition, the strain generated by the surface acoustic wave generates stress in the electrode film, and when the stress exceeds the critical stress of the electrode film, the stress is relaxed. Therefore, aluminum atoms as the electrode material move through crystal grain boundaries (stress migration). As a result, protrusions (hillocks) and voids (voids) are generated to cause destruction of the electrodes, leading to deterioration of the characteristics of the SAW device. In a high temperature state, stress due to the difference in thermal expansion coefficient between the substrate and the electrode film is applied to the electrode film, and the specific resistance increases, so that the destruction of the electrode film is accelerated.

【0005】従来、SAWデバイスの耐電力性を向上さ
せる技術として、耐電力性に優れた電極材料の開発に注
力され、アルミニウムに銅等を微量に添加した合金電
極、またはアルミニウムと他の金属材料を交互に形成し
た積層電極等により電極膜自体のストレスマイグレーシ
ョン耐性を高くする研究がなされている。
Conventionally, as a technique for improving the power durability of a SAW device, efforts have been made to develop electrode materials having excellent power durability, such as alloy electrodes made by adding a small amount of copper or the like to aluminum, or aluminum and other metal materials. Studies have been made to increase the stress migration resistance of the electrode film itself by using a stacked electrode or the like in which the electrodes are alternately formed.

【0006】基板については、SAWデバイス特性、ま
たは取り扱いの観点から、厚みを約350μmとしたも
のが多く使われている。薄くした場合、基板が割れやす
くなる、そりが大きくなりパターン形成精度が悪くな
る。また、バルク波が裏面で反射し、スプリアス振動が
発生する等の悪影響の発生が懸念される。
As the substrate, a substrate having a thickness of about 350 μm is often used from the viewpoint of SAW device characteristics or handling. When the thickness is reduced, the substrate is easily broken, the warpage is increased, and the pattern forming accuracy is deteriorated. In addition, there is a concern that adverse effects such as generation of spurious vibrations due to the reflection of the bulk wave on the back surface may occur.

【0007】[0007]

【発明が解決しようとする課題】SAWデバイスは、そ
の動作中発熱し、この高温状態が電極膜の破壊を加速さ
せるという課題があった。
The SAW device has a problem that it generates heat during its operation, and this high temperature accelerates the destruction of the electrode film.

【0008】従来の電極材料技術により開発された、ア
ルミニウムに他の金属を添加する合金電極や、アルミニ
ウムと他の金属を積層する積層電極は、電極膜自体のス
トレスマイグレーション耐性を高めることにより、耐電
力性を向上したものであるが、いずれも比抵抗の増大に
よる発熱量の増大が予想される。
[0008] Alloy electrodes that are obtained by adding other metals to aluminum and laminated electrodes that are formed by laminating aluminum and other metals, which have been developed by the conventional electrode material technology, have been improved by increasing the stress migration resistance of the electrode films themselves. Although the power performance is improved, an increase in heat generation due to an increase in specific resistance is expected in each case.

【0009】これに対し、本発明は、基板の放熱を良く
するという新しい視点で耐電力性を向上できることを示
したものであり、電極材料技術と併用することが可能で
ある。
On the other hand, the present invention shows that the power durability can be improved from a new viewpoint of improving the heat radiation of the substrate, and can be used in combination with the electrode material technology.

【0010】本発明は、耐電力性に優れたSAWデバイ
スを提供することを目的とする。
An object of the present invention is to provide a SAW device having excellent power durability.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
に、本発明のSAWデバイスにおいては、基板の一部ま
たは全部を薄くすることで、基板からの放熱を良くした
ものである。
In order to solve this problem, in a SAW device according to the present invention, a part or the whole of a substrate is thinned to improve heat radiation from the substrate.

【0012】これにより、SAWデバイスの動作中に発
生した熱は、薄板化された基板を通して外部に伝わり、
SAWチップの蓄熱による高温化を防ぐことができ、チ
ップ温度の上昇を抑えることで、SAWデバイスの耐電
力性を向上することができる。さらに、溝状に基板の一
部だけ薄板化した構造とすれば、従来のパターン形成技
術、プロセスを用いることができ、プロセス中での基板
の割れが発生し難く取り扱いが容易で、かつ薄板化にし
たときのバルク波の反射の影響を抑えることができる。
Thus, the heat generated during the operation of the SAW device is transmitted to the outside through the thinned substrate,
It is possible to prevent an increase in temperature due to heat storage of the SAW chip, and to improve the power durability of the SAW device by suppressing a rise in chip temperature. Furthermore, if the structure is such that only a part of the substrate is thinned in a groove shape, the conventional pattern forming technology and process can be used, and the substrate is hardly cracked during the process, handling is easy, and the thinning is achieved. In this case, the influence of the reflection of the bulk wave can be suppressed.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧電体基板の一部または全面の厚みが100から2
50μmである構成であり、SAWデバイスの動作中に
発生した熱は、薄板化された基板を通して外部に伝わ
り、SAWチップの蓄熱による高温化を防ぐことがで
き、チップ温度の上昇を抑えることで、SAWデバイス
の耐電力性を向上することができる。厚みを100から
250μmとすることで、放熱の効果があり、かつプロ
セス中での基板の割れが発生し難く、取り扱いが容易な
SAWデバイスを提供するという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, the thickness of a part or the whole of a piezoelectric substrate is 100 to 2 mm.
The heat generated during the operation of the SAW device is transmitted to the outside through the thinned substrate, and can prevent the SAW chip from being heated to a high temperature due to the heat storage of the SAW chip. The power durability of the SAW device can be improved. By setting the thickness to 100 to 250 μm, there is an effect of providing a SAW device that has a heat radiation effect, hardly causes cracks in the substrate during the process, and is easy to handle.

【0014】本発明の請求項2に記載の発明は、圧電体
基板の一部または全面の厚みが100から250μm
で、かつ、パターン形成していない面の表面粗さRaを
略0.5μmとした構成であり、SAWデバイスの動作
中に発生した熱は、薄板化された基板を通して外部に伝
わり、SAWチップの蓄熱による高温化を防ぐことがで
き、チップ温度の上昇を抑えることで、SAWデバイス
の耐電力性を向上することができる。厚みを100から
250μmとすることで放熱の効果があり、かつプロセ
ス中での基板の割れが発生し難く、取り扱いが容易とな
る。かつ、表面粗さRaを略0.5μmとすることで、
バルク波を基板の裏面で乱反射させて、反射によるスプ
リアスの影響を抑えたSAWデバイスを提供するという
作用を有する。
According to a second aspect of the present invention, the thickness of the piezoelectric substrate is partially or entirely 100 to 250 μm.
The surface roughness Ra of the surface on which no pattern is formed is set to approximately 0.5 μm, and the heat generated during the operation of the SAW device is transmitted to the outside through the thinned substrate, and the surface of the SAW chip is It is possible to prevent an increase in temperature due to heat storage and suppress an increase in chip temperature, thereby improving the power durability of the SAW device. By setting the thickness to 100 to 250 μm, there is an effect of radiating heat, the substrate is hardly cracked during the process, and the handling becomes easy. And by setting the surface roughness Ra to approximately 0.5 μm,
This has the effect of providing a SAW device in which the bulk wave is irregularly reflected on the back surface of the substrate and the influence of spurious due to reflection is suppressed.

【0015】本発明の請求項3に記載の発明は、圧電体
基板の一部に少なくとも1つ以上の溝を設けた構成であ
り、SAWデバイスの動作中に発生した熱は、薄板化さ
れた基板を通して外部に伝わり、SAWチップの蓄熱に
よる高温化を防ぐことができ、チップ温度の上昇を抑え
ることで、SAWデバイスの耐電力性を向上することが
できる。かつ、溝状に基板の一部だけ薄板化したもので
あり、プロセス中での基板の割れが発生し難く、取り扱
いが容易なSAWデバイスを提供するという作用を有す
る。
According to a third aspect of the present invention, at least one groove is provided in a part of the piezoelectric substrate, and heat generated during operation of the SAW device is reduced. By transmitting the heat to the outside through the substrate, it is possible to prevent the temperature of the SAW chip from becoming high due to heat storage, and to suppress the rise in the chip temperature, thereby improving the power durability of the SAW device. In addition, since only a part of the substrate is thinned in a groove shape, the substrate has a function of preventing the substrate from being cracked during the process and providing a SAW device which is easy to handle.

【0016】本発明の請求項4に記載の発明は、圧電体
基板の一部に溝を設け、その厚みを100から250μ
mとした構成であり、SAWデバイスの動作中に発生し
た熱は、薄板化された基板を通して外部に伝わり、SA
Wチップの蓄熱による高温化を防ぐことができ、チップ
温度の上昇を抑えることで、SAWデバイスの耐電力性
を向上することができる。厚みを100から250μm
とすることで放熱の効果があり、かつプロセス中での基
板の割れが発生し難く、取り扱いが容易なSAWデバイ
スを提供するという作用を有する。
According to a fourth aspect of the present invention, a groove is provided in a part of the piezoelectric substrate, and the thickness of the groove is set to 100 to 250 μm.
m, the heat generated during the operation of the SAW device is transmitted to the outside through the thinned substrate,
A high temperature due to heat storage of the W chip can be prevented, and a rise in the chip temperature can be suppressed, whereby the power durability of the SAW device can be improved. 100 to 250 μm thickness
By doing so, there is an effect of providing a SAW device which has an effect of heat radiation, hardly causes cracks in the substrate during the process, and is easy to handle.

【0017】本発明の請求項5に記載の発明は、圧電体
基板の一部に溝の断面形状を略半円形状とした構成であ
り、SAWデバイスの動作中に発生した熱は、薄板化さ
れた基板を通して外部に伝わり、SAWチップの蓄熱に
よる高温化を防ぐことができ、チップ温度の上昇を抑え
ることで、SAWデバイスの耐電力性を向上することが
できる。かつ、溝の断面形状を略半円形状としたもので
あり、プロセス中での基板の割れが発生し難く、取り扱
いが容易となる。かつ、バルク波は溝の曲面で乱反射さ
れるため、反射によるスプリアスの影響を抑えたSAW
デバイスを提供するという作用を有する。
According to a fifth aspect of the present invention, the cross section of the groove of the piezoelectric substrate is substantially semicircular, and the heat generated during the operation of the SAW device is reduced. The heat can be transmitted to the outside through the substrate, and the temperature of the SAW chip can be prevented from rising due to heat storage. By suppressing the rise in chip temperature, the power durability of the SAW device can be improved. In addition, the cross-sectional shape of the groove is substantially semicircular, so that the substrate is unlikely to crack during the process, and handling is easy. In addition, since the bulk wave is irregularly reflected on the curved surface of the groove, the SAW in which the influence of spurious due to reflection is suppressed.
It has the effect of providing a device.

【0018】本発明の請求項6に記載の発明は、圧電体
基板の一部に設けた溝の加工面の表面粗さRaを略0.
5μmとした構成であり、SAWデバイスの動作中に発
生した熱は、薄板化された基板を通して外部に伝わり、
SAWチップの蓄熱による高温化を防ぐことができ、チ
ップ温度の上昇を抑えることで、SAWデバイスの耐電
力性を向上することができる。かつ、表面粗さを略0.
5μmとすることで、バルク波を基板の裏面で乱反射さ
せて、反射によるスプリアスの影響を抑えたSAWデバ
イスを提供するという作用を有する。
According to the invention described in claim 6 of the present invention, the surface roughness Ra of the processing surface of the groove provided in a part of the piezoelectric substrate is set to approximately 0.1.
The heat generated during the operation of the SAW device is transmitted to the outside through the thinned substrate,
It is possible to prevent an increase in temperature due to heat storage of the SAW chip, and to improve the power durability of the SAW device by suppressing a rise in chip temperature. In addition, the surface roughness is set to approximately 0.
By setting the thickness to 5 μm, the bulk wave is irregularly reflected on the back surface of the substrate, thereby providing an SAW device in which the influence of spurious due to reflection is suppressed.

【0019】本発明の請求項7に記載の発明は、圧電体
基板表面上に設けた少なくともインターデジタルトラン
スデューサ電極と反射器からなる共振子を有し、この共
振子の略直下に、インターデジタルトランスデューサ電
極と平行する方向に少なくとも1つ以上の溝を形成した
構成であり、SAWデバイスの動作中に発生した熱は、
薄板化された基板を通して外部に伝わり、SAWチップ
の蓄熱による高温化を防ぐことができ、チップ温度の上
昇を抑えることで、SAWデバイスの耐電力性を向上す
ることができる。かつ、バルク波の反射が最も発生する
共振子の直下を曲面にすることでバルク波を乱反射させ
て、反射によるスプリアスの影響を抑え、かつ、プロセ
ス中での基板の割れが発生し難く取り扱いが容易なSA
Wデバイスを提供するという作用を有する。
According to a seventh aspect of the present invention, there is provided a resonator comprising at least an interdigital transducer electrode and a reflector provided on a surface of a piezoelectric substrate, and an interdigital transducer is provided substantially immediately below the resonator. It has a configuration in which at least one or more grooves are formed in a direction parallel to the electrodes, and heat generated during operation of the SAW device is:
The power is transmitted to the outside through the thinned substrate, so that the temperature of the SAW chip can be prevented from rising due to heat storage. By suppressing a rise in the chip temperature, the power durability of the SAW device can be improved. In addition, by making the curved surface directly under the resonator where bulk wave reflection occurs most, the bulk wave is irregularly reflected, suppressing the influence of spurious due to reflection, and the substrate is less likely to crack during the process and handling is easy. Easy SA
It has the effect of providing a W device.

【0020】本発明の請求項8に記載の発明は、圧電体
基板表面上に設けた少なくともインターデジタルトラン
スデューサ電極と反射器からなる共振子を有し、この共
振子の直下からずらし、インターデジタルトランスデュ
ーサ電極と直行する方向に少なくとも1つ以上の溝を形
成した構成であり、SAWデバイスの動作中、基板を薄
く放熱を良くしたことで、チップ温度の上昇を抑えるこ
とができ、耐電力性を向上できる。かつ、バルク波の反
射が最も発生する共振子の直下からずらした部分を薄板
化することで、バルク波の反射によるスプリアスの影響
を抑え、かつ、プロセス中での基板の割れが発生し難く
取り扱いが容易なSAWデバイスを提供するという作用
を有する。
According to an eighth aspect of the present invention, there is provided an interdigital transducer having a resonator comprising at least an interdigital transducer electrode and a reflector provided on the surface of a piezoelectric substrate, and being displaced from immediately below the resonator. At least one groove is formed in the direction perpendicular to the electrodes. During operation of the SAW device, the substrate is thin and heat radiation is improved, so that the rise in chip temperature can be suppressed and the power durability improved. it can. In addition, by reducing the thickness of the part shifted from immediately below the resonator where reflection of bulk waves occurs most, the effect of spurious due to reflection of bulk waves is suppressed, and the substrate is less likely to crack during processing. Provides an easy-to-use SAW device.

【0021】本発明の請求項9に記載の発明は、インタ
ーデジタルトランスデューサ電極を形成した圧電体基板
のパッケージへの固定に導電性樹脂を用いた構成であ
り、基板を導電性樹脂で固定することにより、基板から
の熱伝導を良くすることで、放熱がさらに良くなり、チ
ップ温度の上昇を抑えることができ、耐電力性を向上で
きる。SAWデバイスの動作中、基板を薄く放熱を良く
したことで、チップ温度の上昇を抑えることができ、耐
電力性を向上したSAWデバイスを提供するという作用
を有する。
According to a ninth aspect of the present invention, the piezoelectric substrate on which the interdigital transducer electrodes are formed is fixed to a package using a conductive resin, and the substrate is fixed with the conductive resin. Accordingly, by improving the heat conduction from the substrate, the heat radiation is further improved, the rise in the chip temperature can be suppressed, and the power durability can be improved. During the operation of the SAW device, the substrate is made thinner and the heat radiation is improved, so that an increase in chip temperature can be suppressed, and an effect of providing a SAW device with improved power durability can be provided.

【0022】本発明の請求項10に記載の発明は、圧電
体基板上に均一にアルミニウム膜またはアルミニウム合
金膜をスパッタ法または真空蒸着法で形成し、その上に
フォトリソ技術を用いて、レジストにて所望のパターン
を形成し、リアクティブイオンエッチング法により不要
な電極部の除去、水洗後、ワックス等溶剤に可溶な低融
点の樹脂をパターン形成面に塗布し、基板保持治具に固
定後、ダイヤモンド等の砥粒を接着させた砥石による研
削加工により基板の一部に溝を形成し、または基板の全
面を薄板化し、最後にワックスとレジストを同時に、溶
剤により溶解除去するSAWデバイスの製造方法であ
り、従来のSAWフィルタの加工技術、およびプロセス
が使え、かつパターン形成後に基板の薄板化を行うこと
で、薄板化によるパターン形成精度の劣化を防ぐことが
できるという作用を有する。
According to a tenth aspect of the present invention, an aluminum film or an aluminum alloy film is uniformly formed on a piezoelectric substrate by a sputtering method or a vacuum evaporation method, and a resist is formed thereon by using a photolithography technique. After removing the unnecessary electrode parts by reactive ion etching and washing with water, apply a low-melting resin soluble in solvents such as wax to the pattern forming surface and fix it to the substrate holding jig. Fabrication of SAW devices in which grooves are formed in a part of the substrate by grinding with a grindstone to which abrasive grains such as diamond are bonded, or the entire surface of the substrate is thinned, and finally, wax and resist are simultaneously dissolved and removed with a solvent. This method uses conventional SAW filter processing techniques and processes, and can reduce the thickness of the substrate by forming a thinner substrate after pattern formation. An effect that it is possible to prevent the deterioration of over emissions formation accuracy.

【0023】本発明の請求項11に記載の発明は、アル
ミニウム電極形成等の従来のパターン形成プロセスの前
に、ワックス等溶剤に可溶な低融点の樹脂を塗布し、ま
たは真空吸着により基板のパターン形成面側を基板保持
治具に固定後、ダイヤモンド等の砥粒を接着させた砥石
による研削加工にて、圧電基板のパターン形成面と反対
面に、あらかじめ所定の溝を形成するSAWデバイスの
製造方法であり、一部のみを薄板化するため、従来のS
AWフィルタの加工技術、およびプロセスが使え、か
つ、基板加工ひずみによる基板のそり等に起因するパタ
ーン形成精度の劣化を防ぐことができるという作用を有
する。
According to the present invention, a low-melting resin soluble in a solvent such as wax is applied before the conventional pattern forming process such as the formation of an aluminum electrode, or the substrate is vacuum-adsorbed. After fixing the pattern forming surface side to the substrate holding jig, a SAW device in which predetermined grooves are formed in advance on the surface opposite to the pattern forming surface of the piezoelectric substrate by grinding using a grindstone to which abrasive grains such as diamond are adhered. This is a manufacturing method.
It has an effect that the processing technology and process of the AW filter can be used, and deterioration of pattern formation accuracy caused by substrate warpage due to substrate processing distortion can be prevented.

【0024】以下、本発明の実施の形態について説明す
る。 (実施の形態1)図1(a)は、本実施の形態で作成し
たラダー型SAWフィルタの構成を示す斜視図である。
また図1(b)はその構成図である。1は圧電体基板で
あり、その厚みは約150μmに薄板化されており、本
実施の形態においては36°Yカット−X伝播LiTa
3基板を用いた。2はSAW共振子であり、櫛形電極
および反射器で構成されており、アルミニウム膜を加工
して形成したものである。4はセラミックパッケージ
で、3はSAWチップをセラミックパッケージに固定す
るためのダイボンド樹脂で、本実施の形態においてはS
AWチップからの熱伝導をよくするため、導電性樹脂と
して銀ペーストを用いた。7はアルミニウム細線からな
るボンディングワイヤーで、SAWチップとセラミック
パッケージの電気的接続は、5の入力端子、6の出力端
子、8のGND端子それぞれにワイヤーボンドで行っ
た。
Hereinafter, embodiments of the present invention will be described. (Embodiment 1) FIG. 1A is a perspective view showing a configuration of a ladder-type SAW filter created in this embodiment.
FIG. 1B is a diagram showing the configuration. Reference numeral 1 denotes a piezoelectric substrate whose thickness is reduced to about 150 μm. In this embodiment, 36 ° Y-cut X-propagation LiTa
An O 3 substrate was used. Reference numeral 2 denotes a SAW resonator which includes a comb-shaped electrode and a reflector and is formed by processing an aluminum film. Reference numeral 4 denotes a ceramic package, reference numeral 3 denotes a die bond resin for fixing the SAW chip to the ceramic package, and in this embodiment, S
A silver paste was used as a conductive resin to improve heat conduction from the AW chip. Reference numeral 7 denotes a bonding wire made of a thin aluminum wire. The electrical connection between the SAW chip and the ceramic package was performed by wire bonding to the input terminal 5, the output terminal 6, and the GND terminal 8, respectively.

【0025】本実施の形態1のSAWフィルタの製造フ
ローを図4に示す。まず、従来使用している厚み約35
0μm LT基板を洗浄する。次に、Al1%Cuから
なる電極膜をスパッタリングにより約4000Å形成す
る。次に、フォトレジストをスピンコーターにより塗布
し、乾燥させる。次に、フォトマスク上に形成された所
定のパターンを露光し、転写する。次に、現像し不要な
レジストを除去する。次に、ドライエッチングにより不
要なAl1%Cu電極膜を除去し、Al1%Cu電極膜
による所望のパターンをLT基板上に実現する。ここま
では、従来の製造フローと全く同じである。
FIG. 4 shows a manufacturing flow of the SAW filter according to the first embodiment. First, the conventional thickness of about 35
Wash the 0 μm LT substrate. Next, an electrode film made of Al1% Cu is formed to a thickness of about 4000 ° by sputtering. Next, a photoresist is applied by a spin coater and dried. Next, a predetermined pattern formed on the photomask is exposed and transferred. Next, development is performed to remove unnecessary resist. Next, the unnecessary Al1% Cu electrode film is removed by dry etching, and a desired pattern of the Al1% Cu electrode film is realized on the LT substrate. Up to this point, it is exactly the same as the conventional manufacturing flow.

【0026】次に、溶剤に溶け、かつ100℃以下の低
融点の性質をもつ樹脂で、例えばワックスを基板のパタ
ーン形成面に塗布し、基板保持具に接着する。次に、研
削加工機のステージ上に基板保持具を下にして基板を乗
せ真空吸着により固定する。そして、#1000番のダ
イヤモンド砥粒が接着された研削盤により、基板を薄く
削り、約150μmに仕上げる。#1000番のダイヤ
モンド砥粒が接着された研削盤で加工することにより、
加工面の面粗さRaは約0.5μmとなる。次に、ワッ
クスとレジストをアセトン等の有機溶剤で溶解除去す
る。
Next, for example, a wax, which is soluble in a solvent and has a low melting point of 100 ° C. or less, is applied to the pattern forming surface of the substrate and adhered to the substrate holder. Next, the substrate is placed on the stage of the grinding machine with the substrate holder down, and fixed by vacuum suction. Then, the substrate is thinly ground with a grinder to which # 1000 diamond abrasive grains are bonded, and finished to about 150 μm. By processing with a grinding machine to which # 1000 diamond abrasive grains are bonded,
The surface roughness Ra of the processed surface is about 0.5 μm. Next, the wax and the resist are dissolved and removed with an organic solvent such as acetone.

【0027】最後に、従来の製造方法と同様に、ウエハ
上に形成したSAWチップをダイシングにより個片化を
行う。これにより、従来のパターン形成技術を用い、パ
ターン精度を損なうことなく、LT基板を薄板化した構
成のSAWチップを製造することができる。SAWチッ
プをセラミックパッケージ内にダイボンド樹脂で固定
し、ワイヤボンディングでSAWチップとセラミックパ
ッケージの電気的接続を行い、シーム溶接により気密封
止を行う。なお、ダイボンド樹脂として、導電性樹脂を
用いることで、基板の放熱性は良くなり、耐電力性は向
上することが期待できる。
Finally, similarly to the conventional manufacturing method, the SAW chips formed on the wafer are singulated by dicing. As a result, a SAW chip having a configuration in which the LT substrate is thinned can be manufactured using the conventional pattern forming technique without deteriorating the pattern accuracy. The SAW chip is fixed in the ceramic package with a die bond resin, the SAW chip and the ceramic package are electrically connected by wire bonding, and hermetically sealed by seam welding. Note that by using a conductive resin as the die bond resin, it is expected that the heat dissipation of the substrate is improved and the power durability is improved.

【0028】なお、ダイシングによる個片化のあと、研
削により薄板化を行うことも可能である。
After dicing into individual pieces, it is also possible to reduce the thickness by grinding.

【0029】(実施の形態2)図2は、本実施の形態で
作成したラダー型SAWフィルタの構成を示す斜視図で
ある。なお、図2に示す本発明の実施の形態の構成は、
基本的には図1に示した構成と同じであるので、同一構
成部分には同一記号を付して詳細な説明は省略する。た
だし、この実施の形態2の特徴は、入力側から第1段目
の並列共振子の略直下に、断面形状が半円状の溝を、イ
ンターデジタルトランスデューサ電極に平行に形成し、
基板の最も薄い部分の厚みを約150μmに薄板化した
ものである。なお、SAWフィルタの設計、使用方法に
より、電極の破壊が最も発生しやすい共振子は異なるた
め、最も耐電力性の弱い共振子をあらかじめ調べ、その
共振子の略直下に溝を形成することが望ましい。多くの
場合は、入力側から第1段目の並列共振子または直列共
振子であり、両方またを一方に対象にすることが望まし
い。
(Embodiment 2) FIG. 2 is a perspective view showing the configuration of a ladder-type SAW filter produced in this embodiment. The configuration of the embodiment of the present invention shown in FIG.
Since the configuration is basically the same as that shown in FIG. 1, the same components will be denoted by the same reference symbols and detailed description thereof will be omitted. However, a feature of the second embodiment is that a groove having a semicircular cross section is formed almost directly below the first-stage parallel resonator from the input side in parallel with the interdigital transducer electrode.
The thickness of the thinnest portion of the substrate is reduced to about 150 μm. Since the resonator in which electrode breakdown is most likely to occur differs depending on the design and usage of the SAW filter, it is necessary to check in advance the resonator having the weakest power durability and form a groove substantially immediately below the resonator. desirable. In many cases, it is a parallel resonator or a series resonator of the first stage from the input side, and it is desirable to target both or one of them.

【0030】本実施の形態2のSAWフィルタの製造フ
ローを図5に示す。まず、従来使用している厚み約35
0μm LT基板を洗浄する。次に、溶剤に溶け、かつ
100℃以下の低融点の性質をもつ樹脂、例えばワック
スを基板のパターン形成をする面に塗布し、基板保持具
に接着する。次に、研削加工機のステージ上に基板保持
具を下にして基板を乗せ真空吸着により固定する。そし
て、#1000番のダイヤモンド砥粒が接着された、先
端が半円状に加工された幅約300μmの円盤状の研削
盤により、入力側から第1段目の並列共振子の直下に当
たる部分の基板を薄く削り、最も薄い部分の厚みを約1
50μmに仕上げる。後は従来の製造プロセスと全く同
じで、Al1%Cuからなる電極膜をスパッタリングに
より約4000Å形成する。
FIG. 5 shows a manufacturing flow of the SAW filter according to the second embodiment. First, the conventional thickness of about 35
Wash the 0 μm LT substrate. Next, a resin that is soluble in a solvent and has a low melting point of 100 ° C. or less, for example, wax, is applied to the surface of the substrate on which the pattern is to be formed, and is adhered to the substrate holder. Next, the substrate is placed on the stage of the grinding machine with the substrate holder down, and fixed by vacuum suction. Then, a portion of the portion directly under the first-stage parallel resonator from the input side is formed by a disc-shaped grinding machine having a width of about 300 μm and having a semicircular tip, to which the # 1000 diamond abrasive is adhered. Thin the board and reduce the thickness of the thinnest part to about 1
Finish to 50 μm. After that, an electrode film made of Al1% Cu is formed in a thickness of about 4000 ° by sputtering in exactly the same manner as in the conventional manufacturing process.

【0031】次に、フォトレジストをスピンコーターに
より塗布し、乾燥させる。次に、フォトマスク上に形成
された所定のパターンを露光し、転写する。次に、現像
し不要なレジストを除去する。次にドライエッチングに
より不要なAl1%Cu電極膜を除去し、Al1%Cu
電極膜による所望のパターンをLT基板上に実現する。
Next, a photoresist is applied by a spin coater and dried. Next, a predetermined pattern formed on the photomask is exposed and transferred. Next, development is performed to remove unnecessary resist. Next, unnecessary Al1% Cu electrode film is removed by dry etching, and Al1% Cu electrode film is removed.
A desired pattern by the electrode film is realized on the LT substrate.

【0032】最後に、ウエハ上に形成したSAWチップ
をダイシングにより個片化を行う。これにより、従来の
パターン形成技術を用い、パターン精度を損なうことな
く、LT基板を薄板化した構成のSAWチップを製造す
ることができる。SAWチップをセラミックパッケージ
内にダイボンド樹脂で固定し、ワイヤボンディングでS
AWチップとセラミックパッケージの電気的接続を行
い、シーム溶接により気密封止を行う。なお、ダイボン
ド樹脂として、導電性樹脂を用いることで、基板の放熱
性は良くなり、耐電力性は向上することが期待できる。
Finally, the SAW chips formed on the wafer are singulated by dicing. As a result, a SAW chip having a configuration in which the LT substrate is thinned can be manufactured using the conventional pattern forming technique without deteriorating the pattern accuracy. Fix the SAW chip in the ceramic package with die bond resin and wire bond S
The AW chip is electrically connected to the ceramic package, and hermetically sealed by seam welding. Note that by using a conductive resin as the die bond resin, it is expected that the heat dissipation of the substrate is improved and the power durability is improved.

【0033】(実施の形態3)図3は、本実施の形態で
作成したラダー型SAWフィルタの構成を示す斜視図で
ある。なお、図3に示す本発明の実施の形態の構成は、
基本的には図1に示した構成と同じであるので、同一構
成部分には同一記号を付して詳細な説明は省略する。た
だし、この実施の形態3の特徴は、入力側から第1段目
の並列共振子の直下からずらして、断面形状が半円状の
溝を2本、インターデジタルトランスデューサ電極に略
垂直に形成し、基板の最も薄い部分の厚みを約150μ
mに薄板化したものである。なお、SAWフィルタの設
計、使用方法により、電極の破壊が最も発生しやすい共
振子は異なるため、最も耐電力性の弱い共振子をあらか
じめ調べ、その共振子の略直下に溝を形成することが望
ましい。多くの場合は、入力側から第1段目の並列共振
子または直列共振子であり、両方または一方を対象にす
ることが望ましい。
(Embodiment 3) FIG. 3 is a perspective view showing the configuration of a ladder-type SAW filter produced in this embodiment. The configuration of the embodiment of the present invention shown in FIG.
Since the configuration is basically the same as that shown in FIG. 1, the same components will be denoted by the same reference symbols and detailed description thereof will be omitted. However, the feature of the third embodiment is that two grooves each having a semicircular cross section are formed substantially perpendicular to the interdigital transducer electrode by being shifted from immediately below the first-stage parallel resonator from the input side. , The thickness of the thinnest part of the substrate is about 150μ
m. Since the resonator in which electrode breakdown is most likely to occur differs depending on the design and usage of the SAW filter, it is necessary to check in advance the resonator having the weakest power durability and form a groove substantially immediately below the resonator. desirable. In many cases, the first stage is a parallel resonator or a series resonator from the input side, and it is desirable to target both or one of them.

【0034】本実施の形態3のSAWフィルタの製造フ
ローは基本的には図5に示し、実施の形態2での説明と
基本的には同じである。
The manufacturing flow of the SAW filter according to the third embodiment is basically shown in FIG. 5, and is basically the same as that described in the second embodiment.

【0035】SAWチップの基板温度を実際に測定する
ことは困難であるが、基板の厚みが350μmのものよ
り、250μm、150μmのものの方が、耐電力性は
それぞれ、5倍、10倍に向上する。また、耐電力試験
温度と耐電力寿命の関係から、動作中のチップの温度
は、それぞれ、20℃、35℃程度低温化できているこ
とが予想される。
Although it is difficult to actually measure the substrate temperature of the SAW chip, the substrate having a thickness of 250 μm and 150 μm has a 5-fold and 10-fold improvement in power durability compared to a substrate having a thickness of 350 μm. I do. Further, from the relationship between the power withstand test temperature and the power withstand life, it is expected that the temperatures of the operating chips can be lowered by about 20 ° C. and 35 ° C., respectively.

【0036】[0036]

【発明の効果】以上のように、圧電体基板の一部または
全面を薄くした構成であり、SAWデバイスの動作中に
発生した熱は、薄板化された基板を通して外部に伝わ
り、SAWチップの蓄熱による高温化を防ぐことがで
き、チップ温度の上昇を抑えることで、SAWデバイス
の耐電力性を向上することができる。さらに、溝状に基
板の一部だけ薄板化した構造とすれば、従来のパターン
形成技術、プロセスを用いることができ、プロセス中で
の基板の割れが発生し難く取り扱いが容易な、かつ薄板
化にしたときのバルク波の反射の影響を抑えたSAWデ
バイスを得ることができ、大電力が印加される携帯電話
の共用器に用いることのできるSAWフィルタ、キーレ
スエントリーシステムに使用される共振子などを信頼性
良く作成できる点で効果を発揮する。
As described above, the piezoelectric substrate is partially or entirely thinned, and the heat generated during the operation of the SAW device is transmitted to the outside through the thinned substrate, and the heat of the SAW chip is stored. Temperature can be prevented, and by suppressing the rise in chip temperature, the power durability of the SAW device can be improved. Furthermore, if the structure is such that only a part of the substrate is thinned in a groove shape, the conventional pattern forming technology and process can be used. A SAW device that suppresses the influence of bulk wave reflection when the filter is used can be obtained, and a SAW filter that can be used in a duplexer of a mobile phone to which a large amount of power is applied, a resonator used in a keyless entry system, and the like This is effective in that it can be created with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の実施の形態1におけるSAWフ
ィルタの概略構成を示す模式図 (b)同構成図
FIG. 1A is a schematic diagram illustrating a schematic configuration of a SAW filter according to a first embodiment of the present invention; FIG.

【図2】本発明の実施の形態2におけるSAWフィルタ
の概略構成を示す模式図
FIG. 2 is a schematic diagram showing a schematic configuration of a SAW filter according to a second embodiment of the present invention.

【図3】本発明の実施の形態3におけるSAWフィルタ
の概略構成を示す模式図
FIG. 3 is a schematic diagram illustrating a schematic configuration of a SAW filter according to a third embodiment of the present invention.

【図4】本発明の実施の形態1におけるSAWフィルタ
の製造フローを示す工程図
FIG. 4 is a process chart showing a manufacturing flow of the SAW filter according to the first embodiment of the present invention.

【図5】本発明の実施の形態2,3におけるSAWフィ
ルタの製造フローを示す工程図
FIG. 5 is a process chart showing a manufacturing flow of a SAW filter according to the second and third embodiments of the present invention.

【符号の説明】[Explanation of symbols]

1 圧電体基板 2 共振子 3 ダイボンド樹脂 4 セラミックパッケージ 5 入力端子 6 出力端子 7 ボンディングワイヤー 8 GND端子 DESCRIPTION OF SYMBOLS 1 Piezoelectric substrate 2 Resonator 3 Die bond resin 4 Ceramic package 5 Input terminal 6 Output terminal 7 Bonding wire 8 GND terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西原 和成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 野村 幸治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Kazunari Nishihara 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 圧電体基板と、この圧電体基板表面上に
設けた少なくともインターデジタルトランスデューサ電
極を有し、この圧電体基板の一部または全面の厚みが1
00から250μmである構成のSAWデバイス。
A piezoelectric substrate having at least an interdigital transducer electrode provided on a surface of the piezoelectric substrate, wherein a thickness of a part or the entire surface of the piezoelectric substrate is 1
A SAW device having a configuration of 00 to 250 μm.
【請求項2】 圧電体基板の表面のうち、インターデジ
タルトランスデューサ電極を形成していない面の面粗さ
Raを略0.5μmとした請求項1記載のSAWデバイ
ス。
2. The SAW device according to claim 1, wherein the surface of the piezoelectric substrate on which the interdigital transducer electrode is not formed has a surface roughness Ra of about 0.5 μm.
【請求項3】 圧電体基板と、この圧電体基板表面上に
設けた少なくともインターデジタルトランスデューサ電
極を有し、この圧電体基板の一部に少なくとも1つ以上
の溝を設けた構成のSAWデバイス。
3. A SAW device having a piezoelectric substrate and at least an interdigital transducer electrode provided on the surface of the piezoelectric substrate, wherein at least one groove is provided in a part of the piezoelectric substrate.
【請求項4】 圧電体基板の一部に溝を設け、その厚み
を100から250μmとした請求項3記載のSAWデ
バイス。
4. The SAW device according to claim 3, wherein a groove is provided in a part of the piezoelectric substrate, and the thickness of the groove is 100 to 250 μm.
【請求項5】 圧電体基板の一部に溝の断面形状を略半
円形状とした請求項3または請求項4記載のSAWデバ
イス。
5. The SAW device according to claim 3, wherein the cross-sectional shape of the groove in a part of the piezoelectric substrate is substantially semicircular.
【請求項6】 圧電体基板の一部に設けた溝の加工面の
表面粗さRaを略0.5μmとした請求項3から請求項
5のいずれかに記載のSAWデバイス。
6. The SAW device according to claim 3, wherein a surface roughness Ra of a processing surface of the groove provided in a part of the piezoelectric substrate is approximately 0.5 μm.
【請求項7】 圧電体基板と、この圧電体基板表面上に
設けた少なくともインターデジタルトランスデューサ電
極と反射器からなる共振子を有し、この共振子の略直下
に、インターデジタルトランスデューサ電極と平行する
方向に少なくとも1つ以上の溝を形成した構成の請求項
4から請求項6のいずれかに記載のSAWデバイス。
7. A piezoelectric substrate, and a resonator comprising at least an interdigital transducer electrode and a reflector provided on the surface of the piezoelectric substrate, and substantially parallel to the interdigital transducer electrode substantially under the resonator. The SAW device according to any one of claims 4 to 6, wherein at least one or more grooves are formed in the direction.
【請求項8】 圧電体基板と、この圧電体基板表面上に
設けた少なくともインターデジタルトランスデューサ電
極と反射器からなる共振子を有し、この共振子の直下か
らずらし、インターデジタルトランスデューサ電極と直
行する方向に少なくとも1つ以上の溝を形成した構成の
請求項4から請求項6のいずれかに記載のSAWデバイ
ス。
8. A piezoelectric substrate, and a resonator including at least an interdigital transducer electrode and a reflector provided on the surface of the piezoelectric substrate, and is displaced from immediately below the resonator to be perpendicular to the interdigital transducer electrode. The SAW device according to any one of claims 4 to 6, wherein at least one or more grooves are formed in the direction.
【請求項9】 インターデジタルトランスデューサ電極
を形成した圧電体基板のパッケージへの固定に導電性樹
脂を用いた請求項1から請求項8のいずれかに記載のS
AWデバイス。
9. The S according to claim 1, wherein a conductive resin is used for fixing the piezoelectric substrate on which the interdigital transducer electrodes are formed to a package.
AW device.
【請求項10】 圧電体基板上に均一にアルミニウム膜
またはアルミニウム合金膜をスパッタ法または真空蒸着
法で形成し、その上にフォトリソ技術を用いて、レジス
トにて所望のパターンを形成し、リアクティブイオンエ
ッチング法により不要な電極部の除去、水洗後、ワック
ス等溶剤に可溶な低融点の樹脂をパターン形成面に塗布
し、基板保持治具に固定後、ダイヤモンド等の砥粒を接
着させた砥石による研削加工により基板の一部に溝を形
成し、または基板の全面を薄板化し、最後にワックスと
レジストを同時に、溶剤により溶解除去するSAWデバ
イスの製造方法。
10. An aluminum film or an aluminum alloy film is uniformly formed on a piezoelectric substrate by a sputtering method or a vacuum evaporation method, and a desired pattern is formed thereon by a resist using a photolithography technique. After removing unnecessary electrode parts by ion etching and washing with water, a low-melting resin soluble in solvents such as wax was applied to the pattern formation surface, fixed to a substrate holding jig, and then abrasive grains such as diamond were bonded. A method of manufacturing a SAW device in which a groove is formed in a part of a substrate by grinding with a grindstone, or the entire surface of the substrate is thinned, and finally, wax and resist are simultaneously dissolved and removed with a solvent.
【請求項11】 アルミニウム電極形成等の従来のパタ
ーン形成プロセスの前に、ワックス等溶剤に可溶な低融
点の樹脂を塗布し、または真空吸着により基板のパター
ン形成面側を基板保持治具に固定後、ダイヤモンド等の
砥粒を接着させた砥石による研削加工にて、圧電基板の
パターン形成面と反対の面に、あらかじめ所定の溝を形
成するSAWデバイスの製造方法。
11. Prior to a conventional pattern forming process such as formation of an aluminum electrode, a low-melting resin soluble in a solvent such as wax is applied, or the pattern forming surface side of the substrate is placed on a substrate holding jig by vacuum suction. A method for manufacturing a SAW device in which predetermined grooves are formed in advance on a surface opposite to a pattern formation surface of a piezoelectric substrate by grinding using a grindstone to which abrasive grains such as diamond are adhered after fixing.
JP13641098A 1998-05-19 1998-05-19 Saw device and manufacture of the same Pending JPH11330899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13641098A JPH11330899A (en) 1998-05-19 1998-05-19 Saw device and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13641098A JPH11330899A (en) 1998-05-19 1998-05-19 Saw device and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH11330899A true JPH11330899A (en) 1999-11-30

Family

ID=15174521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13641098A Pending JPH11330899A (en) 1998-05-19 1998-05-19 Saw device and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH11330899A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1675261A1 (en) * 2004-12-21 2006-06-28 Seiko Epson Corporation Surface acoustic wave device and method of manufacturing a surface acoustic wave device
JP2010178198A (en) * 2009-01-30 2010-08-12 Epson Toyocom Corp Surface acoustic wave element and piezoelectric device
JP2010213016A (en) * 2009-03-10 2010-09-24 Murata Mfg Co Ltd Manufacturing method of surface acoustic wave device, and surface acoustic wave device
JP2010259000A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave device
JP2010259002A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave element
JP2011071967A (en) * 2009-08-24 2011-04-07 Ngk Insulators Ltd Method for manufacturing composite substrate
JP2018026673A (en) * 2016-08-09 2018-02-15 株式会社ディスコ Wafer processing method
US11082027B2 (en) 2017-02-02 2021-08-03 Taiyo Yuden Co., Ltd. Acoustic wave device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1675261A1 (en) * 2004-12-21 2006-06-28 Seiko Epson Corporation Surface acoustic wave device and method of manufacturing a surface acoustic wave device
US7400219B2 (en) 2004-12-21 2008-07-15 Seiko Epson Corporation Surface acoustic wave device and method of manufacturing a surface acoustic wave device
JP2010178198A (en) * 2009-01-30 2010-08-12 Epson Toyocom Corp Surface acoustic wave element and piezoelectric device
JP2010213016A (en) * 2009-03-10 2010-09-24 Murata Mfg Co Ltd Manufacturing method of surface acoustic wave device, and surface acoustic wave device
JP2010259000A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave device
JP2010259002A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave element
JP2011071967A (en) * 2009-08-24 2011-04-07 Ngk Insulators Ltd Method for manufacturing composite substrate
JP2018026673A (en) * 2016-08-09 2018-02-15 株式会社ディスコ Wafer processing method
US11082027B2 (en) 2017-02-02 2021-08-03 Taiyo Yuden Co., Ltd. Acoustic wave device

Similar Documents

Publication Publication Date Title
US10250222B2 (en) Electronic device
US6426583B1 (en) Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
JP6315716B2 (en) Elastic wave device
JP2010187373A (en) Composite substrate and elastic wave device using the same
JP2010050539A (en) Piezoelectric component and its manufacturing method
JP2002261582A (en) Surface acoustic wave device, its manufacturing method, and circuit module using the same
KR20110083451A (en) Composite substrate, and elastic surface wave filter and resonator using the same
CN110771037B (en) Elastic wave device, front-end circuit, and communication device
US20050285475A1 (en) Surface acoustic wave device manufacturing method, surface acoustic wave device, and communications equipment
JPH11330899A (en) Saw device and manufacture of the same
JP2001060846A (en) Surface acoustic wave element, its manufacturing method and surface acoustic wave device using the same
JP2002016468A (en) Surface acoustic wave device
JP2006067258A (en) Surface acoustic wave device and communication apparatus
CN110771038B (en) Elastic wave device, front-end circuit, and communication device
JP2000312127A (en) Surface acoustic wave device
JP2000165192A (en) Surface acoustic wave device
JP2003115734A (en) Surface acoustic wave device and manufacturing method thereof
JP2000196400A (en) Mounting structure for surface acoustic wave device
JP4454410B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device
JP2012209662A (en) Wafer level package material for surface acoustic wave device, surface acoustic wave device junction wafer using package material, and surface acoustic wave device cut from junction wafer
JP2005130412A (en) Piezoelectric device and its manufacturing method
JP2006014100A (en) Surface acoustic wave device and manufacturing method thereof, and communication device
JP4610244B2 (en) Manufacturing method of surface acoustic wave device
JP4454411B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device
JP4514571B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108