JPH1119074A - Measuring apparatus for degree of oxygenation of tissue blood of living body - Google Patents

Measuring apparatus for degree of oxygenation of tissue blood of living body

Info

Publication number
JPH1119074A
JPH1119074A JP17622097A JP17622097A JPH1119074A JP H1119074 A JPH1119074 A JP H1119074A JP 17622097 A JP17622097 A JP 17622097A JP 17622097 A JP17622097 A JP 17622097A JP H1119074 A JPH1119074 A JP H1119074A
Authority
JP
Japan
Prior art keywords
light
tissue
oxygenation
degree
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17622097A
Other languages
Japanese (ja)
Inventor
Susumu Kajima
進 鹿嶋
Kentaro Mitsui
顕太郎 満井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMEGA WAVE KK
Original Assignee
OMEGA WAVE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMEGA WAVE KK filed Critical OMEGA WAVE KK
Priority to JP17622097A priority Critical patent/JPH1119074A/en
Publication of JPH1119074A publication Critical patent/JPH1119074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring apparatus for the degree of oxygenation of tissue blood of a living body which enables directly measuring of the degree of oxygenation of blood in a tissue of a living body easily. SOLUTION: This apparatus is provided with measuring light output parts 11-15, 2, 4 and 6 to directly irradiate more than three kinds of measuring lights (a), (b), (c) and (d) as near infrared rays with the wavelength thereof close to each other to a tissue 8 of a living body at a specified intensity and detection parts 5, 7 and 16 to detect the intensity of transmission light or scattered light when the outputted measuring lights (a), (b), (c) and (d) pass through the living body tissue 8. Also provided is a degree of oxygenation computing part 17 which computes the degree of oxygenation as ratio of the number of red corpuscles oxygenated to the total number of red corpuscles in the tissue 8 or the amount of hemoglobin oxygenated to the total amount of hemoglobin based on the amount of light absorbed to all red corpuscles in the tissue 8 of the living being obtained from the intensities of the outputted measuring lights (a), (b), (c) and (d) and the transmission light or the scattered light detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光計測技術を用い
て生体組織中の血液酸素化度合を測定する生体組織血液
酸素化度合測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the degree of oxygenation of blood in a living tissue using an optical measurement technique.

【0002】[0002]

【従来の技術】運動前および運動後の生体組織中の赤血
球(またはヘモグロビン)に近赤外領域の特定波長の光
を透過させると、運動前と運動後とでは赤外光吸収スペ
クトルが異なることは知られている。これは、運動前と
運動後とで酸素化赤血球の量と脱酸素化赤血球の量が変
動し、それが光吸収量の変化として表れるからである。
2. Description of the Related Art When red blood cells (or hemoglobin) in a living tissue before and after exercise are transmitted with light having a specific wavelength in the near-infrared region, infrared light absorption spectra differ between before and after exercise. Is known. This is because the amount of oxygenated erythrocytes and the amount of deoxygenated erythrocytes fluctuate before and after exercise, and this appears as a change in light absorption.

【0003】そこで、生体組織中の赤血球に近赤外領域
の特定波長の光を透過させ、赤血球量の変動と光吸収量
の変化との関係を用いて、生体組織中の赤血球量の変動
を測定する方法および装置が提案されている。
[0003] Accordingly, light of a specific wavelength in the near-infrared region is transmitted to red blood cells in a living tissue, and the change in the amount of red blood cells in the living tissue is determined using the relationship between the change in the amount of red blood cells and the change in the amount of light absorbed. Methods and devices for measuring have been proposed.

【0004】例えば、特開昭63−33642号公報の
定量方法には、被検体の状態変化の前後でおこる被検体
の吸光度の変化を複数の波長の光について測定し、被検
体内の変化量を測定する方法が開示されている。
For example, in the quantification method disclosed in Japanese Patent Application Laid-Open No. 63-33642, a change in absorbance of a subject before and after a change in the state of the subject is measured for light of a plurality of wavelengths, and the amount of change in the subject is measured. Is disclosed.

【0005】また、特開平3−118035号公報の測
定装置には、一定の運動を負荷させる前の筋肉と運動負
荷後の筋肉に3種類の波長の近赤外光(測定光)を直接
照射し、運動負荷前後で筋肉を透過した透過光を測定
し、各波長についての透過光の吸光度の変化から筋肉の
血液中の赤血球の量(増減)の変化を調べる装置が開示
されている。
Further, the measuring apparatus disclosed in Japanese Patent Application Laid-Open No. HEI 3-11835 directly irradiates near-infrared light (measuring light) of three wavelengths to a muscle before applying a certain exercise and a muscle after applying the exercise. Further, there is disclosed an apparatus which measures transmitted light transmitted through a muscle before and after exercise load and checks a change in the amount (increase / decrease) of red blood cells in muscle blood from a change in absorbance of the transmitted light at each wavelength.

【0006】このように、従来の測定方法や測定装置
は、状態変化の前後での赤血球数の変化を調べるもので
あった。
As described above, the conventional measuring method and measuring device examine the change in the number of red blood cells before and after the state change.

【0007】[0007]

【発明が解決しようとする課題】ところで、測定開始時
からの変化だけを測定することから一歩進んで、生体組
織内の酸素化赤血球数(または酸素化ヘモグロビン量)
と脱酸素化赤血球数(または脱酸素化ヘモグロビン量)
の割合を示す血液酸素化度合を直接測定する技術の開発
が求められている。
By the way, one step forward from measuring only the change from the start of measurement, is to count the number of oxygenated red blood cells (or the amount of oxygenated hemoglobin) in the living tissue.
And deoxygenated red blood cell count (or deoxygenated hemoglobin amount)
There is a demand for the development of a technique for directly measuring the degree of blood oxygenation, which indicates the percentage of the oxygen.

【0008】しかしながら、生体組織内を透過する透過
光の強度は、生体組織中の赤血球による吸収のみでな
く、生体組織自体による散乱と吸収によっても減衰す
る。そして、生体組織自体による散乱度と吸収度は組織
毎に異なり未知数である。
However, the intensity of the transmitted light transmitted through the living tissue is attenuated not only by the absorption by the red blood cells in the living tissue but also by the scattering and absorption by the living tissue itself. The degree of scattering and the degree of absorption by the living tissue itself differ for each tissue and are unknown.

【0009】従って、従来の技術では、各測定光毎の吸
収度合の時間変化から、酸素化赤血球、脱酸素化赤血球
の変動(増減)分を測定することはできても、血液酸素
化度合を直接測定することは非常に困難であった。
Therefore, according to the prior art, the variation (increase / decrease) of oxygenated erythrocytes and deoxygenated erythrocytes can be measured from the temporal change of the degree of absorption for each measurement light, but the degree of blood oxygenation can be measured. It was very difficult to measure directly.

【0010】本発明は、上記の事項に鑑みて改良を加え
たものであり、生体組織内の血液の酸素化度合を容易に
直接測定できる生体組織血液酸素化度合測定装置を提供
することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide an apparatus for measuring the degree of oxygenation of blood in a living tissue which can easily and directly measure the degree of oxygenation of blood in the living tissue. And

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、本発明の生体組織血液酸素化度合測定装置は、4種
類以上の互いに波長の近い近赤外線の測定光を所定の強
度で生体組織に対し直接照射する測定光出力部と、前記
出力された測定光が前記生体組織を通過した透過光また
は散乱光の強度を検出する検出部と、前記出力された測
定光と前記検出された透過光または散乱光の強度差から
得られる前記生体組織中の光吸収量に基づき前記生体組
織中の全赤血球数に対する酸素化赤血球数の割合である
酸素化度合、または全ヘモグロビン量に対する酸素化ヘ
モグロビン量の割合である酸素化度合を演算する酸素化
度合演算部とを備えたことを特徴とする。
In order to solve the above-mentioned problems, a living tissue blood oxygenation degree measuring apparatus according to the present invention comprises four or more kinds of near-infrared measuring lights having wavelengths close to each other at a predetermined intensity. A measurement light output unit that directly irradiates the measurement light, a detection unit that detects the intensity of transmitted light or scattered light in which the output measurement light has passed through the living tissue, and the output measurement light and the detected transmission. The degree of oxygenation, which is the ratio of the number of oxygenated red blood cells to the total number of red blood cells in the living tissue based on the amount of light absorbed in the living tissue obtained from the difference in intensity of light or scattered light, or the amount of oxygenated hemoglobin relative to the total amount of hemoglobin And an oxygenation degree calculation unit for calculating the oxygenation degree which is the ratio of

【0012】以上の構成により、4種類以上の測定光お
よびそれぞれの透過光または散乱光の強度差から得られ
る前記生体組織中の光吸収量から、生体組織自体による
散乱と吸収によって生じる光吸収量を除去し、前記生体
組織中の赤血球酸素化度合を算出する。
[0012] With the above arrangement, the light absorption amount in the living tissue obtained from the intensity difference between the four or more types of measurement light and the transmitted light or the scattered light, the light absorption amount caused by the scattering and absorption by the living tissue itself. Is removed, and the degree of oxygenation of red blood cells in the living tissue is calculated.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態にかか
る生体組織血液酸素化度合測定装置を図面に基づき説明
する。なお、この装置は、生体組織内の酸素化赤血球数
(または酸素化ヘモグロビン量)と脱酸素化赤血球数
(または脱酸素化ヘモグロビン量)の割合を示す血液酸
素化度合を直接測定するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A biological tissue blood oxygenation measuring apparatus according to an embodiment of the present invention will now be described with reference to the drawings. This apparatus directly measures the degree of blood oxygenation indicating the ratio between the number of oxygenated red blood cells (or the amount of oxygenated hemoglobin) and the number of deoxygenated red blood cells (or the amount of deoxygenated hemoglobin) in living tissue. .

【0014】まず、本発明の生体組織血液酸素化度合測
定装置の構成を説明する。本発明の生体組織血液酸素化
度合測定装置1は、図1に示すように、生体組織(以
下、組織という)8に対し4種類以上の互いに波長の近
い近赤外線の測定光a,b,c,dを所定の強度で直接
照射する測定光出力部11〜15,2,4,6と、出力
された測定光a,b,c,dが組織8を通過した透過光
または散乱光の強度を検出する検出部5,7,16と、
出力された測定光a,b,c,dと検出された透過光ま
たは散乱光の強度から得られる組織8中の全赤血球数に
対する光吸収量に基づき組織8中の全赤血球数に対する
酸素化赤血球数の割合である酸素化度合、または全ヘモ
グロビン量に対する酸素化ヘモグロビン量の割合である
酸素化度合を演算する酸素化度合演算部17とを備えて
いる。
First, the configuration of the living tissue blood oxygenation degree measuring apparatus of the present invention will be described. As shown in FIG. 1, a biological tissue blood oxygenation degree measuring apparatus 1 of the present invention comprises four or more types of near-infrared measurement lights a, b, and c having a wavelength close to each other for a biological tissue (hereinafter, referred to as tissue) 8. , D at a predetermined intensity, and the intensity of the transmitted light or scattered light passing through the tissue 8 when the output measurement light a, b, c, d passes through the tissue 8. Detectors 5, 7, 16 for detecting
Oxygenated erythrocytes relative to the total number of red blood cells in the tissue 8 based on the amount of light absorption for the total number of red blood cells in the tissue 8 obtained from the output measurement light a, b, c, d and the intensity of the detected transmitted light or scattered light. An oxygenation degree calculator 17 is provided for calculating the oxygenation degree which is a ratio of numbers or the oxygenation degree which is the ratio of the oxygenated hemoglobin amount to the total hemoglobin amount.

【0015】そして、この測定光出力部11〜15,
2,4、6は、光源11,12,13,14と、光合波
器15と、光コネクタ2と、光ファイバー4と、プロー
ブ6とを備えている。
The measuring light output units 11 to 15,
Each of 2, 4, and 6 includes a light source 11, 12, 13, and 14, an optical multiplexer 15, an optical connector 2, an optical fiber 4, and a probe 6.

【0016】この中で、光源11,12,13,14
は、4種類の波長が異なるが近接する4つの単光色を発
する発光素子と、光を効率よく光ファイバー等に導光す
るための集光器と、から構成されている。この発光素子
は、例えば、4種類の狭い波長域の近赤外光であるレー
ザー光(測定光a,b,c,d)を発振するレーザダイ
オード(Laser Diode)である。また、光源11,1
2,13,14は、光合波器15と接続し、出力された
測定光a,b,c,dは集光器にて集光されて光合波器
15へ送られる。更に、光源11,12,13,14に
は、駆動回路19より駆動電流が供給されている。
Among them, the light sources 11, 12, 13, 14
Is composed of a light emitting element that emits four single light colors that are close to each other but have four different wavelengths, and a light collector that efficiently guides light to an optical fiber or the like. This light emitting element is, for example, a laser diode (Laser Diode) that oscillates laser light (measuring light a, b, c, d) that is four types of near-infrared light in a narrow wavelength range. Further, the light sources 11, 1
2, 13 and 14 are connected to an optical multiplexer 15, and the output measurement lights a, b, c and d are condensed by a condenser and sent to the optical multiplexer 15. Further, a driving current is supplied from the driving circuit 19 to the light sources 11, 12, 13, and 14.

【0017】なお、光源11,12,13,14に近赤
外光を用いる理由は、組織8中での光の透過性が良く、
組織8を通過した透過光または散乱光の検出が容易だか
らである。また、組織毎に異なって未知数であった吸収
度(吸収係数)と散乱度(散乱係数)が、後述するよう
に、狭い波長域ならば近赤外光の波長に対して直線的に
変化するからである。
The reason that near-infrared light is used for the light sources 11, 12, 13, and 14 is that light transmittance in the tissue 8 is good,
This is because detection of transmitted light or scattered light that has passed through the tissue 8 is easy. Further, the absorbance (absorption coefficient) and scattering degree (scattering coefficient), which were unknown numbers differently for each tissue, change linearly with the wavelength of near-infrared light in a narrow wavelength range, as described later. Because.

【0018】そして、この光合波器15は、光源11,
12,13,14のそれぞれと接続するとともに、光コ
ネクタ2と接続し、集光された測定光a,b,c,dを
光コネクタ2を介して1本、または複数本の光ファイバ
ー4に導光する。
The optical multiplexer 15 includes a light source 11,
12, 13, and 14, and connected to the optical connector 2, and the collected measurement lights a, b, c, and d are guided to one or a plurality of optical fibers 4 via the optical connector 2. Light.

【0019】なお、各光源は、タイミング回路18が指
定する時分割で時間をずらして供給される駆動回路19
の駆動電流により発光され、光コネクタ2を介して光フ
ァイバー4に導光する。
Each light source is supplied to a driving circuit 19 which is supplied at a time-divisional time-division designated by a timing circuit 18.
, And is guided to the optical fiber 4 via the optical connector 2.

【0020】そして、このタイミング回路18は、図2
(a)のパルス図に示すように、所定時間毎にパルスP
1,P2,P3,P4,…を刻んでいる。また、タイミ
ング回路18は、駆動回路19に対し、パルスP1の時
に測定光aを発光させるように通知する(図2(b)参
照)。同様に、タイミング回路18は、駆動回路19に
対し、パルスP2の時に測定光bを(図2(c)参
照)、パルスP3の時に測定光cを(図2(d)参
照)、パルスP4の時に測定光dを(図2(e)参
照)、発光させるように通知する。
The timing circuit 18 is provided in
As shown in the pulse diagram of FIG.
1, P2, P3, P4, ... are engraved. Further, the timing circuit 18 notifies the drive circuit 19 to emit the measurement light a at the time of the pulse P1 (see FIG. 2B). Similarly, the timing circuit 18 supplies the drive circuit 19 with the measurement light b at the time of the pulse P2 (see FIG. 2C), the measurement light c at the time of the pulse P3 (see FIG. 2D), and the pulse P4. At this time, the measurement light d is notified (see FIG. 2E) to emit light.

【0021】なお、組織8に導光されて透過、散乱した
測定光a,b,c,dは、タイミング回路18が指定す
る時分割で時間をずらし、後述する光検出器7により検
出される。
The measurement light beams a, b, c, and d which have been guided and transmitted and scattered by the tissue 8 are shifted in time by time division specified by the timing circuit 18 and detected by the photodetector 7 described later. .

【0022】そして、この光コネクタ2は、光ファイバ
ー4と着脱自在に接続し、測定光a,b,c,dが装置
本体1から光ファイバー4を介して外部(組織8)へ出
力するためのコネクタである。
The optical connector 2 is detachably connected to the optical fiber 4, and is a connector for outputting the measuring lights a, b, c, and d from the apparatus main body 1 to the outside (the tissue 8) via the optical fiber 4. It is.

【0023】また、この光ファイバー4は、例えば石英
系の光ファイバーであり、一端が光コネクタ2と着脱自
在に接続し、他端がプローブ6と接続している。また、
光ファイバー4は、波長の異なる4種類の測定光a,
b,c,dをプローブ6を通して組織8に照射する。
The optical fiber 4 is, for example, a silica-based optical fiber. One end is detachably connected to the optical connector 2 and the other end is connected to the probe 6. Also,
The optical fiber 4 has four types of measurement light a,
The tissue 8 is irradiated with b, c, and d through the probe 6.

【0024】更に、このプローブ6は、組織8上のある
点に密着して配置され、光ファイバー4より照射された
測定光a,b,c,dを組織8に出力する。そして、出
力された測定光a,b,c,dは、組織8内の酸素化赤
血球(または酸素化ヘモグロビン)や脱酸素化赤血球
(または脱酸素化ヘモグロビン)やその他の体液を通過
して検出部3,5,7,16により検出される。
Further, the probe 6 is arranged in close contact with a certain point on the tissue 8, and outputs the measuring lights a, b, c, and d emitted from the optical fiber 4 to the tissue 8. Then, the outputted measurement lights a, b, c, and d pass through the oxygenated red blood cells (or oxygenated hemoglobin), deoxygenated red blood cells (or deoxygenated hemoglobin), and other body fluids in the tissue 8 and are detected. Detected by the units 3, 5, 7, and 16.

【0025】そして、この検出部3,5,7,16は、
電気的コネクタ3と、電線5と、光検出器7と、光増幅
器(アンプ)16とを備えている。この中で、光検出器
7は、例えば、フォトダイオードであり、組織8より測
定光(すなわち透過光)を受光し、受光した透過光の強
度を検出する装置であり、光ファイバー4の光照射点
(プローブ6の位置)から数cm程度離れた点に配設さ
れている。また、この光検出器7は、電線5と接続し、
検出した透過光の強度情報を電線5を介して装置本体1
に通知する。
The detection units 3, 5, 7, and 16
An electrical connector 3, an electric wire 5, a photodetector 7, and an optical amplifier (amplifier) 16 are provided. Among them, the photodetector 7 is, for example, a photodiode, a device that receives measurement light (that is, transmitted light) from the tissue 8 and detects the intensity of the received transmitted light. It is arranged at a point about several cm away from the position of the probe 6. Further, this photodetector 7 is connected to the electric wire 5,
The intensity information of the detected transmitted light is transmitted to the apparatus main body 1 via the electric wire 5.
Notify.

【0026】この電線5は、例えばシールド線であり、
一端が装置本体1側にある電気的コネクタ3と着脱自在
に接続し、他端が光検出器7と接続している。この電気
的コネクタ3は、電線5と着脱自在に接続し、また、こ
の電気的コネクタ3は、増幅器16と接続している。
This electric wire 5 is, for example, a shielded wire,
One end is detachably connected to the electrical connector 3 on the apparatus body 1 side, and the other end is connected to the photodetector 7. The electric connector 3 is detachably connected to the electric wire 5, and the electric connector 3 is connected to an amplifier 16.

【0027】この増幅器16は、電気的コネクタ3と接
続し、電気的コネクタ3より導入された4種類の透過光
の強度情報を増幅する装置である。また、この増幅器1
6は酸素化度合演算部(演算処理回路)17と接続して
いる。
The amplifier 16 is a device that is connected to the electrical connector 3 and amplifies the intensity information of the four types of transmitted light introduced from the electrical connector 3. In addition, this amplifier 1
6 is connected to an oxygenation degree calculation unit (calculation processing circuit) 17.

【0028】そして、この酸素化度合演算部17は、タ
イミング回路18と接続し、タイミング回路18が指定
する時分割に基づいて、検出された透過光の強度情報を
識別し、識別した組織8中の全赤血球の酸素化度合を演
算する。
The oxygenation degree calculating section 17 is connected to the timing circuit 18 to identify the intensity information of the detected transmitted light based on the time division designated by the timing circuit 18 and to determine the intensity information of the detected tissue 8. Calculate the degree of oxygenation of all red blood cells.

【0029】次に、この演算処理回路17の演算手順を
説明する。なお、光検出器7で受光される透過光の強度
(強度情報)は、組織8中の血液による吸収のみでな
く、体液を含めた組織8自体による散乱と吸収によって
減衰(変化)する。すなわち、これら組織8を透過して
きた測定光の強度は、ブーゲ−ランバート−ベールの法
則(Bouguer-Lambert-Beer law)によれば、組織8自体に
よる散乱と吸収によって、その通過距離に関して指数関
数的に減少する。
Next, the operation procedure of the operation processing circuit 17 will be described. The intensity (intensity information) of the transmitted light received by the photodetector 7 is attenuated (changed) by not only absorption by blood in the tissue 8 but also scattering and absorption by the tissue 8 itself including body fluid. That is, according to the Bouguer-Lambert-Beer law, the intensity of the measurement light transmitted through the tissue 8 is exponentially related to the passing distance due to scattering and absorption by the tissue 8 itself. To decrease.

【0030】従って、単波長の透過光の強度Iは、一般
的に数式(1) で表すことができる。 I=ηI0exp(−α11L−α22L−μL) …数式(1) なお、数式(1) において、Iは光検出器7で検出された
透過光強度を示し、ηは光システムに関わる係数を示
し、I0 は照射した測定光強度を示し、exp( )は指数関
数を意味する。
Therefore, the intensity I of transmitted light of a single wavelength can be generally expressed by the following equation (1). I = ηI 0 exp (−α 1 V 1 L−α 2 V 2 L−μL) Expression (1) In Expression (1), I represents the transmitted light intensity detected by the photodetector 7, η indicates a coefficient relating to the optical system, I 0 indicates an irradiated measurement light intensity, and exp () indicates an exponential function.

【0031】また、α1 は単位体積、単位光路長当たり
の酸素化赤血球の吸収係数を示し、V1は酸素化赤血球
の体積を示し、α2は単位体積、単位光路長当たりの脱
酸素化赤血球の吸収係数を示し、V2 は脱酸素化赤血球
の体積を示し、μは単位長当たりの組織の、散乱係数と
吸収係数の和を示し、Lは光路長を示す。
Α 1 indicates the absorption coefficient of oxygenated erythrocytes per unit volume and unit optical path length, V 1 indicates the volume of oxygenated erythrocytes, α 2 indicates deoxygenation per unit volume and unit optical path length shows the absorption coefficient of the red blood cells, V 2 represents the volume of deoxygenated red blood cells, mu is the tissue per unit length, the sum of all scattering coefficient and absorption coefficient, L is shown an optical path length.

【0032】ところで、演算処理回路17は、組織8中
の血液の酸素化度合(酸素化赤血球の体積V1と脱酸素
化赤血球の体積V2の比率)を求めるものである。そし
て、数式(1) において、酸素化赤血球の吸収係数α1
び脱酸素化赤血球の吸収係数α2 は、図3の波長特性図
に示すように、分光光度計等で測定可能な数値である
が、散乱係数と吸収係数の和μは、未知数である。しか
しながら、散乱係数及び吸収係数の波長特性は、狭い波
長領域内(特に近赤外領域)では、直線性があることが
知られている。例えば、図4の波長特性図は、「Skin O
ptics論文の Fig.8(IEEE TRANSACTIONS ON BIOMEDICAL
ENGINEERING. VOL.36. NO.12.DECEMBER 1989, P1152)」
を参照したものである。図4において、散乱係数及び吸
収係数は、実験データ(イ)、(ロ)、(ハ)、(ニ)
の破線で示す狭い波長領域内では直線性を示している。
The arithmetic processing circuit 17 determines the degree of oxygenation of blood in the tissue 8 (the ratio of the volume V 1 of oxygenated red blood cells to the volume V 2 of deoxygenated red blood cells). Then, in Equation (1), the absorption coefficient alpha 2 of the absorption coefficient alpha 1 and deoxygenated red blood oxygenation red blood cells, as shown in wavelength characteristic diagram of FIG. 3, is a measurable numerical by spectrophotometer However, the sum μ of the scattering coefficient and the absorption coefficient is an unknown number. However, it is known that the wavelength characteristics of the scattering coefficient and the absorption coefficient have linearity in a narrow wavelength region (particularly, in a near infrared region). For example, the wavelength characteristic diagram of FIG.
Fig.8 (IEEE TRANSACTIONS ON BIOMEDICAL
ENGINEERING. VOL.36. NO.12.DECEMBER 1989, P1152)
Is referred to. In FIG. 4, the scattering coefficient and the absorption coefficient are shown in experimental data (a), (b), (c), and (d).
The linearity is shown in the narrow wavelength region indicated by the broken line.

【0033】そこで、この演算処理回路17は、測定光
a,b,c,dの透過強度を示す数式を数式(1) に基づ
いて表すとともに、それら数式から未知数μを消去す
る。その際、乱係数及び吸収係数(未知数)が直線的な
特性を示すので、測定光bの散乱係数及び吸収係数の和
μを基準に、測定光bと測定光aの波長差λa-b で測定
光aの散乱係数及び吸収係数の和を示し、測定光bと測
定光cの波長差λc-b で測定光cの散乱係数及び吸収係
数の和を示し、測定光bと測定光dの波長差λd- b で測
定光dの散乱係数及び吸収係数の和を示すことが可能に
なる。そして、数式間で、まず測定光bの散乱係数及び
吸収係数の和μを消去し、次にそれぞれの式に互いの波
長差を乗じて、測定光a,c,dの散乱係数及び吸収係
数の和を消去する演算を行う。
Therefore, the arithmetic processing circuit 17 expresses mathematical expressions indicating the transmission intensities of the measuring lights a, b, c, d based on the mathematical expression (1), and deletes the unknown μ from the mathematical expressions. At this time, since the random coefficient and the absorption coefficient (unknown number) show linear characteristics, the measurement is performed with the wavelength difference λ ab between the measurement light b and the measurement light a based on the sum μ of the scattering coefficient and the absorption coefficient of the measurement light b. The sum of the scattering coefficient and the absorption coefficient of the light a is shown, and the wavelength difference λ cb between the measurement light b and the measurement light c shows the sum of the scattering coefficient and the absorption coefficient of the measurement light c, and the wavelength difference between the measurement light b and the measurement light d. it is possible to indicate the sum of the scattering and absorption coefficients of the measured light d in lambda d-b. Then, between the mathematical expressions, first, the sum μ of the scattering coefficient and the absorption coefficient of the measurement light b is deleted, and then the respective expressions are multiplied by the wavelength difference between them to obtain the scattering coefficient and the absorption coefficient of the measurement light a, c, and d. Is performed to eliminate the sum of.

【0034】すなわち、数式(1) に基づき、光検出器7
で検出された4つの波長の透過光の強度Ia,Ib
c,Idは、以下の数式(2)、数式(3)、数式(4)、数式
(5)のように表すことができる。
That is, based on the equation (1), the photodetector 7
In the intensity of transmitted light detected four wavelengths I a, I b,
I c and I d are represented by the following equations (2), (3), (4), and
It can be expressed as (5).

【0035】 Ia=ηIa0exp[{(−ρOσa−ρDσb−(μ−λa-b(S+U))}L] …数式(2) Ib=ηIb0exp[{(−ρOσc−ρDσd−μ}L] …数式(3) Ic=ηIc0exp[{(−ρOσe−ρDσf−(μ−λc-b(S+U))}L] …数式(4) Id=ηId0exp[{(−ρOσg−ρDσh−(μ−λd-b(S+U))}L] …数式(5) ここで、Ia0、Ib0、Ic0、Id0はa,b,c,d各々
の光の測定光(照射光)強度を示し、ηは光システムに
関わる係数を示し、ρ0 は酸素化赤血球の単位組織体積
当たりの数密度を示し、ρD は脱酸素化赤血球の単位組
織体積当たりの数密度を示し、ρ(=ρO+ρD)は赤血
球の単位組織体積当たりの数密度を示し、σa はIa0
波長での酸素化赤血球の吸収断面積を示し、σb はIa0
光波長での脱酸素化赤血球の吸収断面積を示し、σc
b0光波長での酸素化赤血球の吸収断面積を示し、σd
はIb0光波長での脱酸素化赤血球の吸収断面積を示し、
σ e はIc0光波長での酸素化赤血球の吸収断面積を示
し、σf はIc0光波長での脱酸素化赤血球の吸収断面積
を示し、σg はId0光波長での酸素化赤血球の吸収断面
積を示し、σh はId0光波長での脱酸素化赤血球の吸収
断面積を示し、Lは光路長を示す。また、μはIb0光波
長での組織8の散乱係数と吸収係数の和を示し、λa-b
はIa0光とIb0光の波長差を示し、λc-b はIc0光とI
b0光の波長差を示し、λd-b はId0光とIb0光の波長差
を示し、Sは組織の散乱係数の波長に対する傾きを示
し、Uは組織の吸収係数の波長に対する傾きを示す。
Ia= ΗIa0exp [{(− ρOσa−ρDσb− (Μ−λab(S + U))} L] Equation (2) Ib= ΗIb0exp [{(− ρOσc−ρDσd−μ} L] Equation (3) Ic= ΗIc0exp [{(− ρOσe−ρDσf− (Μ−λcb(S + U))} L] Equation (4) Id= ΗId0exp [{(− ρOσg−ρDσh− (Μ−λdb(S + U))} L] Equation (5) where Ia0, Ib0, Ic0, Id0Are a, b, c, d respectively
Indicates the measurement light (irradiation light) intensity of the light of
Indicates the coefficient involved, ρ0 Is the unit tissue volume of oxygenated red blood cells
Per number density, ρD Is a unit set of deoxygenated red blood cells
Indicates the number density per woven volume, and ρ (= ρO+ ΡD) Is red blood
Indicates the number density per unit tissue volume of the sphere, σa Is Ia0light
Indicates the absorption cross section of oxygenated red blood cells at the wavelength, σb Is Ia0
Indicates the absorption cross section of deoxygenated red blood cells at the light wavelength, σc Is
Ib0Indicates the absorption cross section of oxygenated red blood cells at the light wavelength, σd 
Is Ib0Shows the absorption cross section of deoxygenated red blood cells at the light wavelength,
σ e Is Ic0Shows the absorption cross section of oxygenated red blood cells at the optical wavelength
Then σf Is Ic0Absorption cross section of deoxygenated red blood cells at optical wavelengths
And σg Is Id0Absorption cross section of oxygenated red blood cells at optical wavelengths
The product, σh Is Id0Absorption of deoxygenated red blood cells at light wavelengths
L indicates the optical path length. Μ is Ib0Light wave
Shows the sum of the scattering coefficient and the absorption coefficient of the tissue 8 at the length, λab 
Is Ia0Light and Ib0Indicates the wavelength difference of light, λcb Is Ic0Light and I
b0Indicates the wavelength difference of light, λdb Is Id0Light and Ib0Light wavelength difference
And S indicates the slope of the tissue scattering coefficient with respect to wavelength.
U represents the slope of the absorption coefficient of the tissue with respect to the wavelength.

【0036】そこで、この数式(2)から数式(5)のうち、
透過光の強度Ia,Ib,Ic,Idは、光検出器7で透過
光毎に検出される数値であり、測定光強度Ia0、Ib0
c0、Id0は光源11〜14により予め設定された数値
であり、吸収断面積σa〜σhは図3で示すように、分光
光度計等によって測定可能な数値であり、光路長Lもプ
ローブ6と光検出器7の位置から決定する数値である。
Therefore, in the equations (2) to (5),
The transmitted light intensities I a , I b , I c , and I d are numerical values detected by the light detector 7 for each transmitted light, and the measured light intensities I a0 , I b0 ,
I c0 and I d0 are numerical values preset by the light sources 11 to 14, and the absorption cross sections σ a to σ h are numerical values that can be measured by a spectrophotometer or the like, as shown in FIG. Is also a numerical value determined from the positions of the probe 6 and the photodetector 7.

【0037】次に、演算処理回路17は、数式(2)から
数式(5)を用いて未知数である「μ」や「S」や「U」
を消去する演算を行う。すなわち、数式(2)から数式(5)
を対数に変換すると、下記に示す数式になる。
Next, the arithmetic processing circuit 17 uses the equations (2) to (5) to determine the unknown “μ”, “S”, “U”
Perform an operation to delete. That is, from equation (2) to equation (5)
Is converted to logarithm, the following equation is obtained.

【0038】 Δa/L=−ρOσa−ρDσb−(μ−λa-bT) …数式(6) Δb/L=−ρOσc−ρDσd−μ …数式(7) Δc/L=−ρOσe−ρDσf−(μ−λc-bT) …数式(8) Δd/L=−ρOσg−ρDσh−(μ−λd-bT) …数式(9) なお、数式を簡単にするために、LN(Ia/ηIa0
=Δa、LN(Ib/ηIb0)=Δb、LN(Ic/ηI
c0)=Δc、LN(Id/ηId0)=Δdと置き換え、
S+U=T(すなわち「T」は未知数)と置き換えた。
[0038] Δa / L = -ρ O σ a -ρ D σ b - (μ-λ ab T) ... Equation (6) Δb / L = -ρ O σ c -ρ D σ d -μ ... Equation (7 ) Δc / L = −ρ O σ e −ρ D σ f − (μ−λ cb T) Equation (8) Δd / L = −ρ O σ g −ρ D σ h − (μ−λ db T) ... Equation (9) In order to simplify the equation, LN (I a / ηI a0 )
= Δa, LN (I b / ηI b0 ) = Δb, LN (I c / ηI
c0 ) = Δc, LN (I d / ηI d0 ) = Δd,
S + U = T (ie, “T” is unknown).

【0039】そして、数式(8)と数式(6)により「μ」を
消去すると、 (Δc−Δa)/L=ρO(σa−σe)+ρD(σb−σf)+λc-aT …数式(10) が得られる。ここで、λc-b−λa-b=λc-aと置き換え
た。
Then, when “μ” is eliminated by the equations (8) and (6), (Δc−Δa) / L = ρ Oa −σ e ) + ρ Db −σ f ) + λ ca T ... Equation (10) is obtained. Here, λ cbab = λ ca was replaced.

【0040】また、数式(7)と数式(9)より「μ」を消去
すると、 (Δd−Δb)/L=ρO(σc−σg)+ρD(σd−σh)+λd-bT …数式(11) が得られる。
Further, when “μ” is deleted from Expressions (7) and (9), (Δd−Δb) / L = ρ Oc −σ g ) + ρ Dd −σ h ) + λ db T ... Equation (11) is obtained.

【0041】次に、演算処理回路17は、数式(10)と数
式(11)を用いて未知数「T」の消去を行う。すなわち、
数式(10)にλd-bをかけ、数式(11)にλc-aをかけて減算
を行うと、 (Δc−Δa)λd-b/L−(Δd−Δb)λc-a/L =ρO{(σa−σe)λd-b−(σc−σg)λc-a}+ρD{(σb−σf)λd-b− (σd−σh)λc-a} =ρ[R{(σa−σe)λd-b−(σc−σg)λc-a}+(1−R){(σb−σf )λd-b−(σd−σh)λc-a}] …数式(12) が得られる。ここで、Rは全赤血球数に対する酸素化赤
血球数の割合(酸素化度合)を示し、ρO=Rρ、ρD
(1−R)ρと置き換えた。
Next, the arithmetic processing circuit 17 deletes the unknown "T" using the equations (10) and (11). That is,
Equation (10) is multiplied by λ db and equation (11) is multiplied by λ ca to perform subtraction. (Δc−Δa) λ db / L− (Δd−Δb) λ ca / L = ρ O {(σ a −σ e ) λ db − (σ c −σ g ) λ ca } + ρ D {(σ b −σ f ) λ db − (σ d −σ h ) λ ca = = ρ [R {(σ a − σ e ) λ db − (σ c −σ g ) λ ca } + (1−R) {(σ b −σ f ) λ db − (σ d −σ h ) λ ca }] can get. Here, R indicates the ratio (oxygenation degree) of the number of oxygenated red blood cells to the total number of red blood cells, and ρ O = Rρ, ρ D =
(1-R) ρ.

【0042】同様に、数式(6)と数式(7)により「μ」を
消去すると、 (Δa−Δb)/L=ρO(σc−σa)+ρD(σd−σb)+λa-bT …数式(13) が得られる。ここで、λc-b−λc-a=λa-bと置き換え
た。
Similarly, when “μ” is eliminated by the equations (6) and (7), (Δa−Δb) / L = ρ Oc −σ a ) + ρ Dd −σ b ) + λ ab T ... Equation (13) is obtained. Here, λ cb −λ ca = λ ab was replaced.

【0043】同様に、数式(7)と数式(8)により「μ」を
消去すると、 (Δb−Δc)/L=ρO(σe−σc)+ρD(σf−σd)+λc-bT …数式(14) が得られる。
Similarly, when “μ” is eliminated by the equations (7) and (8), (Δb−Δc) / L = ρ Oe −σ c ) + ρ Df −σ d ) + λ cb T ... Equation (14) is obtained.

【0044】次に、演算処理回路17は、数式(13)と数
式(14)を用いて未知数「T」の消去を行う。すなわち、
数式(13)にλc-bをかけ、数式(14)にλa-bをかけて減算
を行うと、 (Δa−Δb)λc-b/L−(Δb−Δc)λa-b/L =ρO{(σc−σa)λc-b−(σe−σc)λa-b}+ρD{(σd−σb)λc-b+ (σf−σa)λa-b} =ρ[R{(σc−σa)λc-b−(σe−σc)λa-b}+(1−R){(σd−σb )λc-b+(σf−σa)λa-b}] …数式(15) が得られる。
Next, the arithmetic processing circuit 17 deletes the unknown "T" using the equations (13) and (14). That is,
When Expression (13) is multiplied by λ cb and Expression (14) is multiplied by λ ab to perform subtraction, (Δa−Δb) λ cb / L− (Δb−Δc) λ ab / L = ρ O {(σ c −σ a ) λ cb − (σ e −σ c ) λ ab } + ρ D {(σ d −σ b ) λ cb + (σ f −σ a ) λ ab } = ρ [R {(σ c − σ a ) λ cb − (σ e −σ c ) λ ab } + (1−R) {(σ d −σ b ) λ cb + (σ f −σ a ) λ ab }] can get.

【0045】以上の演算により未知数「μ」、「S」、
「U」が消去できる。次に、この数式(15)より赤血球の
単位組織体積あたりの数密度ρは、
By the above calculations, the unknowns “μ”, “S”,
“U” can be deleted. Next, from this equation (15), the number density ρ per unit tissue volume of red blood cells is

【0046】[0046]

【数1】 (Equation 1)

【0047】で求められる。また、数式(12)より次式が
得られる。 {(Δc−Δa)λd-b/L−(Δd−Δb)λc-a/L}/ρ =R{(σa−σe−σb+σf)λd-b+(σg−σc+σd−σh)λc-a}+(σb −σf)λd-b+(σh−σd)λc-a …数式(17) ここで、式を簡略するために、(Δa−Δb)λc-b
Aとし、(Δb−Δc)λa-b=Bとし、(Δc−Δ
a)λd-b=Cとし、(Δb−Δd)λc-a=Dとし、
(σc−σa−σd+σb)λc-b=Eとし、(σe−σc
σf+σa)λa-b=Fとし、(σa−σe−σb+σf)λ
d-b=Gとし、(σg−σc+σd−σh)λc-a=Hとし、
(σd−σb)λc-b=Jとし、(σf−σa)λa-b=Kと
し、(σb−σf)λd-b=Mとし、(σh−σd)λc-a
Nとすると、演算処理回路17は、数式(16)と数式(17)
より、組織血液の酸素化度合Rを、 R={(A+B)(M+N)−(C+D)(J+K)}/{(C+D)(E+ F)−(G+H)(A+B)} …数式(18) で求めることができる。
Is obtained. Further, the following equation is obtained from Equation (12). {(Δc-Δa) λ db / L- (Δd-Δb) λ ca / L} / ρ = R {(σ a -σ e -σ b + σ f) λ db + (σ g -σ c + σ d - σ h ) λ ca } + (σ b −σ f ) λ db + (σ h −σ d ) λ ca Equation (17) Here, to simplify the expression, (Δa−Δb) λ cb =
A, (Δb−Δc) λ ab = B, (Δc−Δc)
a) λ db = C, (Δb−Δd) λ ca = D,
c −σ a −σ d + σ b ) λ cb = E, and (σ e −σ c
σ f + σ a ) λ ab = F, and (σ a −σ e −σ b + σ f ) λ
and db = G, and (σ g -σ c + σ d -σ h) λ ca = H,
d −σ b ) λ cb = J, (σ f −σ a ) λ ab = K, (σ b −σ f ) λ db = M, (σ h −σ d ) λ ca =
If N, the arithmetic processing circuit 17 calculates Equation (16) and Equation (17).
Thus, the oxygenation degree R of tissue blood is calculated as follows: R = {(A + B) (M + N)-(C + D) (J + K)} / {(C + D) (E + F)-(G + H) (A + B)} Equation (18) Can be obtained by

【0048】また、演算処理回路17は、赤血球の単位
組織体積あたりの数密度ρを、 ρ={(A+B)/L}/{R(E+F)+J+K} …数式(19) で求めることができる。
The arithmetic processing circuit 17 can calculate the number density ρ of red blood cells per unit tissue volume by the following equation: ρ = {(A + B) / L} / {R (E + F) + J + K} (19) .

【0049】次に、本発明の生体組織血液酸素化度合測
定装置の作用を説明する。なお、演算処理回路17が演
算するに当たって必要とする所定の数値、例えば、測定
光の強度や、吸収断面積σa〜σhや、光路長Lは、予め
設定されているものとする。また、光ファイバー4は光
コネクタ2を介して装置本体に接続されているものと
し、電線5は電気的コネクタ3を介して装置本体に接続
されているものとする。
Next, the operation of the living tissue blood oxygenation degree measuring apparatus of the present invention will be described. It is assumed that predetermined numerical values required for the arithmetic processing circuit 17 to perform the arithmetic operation, such as the intensity of the measurement light, the absorption cross sections σ a to σ h, and the optical path length L are set in advance. Further, it is assumed that the optical fiber 4 is connected to the apparatus main body via the optical connector 2, and the electric wire 5 is connected to the apparatus main body via the electric connector 3.

【0050】本発明の生体組織血液酸素化度合測定装置
の使用者(以下、使用者という)は、光ファイバー4の
端部に設けられたプローブ6を測定対象の組織8上面に
密着配置する。また、使用者は、プローブ6の密着位置
から所定距離(例えば、5cm)離れた位置に、光検出
器7を密着配置する。
A user (hereinafter, referred to as a user) of the living tissue blood oxygenation degree measuring apparatus of the present invention arranges the probe 6 provided at the end of the optical fiber 4 in close contact with the upper surface of the tissue 8 to be measured. Further, the user closely arranges the photodetector 7 at a position separated by a predetermined distance (for example, 5 cm) from the close contact position of the probe 6.

【0051】次に、使用者は、装置本体1を起動させる
と、タイミング回路17のパルス波のタイミングに基づ
き駆動回路19より駆動電流が光源11,12,13,
14に時分割で供給される。すると、測定光a,b,
c,dが時分割で光合波器15に出力され、順次光ファ
イバー4に導光される。
Next, when the user starts the apparatus main body 1, the drive circuit 19 drives the light sources 11, 12, 13, and 13 based on the timing of the pulse wave of the timing circuit 17.
14 is supplied in a time sharing manner. Then, the measuring lights a, b,
c and d are output to the optical multiplexer 15 in a time division manner, and are sequentially guided to the optical fiber 4.

【0052】導光された測定光a,b,c,dは、プロ
ーブ6から組織8内に出力され、組織8内の血液を含む
体液を通過する際に散乱と吸収によって減衰する。次
に、光検出器7は、減衰した測定光a,b,c,dであ
る透過光を順次受光して透過光の強度を検出する。そし
て、光検出器7は、電線5及び電気的コネクタ3を介し
て、検出値を測定光毎に強度情報として増幅器16に通
知する。
The guided measurement light beams a, b, c, and d are output from the probe 6 into the tissue 8 and are attenuated by scattering and absorption when passing through a body fluid containing blood in the tissue 8. Next, the photodetector 7 sequentially receives the attenuated transmitted lights, which are the measurement lights a, b, c, and d, and detects the intensity of the transmitted light. Then, the photodetector 7 notifies the amplifier 16 of the detected value as intensity information for each measurement light via the electric wire 5 and the electrical connector 3.

【0053】すると、増幅器16は、通知された測定光
毎の強度情報を増幅して演算処理回路17に通知する。
すると、演算処理回路17は、タイミング回路17のパ
ルス波のタイミングに基づき、通知された測定光a,
b,c,dの強度情報を識別するとともに、所定の演算
手順に従って、組織8中の全赤血球に対する酸素化度合
Rや数密度ρを算出する。すなわち、演算処理回路17
は、それぞれの透過光毎の強度情報と照射時の測定光強
度に基づき、組織8自体による散乱と吸収によって生じ
る光吸収量を除去し、組織8中の全赤血球に対する酸素
化度合Rや数密度ρを算出する。そして、算出された酸
素化度合Rや数密度ρは、演算処理回路17から図示し
ない外部表示手段に出力されて表示される。
Then, the amplifier 16 amplifies the notified intensity information for each measurement light and notifies the arithmetic processing circuit 17 of the amplified intensity information.
Then, based on the timing of the pulse wave of the timing circuit 17, the arithmetic processing circuit 17 sends the notified measurement light a,
In addition to identifying the intensity information of b, c, and d, the oxygenation degree R and the number density ρ of all the red blood cells in the tissue 8 are calculated according to a predetermined calculation procedure. That is, the arithmetic processing circuit 17
Is based on the intensity information for each transmitted light and the measured light intensity at the time of irradiation, removes the amount of light absorption caused by scattering and absorption by the tissue 8 itself, and provides the oxygenation degree R and number density for all red blood cells in the tissue 8 Calculate ρ. Then, the calculated degree of oxygenation R and number density ρ are output from the arithmetic processing circuit 17 to external display means (not shown) and displayed.

【0054】上記実施の形態では、光源として、レーザ
ーダイオードを用いたが、光源はレーザーダイオードに
限定されるものではなく、近接する4つの単光色を発す
る発光素子であれば、気体、固定レーザー、発光ダイオ
ード等でもよい。
In the above embodiment, the laser diode is used as the light source. However, the light source is not limited to the laser diode. Or a light emitting diode.

【0055】また、上記実施の形態では、検出部に電気
的コネクタ3、電線5及びフォトダイオード7を用いて
説明したが、測定光出力部の光コネクタ2、光ファイバ
ー4及びプローブ6と同じ構成で、検出部を光コネクタ
3、光ファイバー5及び光ファイバー5の先端を加工し
た受光プローブ7のように構成してもよい。但し、検出
部を光コネクタ3、光ファイバー5及び受光プローブ7
で構成する場合、アンプ16には光電気変換回路が含ま
れる。
In the above-described embodiment, the description has been made using the electrical connector 3, the electric wire 5, and the photodiode 7 as the detection unit. However, the detection unit has the same configuration as the optical connector 2, the optical fiber 4, and the probe 6 of the measurement light output unit. Alternatively, the detection unit may be configured as the optical connector 3, the optical fiber 5, and the light receiving probe 7 in which the tip of the optical fiber 5 is processed. However, the detection unit is an optical connector 3, an optical fiber 5, and a light receiving probe 7.
, The amplifier 16 includes a photoelectric conversion circuit.

【0056】[0056]

【発明の効果】以上本発明によれば、4種類以上の測定
光およびそれぞれの透過光または散乱光の強度差から得
られる前記生体組織中の光吸収量から、生体組織自体に
よる散乱と吸収によって生じる光吸収量を除去し、前記
生体組織中の全赤血球に対する酸素化度合を算出するこ
とができる。
As described above, according to the present invention, the amount of light absorbed in the living tissue obtained from the intensity difference between the four or more types of measuring light and the transmitted light or the scattered light is determined by the scattering and absorption by the living tissue itself. The generated light absorption amount is removed, and the degree of oxygenation with respect to all red blood cells in the living tissue can be calculated.

【0057】従って、生体組織内の血液の酸素化度合を
容易に直接測定できる生体組織血液酸素化度合測定装置
を提供することができる。
Therefore, it is possible to provide a living tissue blood oxygenation degree measuring apparatus capable of easily and directly measuring the oxygenation degree of blood in the living tissue.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態にかかる生体組織血液酸
素化度合測定装置の構成ブロック図
FIG. 1 is a configuration block diagram of a living tissue blood oxygenation degree measuring device according to an embodiment of the present invention.

【図2】 タイミング回路のパルスの説明図FIG. 2 is an explanatory diagram of a pulse of a timing circuit.

【図3】 酸素化ヘモグロビンと脱酸素化ヘモグロビン
の光吸収係数の波長特性図
FIG. 3 is a wavelength characteristic diagram of light absorption coefficient of oxygenated hemoglobin and deoxygenated hemoglobin.

【図4】 散乱係数及び吸収係数の波長特性図FIG. 4 is a wavelength characteristic diagram of a scattering coefficient and an absorption coefficient.

【符号の説明】[Explanation of symbols]

1 装置本体 2,3 光コネクタ 4,5 光ファイバー 6 プローブ 7 光検出器 8 生体組織(組織) 11,12,13,14 光源(レーザダイオー
ド) 15 光合波器 16 増幅部(アンプ) 17 演算処理回路 18 タイミング回路
DESCRIPTION OF SYMBOLS 1 Device main body 2, 3 Optical connector 4, 5 Optical fiber 6 Probe 7 Photodetector 8 Living tissue (tissue) 11, 12, 13, 14 Light source (laser diode) 15 Optical multiplexer 16 Amplifier (amplifier) 17 Operation processing circuit 18 Timing circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 4種類以上の互いに波長の近い近赤外線
の測定光を所定の強度で生体組織に対し直接照射する測
定光出力部と、 前記出力された測定光が前記生体組織を通過した透過光
または散乱光の強度を検出する検出部と、 前記出力された測定光と前記検出された透過光または散
乱光の強度差から得られる前記生体組織中の光吸収量に
基づき前記生体組織中の全赤血球数に対する酸素化赤血
球数の割合である酸素化度合、または全ヘモグロビン量
に対する酸素化ヘモグロビン量の割合である酸素化度合
を演算する酸素化度合演算部とを備えたことを特徴とす
る生体組織血液酸素化度合測定装置。
1. A measuring light output section for directly irradiating living tissue with four or more types of near-infrared measuring lights having wavelengths close to each other at a predetermined intensity, and transmitting the output measuring light through the living tissue. A detection unit that detects the intensity of light or scattered light, and the amount of light absorbed in the living tissue obtained from the output measurement light and the detected difference in transmitted light or scattered light intensity. A living body comprising: an oxygenation degree calculation unit that calculates an oxygenation degree that is a ratio of the number of oxygenated red blood cells to the total number of red blood cells, or an oxygenation degree that is a ratio of the amount of oxygenated hemoglobin to the total amount of hemoglobin. Tissue blood oxygenation degree measurement device.
JP17622097A 1997-07-01 1997-07-01 Measuring apparatus for degree of oxygenation of tissue blood of living body Pending JPH1119074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17622097A JPH1119074A (en) 1997-07-01 1997-07-01 Measuring apparatus for degree of oxygenation of tissue blood of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17622097A JPH1119074A (en) 1997-07-01 1997-07-01 Measuring apparatus for degree of oxygenation of tissue blood of living body

Publications (1)

Publication Number Publication Date
JPH1119074A true JPH1119074A (en) 1999-01-26

Family

ID=16009735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17622097A Pending JPH1119074A (en) 1997-07-01 1997-07-01 Measuring apparatus for degree of oxygenation of tissue blood of living body

Country Status (1)

Country Link
JP (1) JPH1119074A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502632A (en) * 1999-06-16 2003-01-21 ハッチンソン テクノロジー インコーポレーティッド Total hemoglobin concentration measurement
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
CN105628481A (en) * 2015-12-03 2016-06-01 浙江大学 Device for preparing tissue oximeter calibrating standard liquid and calibration method
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502632A (en) * 1999-06-16 2003-01-21 ハッチンソン テクノロジー インコーポレーティッド Total hemoglobin concentration measurement
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
CN105628481A (en) * 2015-12-03 2016-06-01 浙江大学 Device for preparing tissue oximeter calibrating standard liquid and calibration method

Similar Documents

Publication Publication Date Title
EP0290279B1 (en) Examination apparatus for measuring oxygenation
JP2003194714A (en) Measuring apparatus for blood amount in living-body tissue
EP0290272B1 (en) Examination apparatus for measuring oxygenation
JP3433534B2 (en) Method and apparatus for measuring scattering and absorption characteristics in scattering medium
JP3625475B2 (en) Non-intrusive system for monitoring hematocrit values
EP0627620B1 (en) Method for measuring internal information in scattering medium and apparatus for the same
Zourabian et al. Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry
US5419321A (en) Non-invasive medical sensor
US4114604A (en) Catheter oximeter apparatus and method
US7420658B2 (en) Method and device for measurements in blood
EP0703445B1 (en) Method and apparatus for measuring concentration of absorptive constituent in scattering medium
EP0501283B1 (en) Optical organism measuring apparatus
CN111358473A (en) Tissue blood flow blood oxygen imaging device and method based on near infrared spectrum
JPH11501848A (en) Separation layer pulse oximetry
JPH02164341A (en) Hemoglobin concentration measuring device
US10925525B2 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
EP0497021A1 (en) Oximeter with monitor
JPH0657216B2 (en) Liver function test device
JPH1119074A (en) Measuring apparatus for degree of oxygenation of tissue blood of living body
EP0290275B1 (en) Examination apparatus for measuring oxygenation
EP0290273A1 (en) Examination apparatus for measuring oxygenation
EP1125109A1 (en) Optical monitoring
RU2040912C1 (en) Optical method and device for determining blood oxygenation
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
EP0528938B1 (en) Non-invasive medical sensor