JPH11176676A - Small-sized noncontact transmitter - Google Patents

Small-sized noncontact transmitter

Info

Publication number
JPH11176676A
JPH11176676A JP9338564A JP33856497A JPH11176676A JP H11176676 A JPH11176676 A JP H11176676A JP 9338564 A JP9338564 A JP 9338564A JP 33856497 A JP33856497 A JP 33856497A JP H11176676 A JPH11176676 A JP H11176676A
Authority
JP
Japan
Prior art keywords
transmission device
ferrite
contact transmission
ferrite core
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9338564A
Other languages
Japanese (ja)
Inventor
Kouichi Saitou
孝一 歳桃
Naoto Sato
直人 佐藤
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP9338564A priority Critical patent/JPH11176676A/en
Publication of JPH11176676A publication Critical patent/JPH11176676A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a smaller noncontact transmitter by constituting a ferrite core, a coil, and an electric circuit board integrally so as to materialize downsizing of a transmission part and reduction of number of parts enough. SOLUTION: This is a noncontact type of transmitter which includes coils 1 and 2, and 6 and 7 opposed to each other across space. Its one hand serves as input or transmission side, and the other hand serves as output or reception side, and transmits signals or power, making use of the electromagnetic inductive active generated between opposed coils 1 and 2, and 6 and 7, the coils 1 and 2, and 6 and 7 are arranged at the ferrite cores 21 and 31 as the base material of a printed circuit board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,コイル間に発生す
る電磁誘導作用により非接触で電力或いは信号,または
両方同時に伝送する小型非接触型伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-sized non-contact transmission device for transmitting electric power, a signal, or both at the same time in a non-contact manner by electromagnetic induction generated between coils.

【0002】[0002]

【従来の技術】従来,矩形フェライトコアに巻線を施し
たコイルを,空隙を介して対向し一方が入力側コイル,
他方が出力側コイルに配置し,これら対向するコイル間
に生じる電磁誘導作用を利用して非接触に伝送する伝送
装置が知られている。上記のコイル並びに付随する電子
部品を搭載する専用のFPC(フレキシブル配線回路基
板)等の電気回路基板を用いて構成している。
2. Description of the Related Art Conventionally, a coil formed by winding a rectangular ferrite core is opposed to a coil through an air gap, one of which is an input side coil,
2. Description of the Related Art There is known a transmission device in which the other is disposed in an output side coil and transmits the signal in a non-contact manner by utilizing an electromagnetic induction effect generated between these opposed coils. It is configured using an electric circuit board such as a dedicated FPC (flexible wiring circuit board) on which the above-described coil and accompanying electronic components are mounted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,フェラ
イトコアは,インダクタンスを大きくし且つコイルの直
流抵抗を小さくする為,磁束密度(B)及び透磁率
(μ)が各々大きな材料であるMn−Zn系のフェライ
トコアを採用していた。従って,コアの電気抵抗値も低
く(1Ω・m程度),コイル並びに付随する電子部品を
コアに直接配置する事が出来ず,柔軟な電気回路基板兼
ねたを絶縁物として使用していた。更に,Mn−Zn系
フェライトは,雰囲気(不活性ガス)の炉中でしか焼結
することが出来ず,安価大量に供給出来ない。
However, in order to increase the inductance and reduce the DC resistance of the coil, the ferrite core is a Mn-Zn based material having a large magnetic flux density (B) and a high magnetic permeability (μ). Had adopted a ferrite core. Therefore, the electric resistance value of the core is low (about 1 Ω · m), and the coil and associated electronic components cannot be directly arranged on the core, and a flexible electric circuit board is used as an insulator. Furthermore, Mn-Zn ferrite can be sintered only in a furnace in an atmosphere (inert gas) and cannot be supplied in large quantities at low cost.

【0004】本発明は,掛かる問題点を解決すべくなさ
れたもので,その技術的課題は,伝送部の小型・軽量化
・部品点数の削減とを充分に図り得るべくフェライトコ
アとコイルと電気回路基板を一体構成し,更なる小型非
接触伝送装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the technical problem thereof is that a ferrite core, a coil, and an electric wire are required to sufficiently reduce the size, weight, and number of parts of a transmission unit. An object of the present invention is to provide a further compact non-contact transmission device by integrally configuring a circuit board.

【0005】[0005]

【課題を解決するための手段】本発明によれば,空隙を
介して互いに対向し,一方が入力側又は送信側,他方が
出力側又は受信側となるコイルを含み,前記対向するコ
イル間に生じる電磁誘導作用を利用して信号並びに電力
を伝送する非接触型伝送装置であって,前記コイルは,
配線パターンを備えた基板の基材としてのフェライトコ
アに夫々配置されていることを特徴とする小型非接触伝
送装置が得られる。
According to the present invention, coils facing each other via a gap are provided, one of which is an input side or a transmission side and the other is an output side or a reception side. A non-contact transmission device for transmitting a signal and electric power by utilizing a generated electromagnetic induction action, wherein the coil comprises:
A compact non-contact transmission device characterized by being disposed on a ferrite core as a base material of a substrate having a wiring pattern, respectively.

【0006】また,本発明によれば,前記小型非接触伝
送装置において,前記対向するコイルは,平面ミアンダ
型コイル或いは平面渦巻型コイルより構成され,夫々の
構成数は少なくとも1個であることを特徴とする小型非
接触伝送装置が得られる。
Further, according to the present invention, in the above-mentioned compact non-contact transmission device, the opposed coil is constituted by a plane meander type coil or a plane spiral coil, and the number of each is at least one. The characteristic small contactless transmission device is obtained.

【0007】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアは,電
気抵抗の高いNi−Zn系或いはNi−Zn−Cu系フ
ェライトからなるNi系フェライトからなり,前記フェ
ライトコアを前記基板の基材とする事を特徴とする小型
非接触伝送装置が得られる。
Further, according to the present invention, in any of the above-mentioned compact non-contact transmission devices, the ferrite core is made of a Ni-Zn ferrite or a Ni-Zn-Cu ferrite having a high electric resistance. A compact non-contact transmission device characterized in that the ferrite core is used as a base material of the substrate.

【0008】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアは,磁
束飽和密度の高いMn−Zn系フェライトからなり,前
記フェライトコアを前記基板の基材とし,且つ絶緑の為
に前記フェライトコアと前記配線パターンとの間に介在
した絶縁体を備えていることを特徴とする小型非接触伝
送装置が得られる。
Further, according to the present invention, in any of the above-mentioned compact non-contact transmission devices, the ferrite core is made of Mn-Zn ferrite having a high magnetic flux saturation density, and the ferrite core is used as a base material of the substrate. In addition, a compact non-contact transmission device is provided, which is provided with an insulator interposed between the ferrite core and the wiring pattern for the sake of greenery.

【0009】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記配線パターンは,入力
側には入力側コイル及び共振コンデンサを搭載する為の
夫々の接続部及び外部接続端子部を備え,出力側は出力
側コイル,共振コンデンサ,整流ダイオード,及び平滑
コンデンサを夫々搭載する為の接続部及び外部接続端子
部を備えていることを特徴とする小型非接触伝送装置が
得られる。
Further, according to the present invention, in any one of the above-mentioned compact non-contact transmission devices, the wiring pattern has a connection portion and an external connection terminal for mounting an input side coil and a resonance capacitor on an input side. A small contactless transmission device characterized in that the output side includes a connection portion for mounting an output side coil, a resonance capacitor, a rectifier diode, and a smoothing capacitor, respectively, and an external connection terminal portion. .

【0010】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアは,N
i−Zn系フェライトからなる場合,電気抵抗(ρ)は
10kΩ・m以上であり,Ni−Zn−Cu系フェライ
トからなる場合は,1MΩ・m以上であり,飽和磁束密
度(B)は,300mT以上,透磁率(μ)は500以
上で有り,Mn−Zn系フェライトからなる場合は,電
気抵抗(ρ)は5Ω・m以上であり,飽和磁束密度
(B)は500mT以上であり,透磁率(μ)は200
0以上であることを特徴とする小型非接触伝送装置が得
られる。
According to the present invention, in any of the above-mentioned small non-contact transmission devices, the ferrite core may include
The electric resistance (ρ) is 10 kΩ · m or more in the case of i-Zn ferrite, and 1 MΩ · m or more in the case of Ni-Zn-Cu ferrite, and the saturation magnetic flux density (B) is 300 mT. As described above, the magnetic permeability (μ) is 500 or more, and when made of Mn—Zn-based ferrite, the electric resistance (ρ) is 5 Ω · m or more, the saturation magnetic flux density (B) is 500 mT or more, and the magnetic permeability is (Μ) is 200
A small contactless transmission device characterized by being 0 or more is obtained.

【0011】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアは,N
i−Zn系及びNi一Zn−Cu系フェライトのいずれ
かのNi系フェライトからなり,伝送に使用する周波数
が200kHz以上で有ることを特徴とする小型非接触
伝送装置が得られる。
Further, according to the present invention, in any one of the above-mentioned compact non-contact transmission devices, the ferrite core may include N
A compact non-contact transmission device comprising a Ni-based ferrite selected from the group consisting of i-Zn-based and Ni-Zn-Cu-based ferrite and having a frequency used for transmission of 200 kHz or more is obtained.

【0012】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアが,M
n−Zn系フェライトからなり,伝送に使用する周波数
が200kHz以下で有る事を特徴とする小型非接触伝
送装置が得られる。
Further, according to the present invention, in any one of the above-mentioned compact non-contact transmission devices, the ferrite core may be made of M
A compact non-contact transmission device comprising an n-Zn ferrite and having a frequency used for transmission of 200 kHz or less is obtained.

【0013】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアの厚さ
が0.1〜5mmの範囲内で有る事を特徴とする小型非
接触伝送装置が得られる。
Further, according to the present invention, in any of the above-mentioned small non-contact transmission devices, the thickness of the ferrite core is within a range of 0.1 to 5 mm. can get.

【0014】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,伝送に寄与する接点を無く
した方式を用いていることを特徴とする小型非接触伝送
装置が得られる。
Further, according to the present invention, there is provided a small-sized non-contact transmission device characterized in that any one of the above-mentioned small-sized non-contact transmission devices uses a method in which a contact that contributes to transmission is eliminated.

【0015】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記フェライトコアの夫々
は,一面のコイルを含む電気回路を備え,前記電気回路
の外側部に装着され,前記電気回路から発生する漏れ磁
束を40%以下に抑制することを特徴とする小型非接触
伝送装置が得られる。
Further, according to the present invention, in any one of the above-mentioned compact non-contact transmission devices, each of the ferrite cores includes an electric circuit including a coil on one surface, and is mounted on an outer portion of the electric circuit. A compact non-contact transmission device characterized in that leakage magnetic flux generated from an electric circuit is suppressed to 40% or less.

【0016】また,本発明によれば,前記いずれかの小
型非接触伝送装置において,前記出力側又は受信側コイ
ルを一面に形成したフェライトコアの前記一面に対向す
る他面側に,0〜2mmの空隙を介して充電用部材を配
する構成或いは,前記充電用部材及び前記電気回路の内
の少なくとも前記充電部材と前記フェライトコアとを分
離出来る構成を備えていることを特徴とする小型非接触
伝送装置が得られる。
Further, according to the present invention, in any one of the above-mentioned compact non-contact transmission devices, a ferrite core having the output side or the reception side coil formed on one side is provided on the other side opposite to the one side by 0 to 2 mm. Characterized in that the charging member is arranged through the gap or the at least the charging member and the ferrite core in the charging member and the electric circuit are separated from the ferrite core. A transmission device is obtained.

【0017】さらに,本発明によれば,前記いずれかの
小型非接触伝送装置において,前記コイルの対向間隔で
ある空隙が0〜5mm(但し,0を含まず)で有る事を
特徴とする小型非接触伝送装置が得られる。
Further, according to the present invention, in any one of the above-mentioned compact non-contact transmission devices, a gap which is an interval between the coils is 0 to 5 mm (however, 0 is not included). A non-contact transmission device is obtained.

【0018】[0018]

【発明の実施の形態】以下に,本発明の実施の形態につ
いて,図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の実施の形態による小型非接
触伝送装置を示す分解組立斜視図である。図2は図1の
小型非接触伝送装置の回路図である。
FIG. 1 is an exploded perspective view showing a small contactless transmission device according to an embodiment of the present invention. FIG. 2 is a circuit diagram of the small contactless transmission device of FIG.

【0020】図1に示すように,小型非接触伝送装置1
0は,受信部20と送信部30とを渦巻コイル1,2及
び渦巻コイル6,7を夫々対向させて配置されている。
As shown in FIG. 1, a small contactless transmission device 1
Numeral 0 indicates that the reception unit 20 and the transmission unit 30 are arranged with the spiral coils 1 and 2 and the spiral coils 6 and 7 facing each other.

【0021】受信部20は,フェライトコア21の一面
に絶縁体22が設けられその上に銅箔からなる配線パタ
ーン23が施されている。配線パターン23は,コイル
1,2を夫々搭載するためのコイル接続部23a,23
b,及び23c,23dと,共振コンデンサを搭載する
ための共振コンデンサ接続部23e,23fと,整流・
検波ダイオードを搭載するためのダイオード接続部23
g,23hと,平滑コンデンサを搭載するための平滑コ
ンデンサ接続部23i,23jと,外部端子部23k,
23lとを備えている。
The receiving section 20 is provided with an insulator 22 on one surface of a ferrite core 21 and a wiring pattern 23 made of copper foil thereon. The wiring pattern 23 includes coil connection portions 23a and 23 for mounting the coils 1 and 2, respectively.
b, 23c and 23d, resonance capacitor connecting portions 23e and 23f for mounting the resonance capacitors,
Diode connection part 23 for mounting detection diode
g and 23h, smoothing capacitor connecting portions 23i and 23j for mounting the smoothing capacitor, and external terminal portions 23k and 23k.
23l.

【0022】この絶縁体22の各パターンの接続部23
a〜23jには,2つの巻線コイル1,2と,共振コン
デンサ3と,整流・検波ダイオード4と,平滑コンデン
サ5が夫々搭載され,配線23´で示されるように結線
されるような電気回路が構成される。尚,符号11,1
1は,外部接続端子部であり,符号23k,23lに示
されるパターンに該当する。
The connecting portion 23 of each pattern of the insulator 22
In each of a to 23j, two winding coils 1 and 2, a resonance capacitor 3, a rectifying / detecting diode 4, and a smoothing capacitor 5 are mounted, respectively, and the electric wires are connected as shown by a wiring 23 '. A circuit is configured. Note that reference numerals 11, 1
Reference numeral 1 denotes an external connection terminal, which corresponds to a pattern indicated by reference numerals 23k and 23l.

【0023】また,送信部30は,フェライトコア31
の一面に,同様に絶縁体32を介して配線パターン33
が設けられている。配線パターン33には,コイル6,
7を搭載するためのコイル接続部33a,33b,33
c,33dと共振コンデンサを搭載するための共振コン
デンサ接続部33e,33fと,外部接続部33g,3
3hとが形成されている。この配線パターン33上に渦
巻状のコイル6,7と,共振コンデンサ8が搭載され
て,電気回路が構成される。
The transmitting unit 30 includes a ferrite core 31
The wiring pattern 33 is also provided on one side of the
Is provided. The wiring pattern 33 includes coils 6,
7 for mounting the coil 7
c, 33d and resonance capacitor connecting portions 33e, 33f for mounting the resonance capacitors, and external connecting portions 33g, 3g.
3h are formed. The spiral coils 6 and 7 and the resonance capacitor 8 are mounted on the wiring pattern 33 to form an electric circuit.

【0024】送信部30と受信部20との対向間隔は,
5mm以下である。
The facing distance between the transmitting unit 30 and the receiving unit 20 is
5 mm or less.

【0025】尚,この一対のコイル1,2,及び6,7
の夫々は,平面渦巻コイルであるが,平面ミアンダコイ
ルであっても良い。
The pair of coils 1, 2, and 6, 7
Are flat spiral coils, but may be flat meander coils.

【0026】また,フェライトコア21,31として
は,厚さ0.1〜5mmで,飽和磁束密度の高いMn−
Zn系フェライトを用いることができる。このMn−Z
n系フェライトは,電気抵抗(ρ)は,5Ω・m以上で
あり,飽和磁束密度(B)は500mT以上,透磁率
(μ)は2000以上である。このMn−Zn系フェラ
イトは,絶縁性が低いので,絶縁体22,32を介して
配線パターン23,33を施す。あるいは,Mn−Zn
系フェライトコアは,予めコアの上に直接絶縁層を塗布
・乾燥させ,その後の印刷工程にて電気回路を絶縁層の
上に形成することもできる。さらに,配線パターンを施
したFPCも用いることができる。また,Mn−Zn系
フェライトコアを用いた場合,200kHz以下の周波
数帯域で透磁率(μ)が大きく,伝送周波数は,200
kHz以下が好ましい。
The ferrite cores 21 and 31 have a thickness of 0.1 to 5 mm and have a high saturation magnetic flux density.
Zn-based ferrite can be used. This Mn-Z
The n-type ferrite has an electric resistance (ρ) of 5 Ω · m or more, a saturation magnetic flux density (B) of 500 mT or more, and a magnetic permeability (μ) of 2000 or more. Since the Mn-Zn-based ferrite has low insulating properties, the wiring patterns 23 and 33 are applied via the insulators 22 and 32. Alternatively, Mn-Zn
In the system ferrite core, an insulating layer can be applied and dried directly on the core in advance, and an electric circuit can be formed on the insulating layer in a subsequent printing process. Further, an FPC provided with a wiring pattern can also be used. When a Mn—Zn ferrite core is used, the magnetic permeability (μ) is large in a frequency band of 200 kHz or less, and the transmission frequency is 200 μm.
kHz or less is preferable.

【0027】また,フェライトコア21,31として
は,厚さ0.1〜5mmで,電気抵抗の高いNi−Zn
系フェライト或いはNi−Zn−Cu系フェライトを用
いることができる。このNi−Zn系フェライトは,電
気抵抗(ρ)は10kΩ・m以上,Ni−Zn−Cu系
フェライトの場合は,電気抵抗(ρ)は,1MkΩ・m
以上であり,飽和磁束密度(B)は300mT以上,透
磁率(μ)は500以上である。これらのNi系フェラ
イトを用いる場合には,配線パターンを直接フェライト
コアの一面に形成し,電気回路を構成することができ
る。従って,Ni系フェライトコアの上に,直接印刷工
程にて電気回路を形成することもできる。また,Ni系
フェライトコアを用いた場合は,200KHz以上の周
波数帯で,透磁率(μ)が高いので,伝送周波数は,2
00KHz以上が好ましい。
The ferrite cores 21 and 31 are made of Ni—Zn having a thickness of 0.1 to 5 mm and high electric resistance.
System ferrite or Ni-Zn-Cu system ferrite can be used. The Ni—Zn ferrite has an electric resistance (ρ) of 10 kΩ · m or more, and the Ni—Zn—Cu ferrite has an electric resistance (ρ) of 1 MkΩ · m.
The saturation magnetic flux density (B) is 300 mT or more, and the magnetic permeability (μ) is 500 or more. When using these Ni-based ferrites, an electric circuit can be formed by forming a wiring pattern directly on one surface of the ferrite core. Therefore, an electric circuit can be formed directly on the Ni-based ferrite core by a printing process. When a Ni-based ferrite core is used, since the magnetic permeability (μ) is high in a frequency band of 200 KHz or more, the transmission frequency is 2 kHz.
00 kHz or more is preferable.

【0028】また,フェライトコア21,31自体の電
気抵抗が大きいので,コアに直接電気回路を印刷塗布形
成する。此のフェライトコア21,31の上にコイル
1,2及び6,7を配置する。これらの小型非接触触伝
送装置で用いるNiフェライトコアの厚さは,0.1〜
5.0mmとすることが好ましい又,フェライトコアと
して,Niフェライトコアを選定した理由は,Niフェ
ライトコアは電気抵抗が高く(10kΩ・m以上),高
周波特性が優れているからである。更に,Niフェライ
トコアの厚さを0.1〜5.0mmに限定した理由は,
0.1mm以上とすると磁束を捕捉する効果が明らかに
認められるが,5.0mm以上になると,薄型化への効
果が著しく低下する為である。
Further, since the ferrite cores 21 and 31 have large electric resistance, an electric circuit is directly formed on the cores by printing. The coils 1, 2, 6 and 7 are arranged on the ferrite cores 21 and 31. The thickness of the Ni ferrite core used in these small contactless tactile transmitters is 0.1 to
The reason for selecting the Ni ferrite core as the ferrite core is preferably 5.0 mm because the Ni ferrite core has high electric resistance (10 kΩ · m or more) and excellent high frequency characteristics. Further, the reason for limiting the thickness of the Ni ferrite core to 0.1 to 5.0 mm is as follows.
When the thickness is 0.1 mm or more, the effect of capturing magnetic flux is clearly recognized, but when the thickness is 5.0 mm or more, the effect of reducing the thickness is significantly reduced.

【0029】このようなフェライトコア21,31を平
行に対向させ,それらの上に櫛形或いは渦巻状コイル同
志を磁束が同コイル内部を貫通する様に配置されてい
る。
The ferrite cores 21 and 31 are opposed to each other in parallel, and comb-shaped or spiral coils are arranged on the ferrite cores 21 and 31 so that a magnetic flux penetrates inside the coils.

【0030】図2に示すように,送信部30の外部接続
端子には,外部信号電源供給用のコンセント13を備え
た周波数変換回路12が接続されている。送信部30と
受信部20とは,渦巻状のコイル6,7及び渦巻状のコ
イル1,2を介して,電力及び/又は信号の伝送を行
う。尚,外部接続端子部11,11には,図示しないス
ーパーキャパシタや2次電池等の充電に関係する充電用
部材が接続される。
As shown in FIG. 2, a frequency conversion circuit 12 having an outlet 13 for supplying external signal power is connected to an external connection terminal of the transmission unit 30. The transmitting unit 30 and the receiving unit 20 transmit power and / or signals via the spiral coils 6 and 7 and the spiral coils 1 and 2. Note that a charging member (not shown) related to charging of a supercapacitor, a secondary battery, or the like is connected to the external connection terminal portions 11, 11.

【0031】このような構成の小型非接触伝送装置10
は,空隙を介して対向するコイル1,2及び6,7間に
生じる電磁誘導作用を利用して非接触に伝送するもの
で,対向するコイル1,2及び6,7は送信用の電気回
路部分及び受信用の電気回路部分に接続されている。
The small contactless transmission device 10 having such a configuration
Is a non-contact transmission using the electromagnetic induction generated between the coils 1, 2, 6 and 7 that are opposed to each other through the air gap. Section and an electrical circuit section for reception.

【0032】しかも,少なくとも,受信側の電気回路部
分の外側部にはNi系フェライトコアからなるフェライ
トコア11,12が装着されている。このNi系フェラ
イトコアは,磁束漏れを防止する効果がある。
Furthermore, ferrite cores 11 and 12 made of a Ni-based ferrite core are mounted at least on the outer side of the electric circuit portion on the receiving side. This Ni-based ferrite core has an effect of preventing magnetic flux leakage.

【0033】このような小型非接触伝送装置10の場
合,後述する様に伝送効率の向上が顕著になる。例え
ば,対向するコイル6,7が出力側電気回路部分を含む
ものとすれば,その出力側部分にコンデンサを挿入する
構成(図示せず)が挙げられる。因みにコイル1,2の
出力側部分にコンデンサを挿入すると変換効率が向上す
るが,これは,励磁の為に消費される供給電力が低減さ
れる為である。
In the case of such a small contactless transmission device 10, the transmission efficiency is remarkably improved as described later. For example, if the opposing coils 6 and 7 include an output-side electric circuit portion, a configuration (not shown) in which a capacitor is inserted into the output-side portion may be mentioned. Incidentally, when a capacitor is inserted in the output side portion of the coils 1 and 2, the conversion efficiency is improved, but this is because the supply power consumed for excitation is reduced.

【0034】こうした幾つかの小型非接触伝送装置10
に於いて,受信側のコイル6,7,または送信側及び受
信側のコイル1,2及び6,7の外側にNiフェライト
コアを装着する事によって伝送効率が向上とする。その
理由は,コイル1,2及び6,7より発生した磁束がN
iフェライトコアを集中して通るようになる為,漏れ磁
束の低減を図れ,伝送に寄与するからである。この漏れ
磁束は,約40%以下である。
Some of these small contactless transmission devices 10
In this case, the transmission efficiency is improved by mounting a Ni ferrite core outside the coils 6 and 7 on the receiving side or the coils 1, 2 and 6, 7 on the transmitting side and the receiving side. The reason is that the magnetic flux generated from the coils 1, 2 and 6, 7 is N
This is because the i-ferrite core passes through the core in a concentrated manner, thereby reducing leakage magnetic flux and contributing to transmission. This leakage flux is about 40% or less.

【0035】加えて,上記実施の形態において,対向す
るコイル1,2及び6,7を平面渦巻型コイルとした理
由は,複数の空芯コイルが同一面上に密に配列されてい
ると,それに対応して磁束量の増加が生じ,伝送に寄与
する磁束の増加が図れるからである。
In addition, in the above-mentioned embodiment, the reason why the opposed coils 1, 2 and 6, 7 are planar spiral coils is that a plurality of air-core coils are densely arranged on the same plane. This is because the amount of magnetic flux increases accordingly, and the magnetic flux contributing to transmission can be increased.

【0036】尚,複数の平面渦巻コイルを接続して複数
の対向する組で平面渦巻コイルを構成した場合,発生す
る磁束を全て同じ方向とする接続方法と,組において隣
接するもの同士の磁束の向きを逆に接続する方法とがあ
る。後者の構成とすると互いに磁束を強め合う上,外部
への磁束漏れが少ないという利点があり,周囲機器への
影響も軽減できる。
When a plurality of planar spiral coils are connected to form a planar spiral coil in a plurality of opposing sets, a connection method in which the generated magnetic fluxes are all in the same direction, and a method of connecting magnetic fluxes between adjacent coils in the set. There is a method of connecting in the opposite direction. The latter configuration has the advantage that the magnetic fluxes are strengthened with each other, the magnetic flux leakage to the outside is small, and the influence on peripheral devices can be reduced.

【0037】このような構成で,平面渦巻きコイルを密
着させて配置すると,1次2次間の相互インダクタンス
に加え,隣接しているコイル間の相互インダクタンスが
有効に作用するため,変換効率が顕著に向上させること
ができる。
In such a configuration, when the planar spiral coils are arranged in close contact with each other, the mutual inductance between adjacent coils works effectively in addition to the mutual inductance between the primary and secondary coils, so that the conversion efficiency is remarkable. Can be improved.

【0038】[0038]

【発明の効果】以上述べた通り,本発明の小型非接触伝
送装置によれば,空隙を介して対向するコイル間に生じ
る電磁誘導作用に対し,コイルの少なくとも出力側部分
の外側に装着したNi系フェライトにより磁束漏れを防
止するようにしているので,伝送効率が顕著に向上され
る。これにより非接触伝送部や対向するコイルの入力側
が信号源に接続される構成の小型非接触伝送装置に於け
る顕著な薄型化が図られ,各分野での有効な応用が期持
される。
As described above, according to the compact non-contact transmission device of the present invention, the electromagnetic induction effect generated between the coils facing each other through the air gap prevents the Ni mounted at least outside the output side portion of the coil. Since the magnetic flux leakage is prevented by the system ferrite, the transmission efficiency is remarkably improved. As a result, the thickness of a non-contact transmission device or a small non-contact transmission device in which the input side of an opposing coil is connected to a signal source is significantly reduced, and effective applications in various fields are expected.

【0039】また,本発明によれば,フェライトコア自
体を電気回路基板の基材にする事により高周波特性の改
善や,回路基板等の部品の低減が図れる。
Further, according to the present invention, by using the ferrite core itself as the base material of the electric circuit board, it is possible to improve the high-frequency characteristics and reduce the number of components such as the circuit board.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による小型非接触伝送装置
を示す分解組立斜視図である。
FIG. 1 is an exploded perspective view showing a small contactless transmission device according to an embodiment of the present invention.

【図2】図1の小型非接触伝送装置の回路図である。FIG. 2 is a circuit diagram of the small contactless transmission device of FIG. 1;

【符号の説明】[Explanation of symbols]

10 小型非接触伝送装置 20 受信部 30 送信部 1,2,6,7 コイル 3 共振コンデンサ 4 整流・検波ダイオード 5 平滑コンデンサ 8 共振コンデンサ 11 外部接続端子部 21 フェライトコア 23 配線パターン 22 絶縁体 23a,23b,23c,23d コイル接続部 23e,23f 共振コンデンサ接続部 23g,23h ダイオード接続部 23i,23j 平滑コンデンサ接続部 23k,23l 外部端子部 23´ 配線 31 フェライトコア 33 配線パターン 32 絶縁体 33a,33b,33c,33d コイル接続部 33e,33f 共振コンデンサ接続部 33g,33h 外部接続端子部 DESCRIPTION OF SYMBOLS 10 Small non-contact transmission apparatus 20 Receiving part 30 Transmitting part 1, 2, 6, 7 Coil 3 Resonant capacitor 4 Rectifier / detection diode 5 Smoothing capacitor 8 Resonant capacitor 11 External connection terminal part 21 Ferrite core 23 Wiring pattern 22 Insulator 23a, 23b, 23c, 23d Coil connection part 23e, 23f Resonance capacitor connection part 23g, 23h Diode connection part 23i, 23j Smoothing capacitor connection part 23k, 231 External terminal part 23 'Wiring 31 Ferrite core 33 Wiring pattern 32 Insulator 33a, 33b, 33c, 33d Coil connection part 33e, 33f Resonance capacitor connection part 33g, 33h External connection terminal part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02J 17/00 H01F 1/34 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H02J 17/00 H01F 1/34 A

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 空隙を介して互いに対向し,一方が入力
側又は送信側,他方が出力側又は受信側となるコイルを
含み,前記対向するコイル間に生じる電磁誘導作用を利
用して信号並びに電力を伝送する非接触型伝送装置であ
って,前記コイルは,配線パターンを備えた基板の基材
としてのフェライトコアに夫々配置されていることを特
徴とする小型非接触伝送装置。
The present invention includes a coil which is opposed to each other via an air gap, one of which is an input side or a transmission side, and the other is an output side or a reception side. A non-contact type transmission device for transmitting electric power, wherein the coils are respectively arranged on ferrite cores as a base material of a substrate provided with a wiring pattern.
【請求項2】 請求項1記載の小型非接触伝送装置にお
いて,前記対向するコイルは,平面ミアンダ型コイル或
いは平面渦巻型コイルより構成され,夫々の構成数は少
なくとも1個であることを特徴とする小型非接触伝送装
置。
2. A small-sized non-contact transmission device according to claim 1, wherein said opposed coils are formed of a plane meander type coil or a plane spiral type coil, and each of them is at least one. Small contactless transmission device.
【請求項3】 請求項1又は2記載の小型非接触伝送装
置において,前記フェライトコアは,電気抵抗の高いN
i−Zn系或いはNi−Zn−Cu系フェライトからな
るNi系フェライトからなり,前記フェライトコアを前
記基板の基材とする事を特徴とする小型非接触伝送装
置。
3. The compact non-contact transmission device according to claim 1, wherein the ferrite core has a high electric resistance.
A compact non-contact transmission device comprising a Ni-based ferrite comprising an i-Zn-based or Ni-Zn-Cu-based ferrite, wherein the ferrite core is used as a base material of the substrate.
【請求項4】 請求項1又は2記載の小型非接触伝送装
置において,前記フェライトコアは,磁束飽和密度の高
いMn−Zn系フェライトからなり,前記フェライトコ
アを前記基板の基材とし,且つ絶緑の為に前記フェライ
トコアと前記配線パターンとの間に介在した絶縁体を備
えていることを特徴とする小型非接触伝送装置。
4. The compact non-contact transmission device according to claim 1, wherein the ferrite core is made of a Mn—Zn-based ferrite having a high magnetic flux saturation density, and the ferrite core is used as a base material of the substrate. A small non-contact transmission device comprising an insulator interposed between the ferrite core and the wiring pattern for green.
【請求項5】 請求項1乃至4の内のいずれかに記載の
小型非接触伝送装置において,前記配線パターンは,入
力側には入力側コイル及び共振コンデンサを搭載する為
の夫々の接続部及び外部接続端子部を備え,出力側は出
力側コイル,共振コンデンサ,整流ダイオード,及び平
滑コンデンサを夫々搭載する為の接続部及び外部接続端
子部を備えていることを特徴とする小型非接触伝送装
置。
5. The compact non-contact transmission device according to claim 1, wherein the wiring pattern includes a connection portion for mounting an input side coil and a resonance capacitor on an input side. A small non-contact transmission device comprising an external connection terminal portion, and an output side having a connection portion for mounting an output side coil, a resonance capacitor, a rectifier diode, and a smoothing capacitor, respectively, and an external connection terminal portion. .
【請求項6】 請求項1乃至5の内のいずれかに記載の
小型非接触伝送装置において,前記フェライトコアは,
Ni−Zn系フェライトからなる場合,電気抵抗(ρ)
は10kΩ・m以上であり,Ni−Zn−Cu系フェラ
イトからなる場合は,1MΩ・m以上であり,飽和磁束
密度(B)は,300mT以上,透磁率(μ)は500
以上で有り,Mn−Zn系フェライトからなる場合は,
電気抵抗(ρ)は5Ω・m以上であり,飽和磁束密度
(B)は500mT以上であり,透磁率(μ)は200
0以上であることを特徴とする小型非接触伝送装置。
6. The compact non-contact transmission device according to any one of claims 1 to 5, wherein the ferrite core comprises:
When made of Ni-Zn ferrite, electric resistance (ρ)
Is not less than 10 kΩ · m, and is 1 MΩ · m or more when made of Ni—Zn—Cu-based ferrite, the saturation magnetic flux density (B) is 300 mT or more, and the magnetic permeability (μ) is 500
As described above, when made of Mn-Zn ferrite,
The electric resistance (ρ) is 5 Ω · m or more, the saturation magnetic flux density (B) is 500 mT or more, and the magnetic permeability (μ) is 200
A small non-contact transmission device characterized by being 0 or more.
【請求項7】 請求項1乃至6の内のいずれかに記載の
小型非接触伝送装置において,前記フェライトコアは,
Ni−Zn系及びNi一Zn−Cu系フェライトのいず
れかのNi系フェライトからなり,伝送に使用する周波
数が200kHz以上で有ることを特徴とする小型非接
触伝送装置。
7. The compact non-contact transmission device according to claim 1, wherein the ferrite core comprises:
A compact non-contact transmission device comprising a Ni-based ferrite selected from the group consisting of Ni-Zn-based and Ni-Zn-Cu-based ferrite, wherein a frequency used for transmission is 200 kHz or more.
【請求項8】 請求項1乃至6の内のいずれかに記載の
小型非接触伝送装置において,前記フェライトコアが,
Mn−Zn系フェライトからなり,伝送に使用する周波
数が200kHz以下で有る事を特徴とする小型非接触
伝送装置。
8. The compact non-contact transmission device according to any one of claims 1 to 6, wherein the ferrite core comprises:
A compact non-contact transmission device comprising a Mn-Zn ferrite, wherein a frequency used for transmission is 200 kHz or less.
【請求項9】 請求項1乃至8の内のいずれかに記載の
小型非接触伝送装置において,前記フェライトコアの厚
さが0.1〜5mmの範囲内で有る事を特徴とする小型
非接触伝送装置。
9. The small non-contact transmission device according to claim 1, wherein the thickness of the ferrite core is in a range of 0.1 to 5 mm. Transmission equipment.
【請求項10】 請求項1乃至9の内のいずれかに記載
の小型非接触伝送装置において,伝送に寄与する接点を
無くした方式を用いていることを特徴とする小型非接触
伝送装置。
10. The small-sized non-contact transmission device according to claim 1, wherein a contactless transmission system is eliminated.
【請求項11】 請求項1乃至10の内のいずれかに記
載の小型非接触伝送装置において,前記フェライトコア
の夫々は,一面のコイルを含む電気回路を備え,前記電
気回路の外側部に装着され,前記電気回路から発生する
漏れ磁束を40%以下に抑制することを特徴とする小型
非接触伝送装置。
11. The compact non-contact transmission device according to claim 1, wherein each of the ferrite cores includes an electric circuit including a coil on one surface, and is mounted on an outer portion of the electric circuit. And a leakage magnetic flux generated from the electric circuit is suppressed to 40% or less.
【請求項12】 請求項1乃至11の内のいずれかに記
載の小型非接触伝送装置において,前記出力側又は受信
側コイルを一面に形成したフェライトコアの前記一面に
対向する他面側に,0〜2mmの空隙を介して充電用部
材を配する構成或いは,前記充電用部材及び前記電気回
路の内の少なくとも前記充電部材と前記フェライトコア
とを分離出来る構成を備えていることを特徴とする小型
非接触伝送装置。
12. The compact non-contact transmission device according to any one of claims 1 to 11, wherein the output side or the reception side coil is formed on one side of a ferrite core on the other side opposite to the one side. It is characterized in that the charging member is provided through a gap of 0 to 2 mm, or that the ferrite core can be separated from at least the charging member and the ferrite core in the charging member and the electric circuit. Small non-contact transmission device.
【請求項13】 請求項1乃至12の内のいずれかに記
載の小型非接触伝送装置において,前記コイルの対向間
隔である空隙が0〜5mm(但し,0を含まず)で有る
事を特徴とする小型非接触伝送装置。
13. The compact non-contact transmission device according to any one of claims 1 to 12, wherein a gap, which is an interval between the coils, is 0 to 5 mm (however, 0 is not included). Small contactless transmission device.
JP9338564A 1997-12-09 1997-12-09 Small-sized noncontact transmitter Withdrawn JPH11176676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9338564A JPH11176676A (en) 1997-12-09 1997-12-09 Small-sized noncontact transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9338564A JPH11176676A (en) 1997-12-09 1997-12-09 Small-sized noncontact transmitter

Publications (1)

Publication Number Publication Date
JPH11176676A true JPH11176676A (en) 1999-07-02

Family

ID=18319372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9338564A Withdrawn JPH11176676A (en) 1997-12-09 1997-12-09 Small-sized noncontact transmitter

Country Status (1)

Country Link
JP (1) JPH11176676A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525661A (en) * 2003-05-02 2006-11-09 リンプキン,ジョージ,アラン Equipment for supplying energy to loads and related systems
JP2010283263A (en) * 2009-06-08 2010-12-16 Nec Tokin Corp Non-contact power transmission device
JP2011040769A (en) * 2002-05-13 2011-02-24 Access Business Group Internatl Llc System for transmitting electric power, primary unit for transmitting electric power, method for transmitting electric power, primary unit having power transmission region, and primary unit for use in power transmission system
JP2012160699A (en) * 2011-09-22 2012-08-23 Panasonic Corp Non contact charging module and non contact charger
JP2012161172A (en) * 2011-02-01 2012-08-23 Panasonic Corp Non contact charging module and non contact charger
JP5029605B2 (en) * 2006-04-03 2012-09-19 パナソニック株式会社 Semiconductor memory module with built-in antenna
KR101189289B1 (en) 2011-06-08 2012-10-09 엘지이노텍 주식회사 A wireless power transmission apparatus
JP2013016550A (en) * 2011-06-30 2013-01-24 Equos Research Co Ltd Antenna
US8698350B2 (en) 2010-10-08 2014-04-15 Panasonic Corporation Wireless power transmission unit and power generator with the wireless power transmission unit
US8729855B2 (en) 2011-02-01 2014-05-20 Panasonic Corporation Non-contact charging module and non-contact charger
JP2014207458A (en) * 2011-04-27 2014-10-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Contactless power transmission device and electronic device having the same
WO2015064694A1 (en) 2013-11-01 2015-05-07 戸田工業株式会社 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
CN107148368A (en) * 2014-11-05 2017-09-08 高通股份有限公司 System, method and apparatus for the integrated tuning capacitor in charge coil structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040769A (en) * 2002-05-13 2011-02-24 Access Business Group Internatl Llc System for transmitting electric power, primary unit for transmitting electric power, method for transmitting electric power, primary unit having power transmission region, and primary unit for use in power transmission system
JP2013243374A (en) * 2002-05-13 2013-12-05 Access Business Group Internatl Llc System for transmitting power, primary unit for transmitting power, method for transmitting power, and primary unit for use in power transmitting system
JP2006525661A (en) * 2003-05-02 2006-11-09 リンプキン,ジョージ,アラン Equipment for supplying energy to loads and related systems
JP5029605B2 (en) * 2006-04-03 2012-09-19 パナソニック株式会社 Semiconductor memory module with built-in antenna
JP2010283263A (en) * 2009-06-08 2010-12-16 Nec Tokin Corp Non-contact power transmission device
US8698350B2 (en) 2010-10-08 2014-04-15 Panasonic Corporation Wireless power transmission unit and power generator with the wireless power transmission unit
JP2012161172A (en) * 2011-02-01 2012-08-23 Panasonic Corp Non contact charging module and non contact charger
US8729855B2 (en) 2011-02-01 2014-05-20 Panasonic Corporation Non-contact charging module and non-contact charger
JP2014207458A (en) * 2011-04-27 2014-10-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Contactless power transmission device and electronic device having the same
KR101189289B1 (en) 2011-06-08 2012-10-09 엘지이노텍 주식회사 A wireless power transmission apparatus
JP2013016550A (en) * 2011-06-30 2013-01-24 Equos Research Co Ltd Antenna
JP2012160699A (en) * 2011-09-22 2012-08-23 Panasonic Corp Non contact charging module and non contact charger
WO2015064694A1 (en) 2013-11-01 2015-05-07 戸田工業株式会社 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
KR20160084372A (en) 2013-11-01 2016-07-13 도다 고교 가부시끼가이샤 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
CN107148368A (en) * 2014-11-05 2017-09-08 高通股份有限公司 System, method and apparatus for the integrated tuning capacitor in charge coil structure

Similar Documents

Publication Publication Date Title
US20230327491A1 (en) Transmitting assembly for a universal wireless charging device and a method thereof
JP5928640B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
CN105474459B (en) Receiving antenna and wireless power reception device comprising the receiving antenna
US20170310149A1 (en) Mobile terminal
JP5549818B2 (en) Non-contact transmission device, and battery unit and battery lid unit including the same
CN102308349B (en) The manufacture method of the module with planar coil and the module with planar coil
WO2016186443A1 (en) Combo antenna unit and wireless power receiving module comprising same
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
WO2014148313A1 (en) Antenna apparatus and electronic device
JP5364745B2 (en) Magnetic element for wireless power transmission and power supply device
JP6696573B2 (en) Wireless module, RFID system and wireless power supply device
JP2010041906A (en) Contactless power transmission apparatus, soft magnetic sheet, and module using the same
KR101971091B1 (en) Antenna module includeing sheilding layer and wireless power receiving apparatus
JP2013093429A (en) Non-contact transmission device
KR20150068400A (en) Composite coil module and portable apparatus
JP2015149405A (en) Antenna apparatus, antenna unit for non-contact power transmission, and electronic apparatus
EP2693454A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
JPH11176676A (en) Small-sized noncontact transmitter
US20150326055A1 (en) Mobile terminal
JP2008263740A (en) Transmission transformer of noncontact power transmission system
CN103703617A (en) Magnetic antenna, antenna device, and electronic equipment
KR20110103408A (en) Electric power transmitting apparatus and noncontact electric power transmission system
KR20190136447A (en) Wireless charging coil and wireless charging coil module
JPH11239016A (en) Antenna coil accompanied by reduced electric field
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060214