JP2013093429A - Non-contact transmission device - Google Patents

Non-contact transmission device Download PDF

Info

Publication number
JP2013093429A
JP2013093429A JP2011234272A JP2011234272A JP2013093429A JP 2013093429 A JP2013093429 A JP 2013093429A JP 2011234272 A JP2011234272 A JP 2011234272A JP 2011234272 A JP2011234272 A JP 2011234272A JP 2013093429 A JP2013093429 A JP 2013093429A
Authority
JP
Japan
Prior art keywords
contact
transmission device
winding
terminal
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011234272A
Other languages
Japanese (ja)
Inventor
Kazuya Itagaki
一也 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011234272A priority Critical patent/JP2013093429A/en
Publication of JP2013093429A publication Critical patent/JP2013093429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact transmission device capable of reducing a metal used in a winding when compared with a case where a non-contact communication coil and a non-contact power supply cable are independent from each other.SOLUTION: In a non-contact transmission device 1, a first winding 20 is utilized as a non-contact communication coil. The first winding 20 and a second winding 30 are utilized, in combination, as a non-contact power supply cable. More specifically, the non-contact transmission device 1 can transmit and receive a signal between a small-sized mobile apparatus (not shown) to be attached via a common terminal 101 and a non-contact communication terminal 102 during non-contact communication with a reader/writer (not shown), and can supply power to the small-sized mobile apparatus via the common terminal 101 and a non-contact power supply terminal 103 during non-contact charging from a charger.

Description

本発明は、非接触で信号及び電力を伝送する非接触伝送デバイスに関する。   The present invention relates to a contactless transmission device that transmits signals and power in a contactless manner.

非接触で「信号」を伝送する非接触通信(NFC:Near Field Communication)は、例えば乗車カードや電子マネー等の非接触ICカードが実用化され、近年では携帯電話やスマートフォン等の小型モバイル機器にも広く組み込まれている。NFCでは、ICモジュールとコイルを備える非接触ICカードや携帯電話をリーダ・ライタに近接させることで、非接触で信号を伝送できる。非接触通信用コイルは、一般的に、薄型化の観点から、FPC(フレキシブルプリント基板)上の導体パターンとして形成される。   For non-contact communication (NFC: Near Field Communication) that transmits “signals” in a non-contact manner, non-contact IC cards such as boarding cards and electronic money have been put into practical use. Is also widely incorporated. In NFC, signals can be transmitted in a non-contact manner by bringing a non-contact IC card or mobile phone including an IC module and a coil close to a reader / writer. The non-contact communication coil is generally formed as a conductor pattern on an FPC (flexible printed circuit board) from the viewpoint of thickness reduction.

他方、非接触で「電力」を伝送する非接触給電(Wireless Charging)は、近年では伝送効率が向上し、小型モバイル機器にも採用される流れとなっている。非接触給電では、一方のコイルを備える機器を前記一方のコイルと磁気的に結合する他方のコイルを備える充電器に近接させることで、非接触で電力を伝送できる。非接触給電は、電極が不要であるために、接触不良による充電エラーを避けることができ、また防水構造とするにも適している。非接触給電用のコイルは、一般的に、低抵抗化の観点から、比較的線径の大きい導線が用いられる。   On the other hand, wireless charging, which transmits “electric power” in a non-contact manner, has recently been improved in transmission efficiency and adopted in small mobile devices. In the non-contact power supply, electric power can be transmitted in a non-contact manner by bringing a device including one coil close to a charger including the other coil that is magnetically coupled to the one coil. Since the contactless power feeding does not require an electrode, a charging error due to poor contact can be avoided, and it is also suitable for a waterproof structure. As the coil for non-contact power supply, a conductive wire having a relatively large wire diameter is generally used from the viewpoint of reducing resistance.

特開2011−142559号公報JP 2011-142559 A 特開平2−226390号公報JP-A-2-226390 特開平5−259949号公報JP-A-5-259949 特開平10−126318号公報JP-A-10-126318

小型モバイル機器に非接触給電を採用する場合、既に組み込まれていることの多いNFCと併設することになる。このとき、非接触通信用コイル(NFC用コイル)と非接触給電用コイルとを相互に独立した別々のコイルにすると、巻線の総数は、非接触通信用コイルの巻線数と非接触給電用コイルの巻線数との単純な合計となる。他方、省資源化や低コスト化、軽量化の要求はますます高くなっており、巻線に用いられる金属(例えば銅)を幾分でも削減することが求められている。   When non-contact power feeding is adopted for a small mobile device, it is provided with an NFC that is already incorporated. At this time, if the non-contact communication coil (NFC coil) and the non-contact power supply coil are separated from each other, the total number of windings is equal to the number of turns of the non-contact communication coil. It is a simple total with the number of turns of the coil for use. On the other hand, demands for resource saving, cost reduction, and weight reduction are increasing, and it is required to reduce the metal (for example, copper) used for the winding to some extent.

本発明はこうした状況を認識してなされたものであり、その目的は、非接触通信用コイルと非接触給電用コイルとを相互に独立した別々のコイルにする場合と比較して、巻線に用いられる金属を削減することの可能な、非接触伝送デバイスを提供することにある。   The present invention has been made in view of such a situation, and the object of the present invention is to provide a winding as compared with the case where the non-contact communication coil and the non-contact power supply coil are separated from each other. An object of the present invention is to provide a contactless transmission device capable of reducing the amount of metal used.

本発明のある態様は、非接触伝送デバイスである。この非接触伝送デバイスは、
平板状の磁性体と、前記磁性体の一方の面に設けられたコイルとを備え、
前記コイルは、第1及び第2の巻線部と、第1から第3の端子部とを有し、
前記第1の巻線部の両端がそれぞれ前記第1及び第2の端子部に引き出され、
前記第2の巻線部の両端がそれぞれ前記第2及び第3の端子部に引き出され、
前記第1の巻線部を非接触通信用コイルとして利用し、前記第1及び第2の巻線部を合わせて非接触給電用コイルとして利用する。
One embodiment of the present invention is a contactless transmission device. This contactless transmission device
A flat magnetic body, and a coil provided on one surface of the magnetic body,
The coil has first and second winding portions, and first to third terminal portions,
Both ends of the first winding portion are drawn out to the first and second terminal portions, respectively.
Both ends of the second winding part are drawn out to the second and third terminal parts, respectively.
The first winding portion is used as a non-contact communication coil, and the first and second winding portions are combined and used as a non-contact power supply coil.

前記第1の端子部が共通端子であり、前記第2の端子部が非接触通信用端子であり、前記第3の端子部が非接触給電用端子であってもよい。   The first terminal portion may be a common terminal, the second terminal portion may be a contactless communication terminal, and the third terminal portion may be a contactless power feeding terminal.

前記第2の端子部と前記第2の巻線部との間にスイッチが設けられていてもよい。   A switch may be provided between the second terminal portion and the second winding portion.

前記第1及び第2の巻線部は、1本分の線径の厚みとなるように前記磁性体の一方の面上で平面的に周回してもよい。   The first and second winding portions may circulate in a planar manner on one surface of the magnetic body so as to have a thickness corresponding to one wire diameter.

前記第1の巻線部が前記第2の巻線部の外側に位置してもよい。   The first winding portion may be located outside the second winding portion.

前記磁性体は、前記第1の巻線部と前記第2の巻線部との間のリング状の領域において前記一方の面から立ち上がる凸部を有してもよい。   The magnetic body may have a convex portion rising from the one surface in a ring-shaped region between the first winding portion and the second winding portion.

前記磁性体は、前記第1及び第2の巻線部の内側において前記一方の面から立ち上がる凸部を有してもよい。   The magnetic body may have a convex portion rising from the one surface inside the first and second winding portions.

前記第1及び第2の巻線部が実質的に角形形状であってもよい。   The first and second winding portions may have a substantially square shape.

前記第1及び第2の巻線部が実質的に同心配置であってもよい。   The first and second winding portions may be substantially concentric.

前記磁性体の、比透磁率μrの実部をμ'、比透磁率μrの虚部をμ''、tanδ=μ''/μ'としたとき、室温かつ14MHz以下の周波数において、
20≦μ'≦500、
μ''≦200、かつ
tanδ≦1.0
であり、さらに、
前記磁性体の飽和磁束密度をBmとしたとき、室温かつ磁界の強さ1.6kA/mにおいて、Bm>330mTであってもよい。
Said magnetic body, the real part of the relative permeability mu r mu ', the imaginary part of relative permeability μ r μ'', when the tanδ = μ''/μ' , at frequencies below room temperature and 14 MHz,
20 ≦ μ ′ ≦ 500,
μ '' ≦ 200, and
tanδ ≦ 1.0
And, moreover,
When the saturation magnetic flux density of the magnetic material is Bm, Bm> 330 mT may be used at room temperature and a magnetic field strength of 1.6 kA / m.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、第1の巻線部を非接触通信用コイルとして利用するとともに、前記第1の巻線部を非接触給電用コイルの巻線の一部としても利用するため、非接触通信用コイルと非接触給電用コイルとを相互に独立した別々のコイルにする場合と比較して、巻線に用いられる金属を削減することが可能となる。   According to the present invention, the first winding part is used as a non-contact communication coil and the first winding part is also used as a part of the non-contact power supply coil. Compared with the case where the communication coil and the non-contact power supply coil are made separate from each other, the metal used for the winding can be reduced.

本発明の実施の形態1に係る非接触伝送デバイスの平面図。The top view of the non-contact transmission device which concerns on Embodiment 1 of this invention. 図1のII-II断面図。II-II sectional drawing of FIG. 図1に示す非接触伝送デバイスの模式的配線図。The schematic wiring diagram of the non-contact transmission device shown in FIG. 図1に示す非接触伝送デバイスの等価回路図。The equivalent circuit schematic of the non-contact transmission device shown in FIG. 本発明の実施の形態2に係る非接触伝送デバイスの平面図。The top view of the non-contact transmission device which concerns on Embodiment 2 of this invention. 図5に示す非接触伝送デバイスの模式的配線図。FIG. 6 is a schematic wiring diagram of the contactless transmission device shown in FIG. 5. 図5に示す非接触伝送デバイスの等価回路図。FIG. 6 is an equivalent circuit diagram of the contactless transmission device shown in FIG. 5. 本発明の実施の形態3に係る非接触伝送デバイスの正断面図。The front sectional view of the non-contact transmission device concerning Embodiment 3 of the present invention. (A)は本発明の実施の形態4に係るバッテリユニットを小型モバイル機器本体に取り付ける場合の模式的分解図、(B)は比較例であってNFCと非接触給電の各コイルを別々にして携帯電話に搭載する場合の模式的説明図。(A) is a schematic exploded view when the battery unit according to Embodiment 4 of the present invention is attached to a small mobile device body, and (B) is a comparative example in which NFC and non-contact power supply coils are separately provided. Schematic explanatory drawing in the case of mounting on a mobile phone. 非接触伝送デバイスが小型モバイル機器本体に直接電気的に接続される場合のバッテリユニットと小型モバイル機器本体の概略ブロック図。The schematic block diagram of a battery unit and a small mobile device main body when a non-contact transmission device is directly electrically connected to the small mobile device main body. バッテリが非接触伝送デバイスの増設に対応している場合のバッテリユニットと小型モバイル機器本体の概略ブロック図。FIG. 3 is a schematic block diagram of a battery unit and a small mobile device main body when the battery supports expansion of a non-contact transmission device. バッテリユニットが樹脂等のパッケージに覆われて一体化されている場合のバッテリユニットと小型モバイル機器本体の概略ブロック図。The schematic block diagram of a battery unit and a small mobile device main body when the battery unit is covered and integrated with a package such as resin. バッテリユニットに過充電防止回路を内蔵した場合のバッテリユニットと小型モバイル機器本体の概略ブロック図。FIG. 2 is a schematic block diagram of a battery unit and a small mobile device body when an overcharge prevention circuit is built in the battery unit. 信号混合分離回路を用いる場合のバッテリユニットと小型モバイル機器本体の概略ブロック図。The schematic block diagram of a battery unit in the case of using a signal mixing separation circuit and a small mobile device main body. 本発明の実施の形態5に係るバッテリリッドユニットと小型モバイル機器本体の概略ブロック図。FIG. 7 is a schematic block diagram of a battery lid unit and a small mobile device body according to a fifth embodiment of the present invention.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態1に係る非接触伝送デバイス1の平面図である。図2は、図1のII-II断面図である。図3は、非接触伝送デバイス1の模式的配線図である。図4は、非接触伝送デバイス1の等価回路図である。なお、図3及び図4において、第1の巻線部20を点線で示している。   FIG. 1 is a plan view of a contactless transmission device 1 according to Embodiment 1 of the present invention. 2 is a cross-sectional view taken along the line II-II in FIG. FIG. 3 is a schematic wiring diagram of the contactless transmission device 1. FIG. 4 is an equivalent circuit diagram of the contactless transmission device 1. 3 and 4, the first winding portion 20 is indicated by a dotted line.

非接触伝送デバイス1は、平板状の磁性体10と、第1の巻線部20と、第2の巻線部30と、第1の端子部としての共通端子101(COMMON)と、第2の端子部としての非接触通信用端子102(NFC端子)と、第3の端子部としての非接触給電用端子103(WLC端子、WLC:WireLess Charge)とを備える。   The non-contact transmission device 1 includes a flat magnetic body 10, a first winding part 20, a second winding part 30, a common terminal 101 (COMMON) as a first terminal part, a second A non-contact communication terminal 102 (NFC terminal) as a terminal part and a non-contact power supply terminal 103 (WLC terminal, WLC: WireLess Charge) as a third terminal part.

磁性体10は、例えば一体のフェライト焼成物であって磁気シールドとして作用し、コアとして機能する凸部11を中央部に有する。すなわち、凸部11は、第1の巻線部20及び第2の巻線部30の内側において第1の巻線部20及び第2の巻線部30の配置面から立ち上がる。なお、凸部11は、磁性体10の一部であってもよいし磁性体10とは別体であってもよい。   The magnetic body 10 is, for example, an integral ferrite fired product, and acts as a magnetic shield, and has a convex portion 11 that functions as a core in the central portion. That is, the convex portion 11 rises from the arrangement surface of the first winding portion 20 and the second winding portion 30 inside the first winding portion 20 and the second winding portion 30. The convex portion 11 may be a part of the magnetic body 10 or may be a separate body from the magnetic body 10.

第1の巻線部20及び第2の巻線部30は、例えばエナメル線等の絶縁被覆線を、それぞれ1本分の線径の厚みとなるように磁性体10の一方の面上で薄く平面的に周回させたものである。それぞれの周回数は必要なインダクタンス等に応じて適宜設定される。第1の巻線部20が第2の巻線部30の外側となる位置関係であり、両者は実質的に同心配置かつ上方から見て実質的に角形形状である。なお、第1の巻線部20及び第2の巻線部30は共に自動巻線機により作成可能である。   The first winding portion 20 and the second winding portion 30 are made of, for example, thin insulation coating wires such as enamel wires on one surface of the magnetic body 10 so as to have a thickness corresponding to one wire diameter. It was made to circulate in a plane. The number of turns of each is appropriately set according to the required inductance. The first winding portion 20 is positioned outside the second winding portion 30, and both are substantially concentrically arranged and have a substantially square shape when viewed from above. Both the first winding part 20 and the second winding part 30 can be created by an automatic winding machine.

第1の巻線部20の両端は、第1の引出線20a,20bによってそれぞれ共通端子101及び非接触通信用端子102に引き出されて電気的に接続される。第2の巻線部30の両端は、第2の引出線30a,30bによってそれぞれ非接触通信用端子102及び非接触給電用端子103に引き出されて電気的に接続される。なお、第1の引出線20b及び第2の引出線30a,30bのうち巻線部を内側から外側に跨ぐ部分には、例えばジャンパー線を用いる。非接触伝送デバイス1において、第1の巻線部20は、非接触通信用コイル(非接触で「信号」を伝送するためのコイル)として利用される。第1の巻線部20及び第2の巻線部30は、合わせて非接触給電用コイル(非接触で「電力」を伝送するためのコイル)として利用される。すなわち、非接触伝送デバイス1は、リーダ・ライタ(不図示)との非接触通信時は、取付け先の小型モバイル機器(不図示)との間で共通端子101及び非接触通信用端子102を介して信号の送受信が可能であるとともに、充電器からの非接触充電時は、共通端子101及び非接触給電用端子103を介して小型モバイル機器のバッテリに給電可能である。   Both ends of the first winding portion 20 are drawn out and electrically connected to the common terminal 101 and the non-contact communication terminal 102 by the first lead wires 20a and 20b, respectively. Both ends of the second winding portion 30 are drawn out and electrically connected to the non-contact communication terminal 102 and the non-contact power supply terminal 103 by the second lead wires 30a and 30b, respectively. For example, a jumper wire is used for a portion of the first lead wire 20b and the second lead wires 30a and 30b that straddles the winding portion from the inside to the outside. In the non-contact transmission device 1, the first winding portion 20 is used as a non-contact communication coil (a coil for transmitting a “signal” in a non-contact manner). The first winding part 20 and the second winding part 30 are used together as a non-contact power supply coil (a coil for transmitting “power” in a non-contact manner). That is, the non-contact transmission device 1 communicates with a small mobile device (not shown) as an attachment destination via a common terminal 101 and a non-contact communication terminal 102 during non-contact communication with a reader / writer (not shown). Signals can be transmitted and received, and at the time of non-contact charging from the charger, power can be supplied to the battery of the small mobile device via the common terminal 101 and the contactless power supply terminal 103.

本実施の形態の非接触伝送デバイス1によれば、下記の効果を奏することができる。   According to the non-contact transmission device 1 of the present embodiment, the following effects can be achieved.

(1) 第1の巻線部20を、非接触通信用コイルとして利用するとともに、非接触給電用コイルの巻線の一部としても利用する(換言すれば、巻線数が多く必要な非接触給電用コイルの巻線の一部を比較的巻線数が少ない非接触通信用コイルとして兼用する)ため、非接触通信用コイルと非接触給電用コイルとを相互に独立した別々のコイルにする場合と比較して、巻線に用いられる金属を削減することが可能となる。したがって、省資源化及び低コスト化、軽量化に有利である。 (1) The first winding portion 20 is used as a non-contact communication coil and also as a part of a non-contact power supply coil (in other words, a non-necessary non-wireless winding is required). Because part of the winding of the contact power supply coil is also used as a non-contact communication coil with a relatively small number of windings), the non-contact communication coil and the non-contact power supply coil are separated into separate coils. Compared with the case where it does, it becomes possible to reduce the metal used for a coil | winding. Therefore, it is advantageous for resource saving, cost reduction, and weight reduction.

(2) 非接触通信用コイル(第1の巻線部20)にFPC(フレキシブルプリント基板)を使用しないため、FPCを使用した非接触通信用コイルを用いる場合と比較してコスト安である。もっとも、FPCを使用したものと比較して非接触通信用コイル自体の厚みは増すが、非接触給電用コイルにはFPCは現実的には使用できない(電流容量不足のため)ことを考えると、第1の巻線部20及び第2の巻線部30を合わせて見ればFPCを使用しなくても厚みが増すことはない。したがって、FPCを使用しなくても非接触伝送デバイス1全体としての厚みが増すという問題は無い。 (2) Since no FPC (flexible printed circuit board) is used for the non-contact communication coil (first winding portion 20), the cost is lower than when a non-contact communication coil using FPC is used. However, the thickness of the non-contact communication coil itself is increased compared to that using the FPC, but considering that the FPC cannot be practically used for the non-contact power supply coil (due to insufficient current capacity), If the first winding portion 20 and the second winding portion 30 are viewed together, the thickness does not increase even if the FPC is not used. Therefore, there is no problem that the thickness of the non-contact transmission device 1 as a whole increases without using the FPC.

本実施の形態では、同一の磁性体10上に第1の巻線部20及び第2の巻線部30(すなわち非接触通信用コイル及び非接触給電用コイル)を設けている。非接触通信用コイルの使用周波数は例えば13.56MHzであるのに対し、非接触給電用コイルの使用周波数は例えば50〜400kHzの帯域であることが多い。また、非接触通信用コイルのインダクタンスは例えば1〜4μH(13.56MHz時)とする一方、非接触給電用コイルのインダクタンスは例えば8〜24μH(100〜300KHz時)とする必要がある(いずれも磁性体10上に配置時のインダクタンス値)。このように、両コイルは使用周波数や特性が異なるため、磁性体10は下記の性質を満たすように作製する。すなわち、磁性体10の、比透磁率の実部をμ'、比透磁率の虚部をμ''、tanδ=μ''/μ'、磁性体10の飽和磁束密度をBmとしたとき、室温(例えば25度)かつ14MHz以下の周波数において、
20≦μ'≦500、
μ''≦200、
tanδ≦1.0、かつ
Bm>330mT(磁界の強さが1.6kA/mのとき)
とする。但し、Bmの条件のみ直流時の値を示している。
In the present embodiment, the first winding portion 20 and the second winding portion 30 (that is, the non-contact communication coil and the non-contact power supply coil) are provided on the same magnetic body 10. The use frequency of the non-contact communication coil is, for example, 13.56 MHz, while the use frequency of the non-contact power supply coil is, for example, a band of 50 to 400 kHz in many cases. The inductance of the non-contact communication coil is, for example, 1 to 4 μH (at 13.56 MHz), while the inductance of the non-contact power supply coil is, for example, 8 to 24 μH (at 100 to 300 KHz) (both are all). Inductance value when placed on the magnetic body 10). Thus, since both coils have different operating frequencies and characteristics, the magnetic body 10 is manufactured to satisfy the following properties. That is, when the real part of the relative permeability of the magnetic body 10 is μ ′, the imaginary part of the relative permeability is μ ″, tan δ = μ ″ / μ ′, and the saturation magnetic flux density of the magnetic body 10 is Bm, At room temperature (for example, 25 degrees) and a frequency of 14 MHz or less,
20 ≦ μ ′ ≦ 500,
μ '' ≦ 200,
tan δ ≦ 1.0 and Bm> 330 mT (when magnetic field strength is 1.6 kA / m)
And However, only the condition of Bm shows the value at the time of direct current.

上記条件のうち、20≦μ'は、充電器側あるいはリーダ・ライタ側と電磁誘導により電力あるいは信号をやりとりするために必要な透磁率の条件である。μ'≦500は、μ'が500を超えてくると磁気損失項であるμ''が大きくなるため、主にNFCのために設定した条件である。μ''≦200は、μ''が200を超えてくるとNFCの通信距離が短くなるため、必要な通信距離を確保するために設定した条件である。μ''が小さいほど、リーダ・ライタから離しても通信が可能となる。tanδ≦1.0は、電磁誘導による通信効率と磁気損失とのバランスを考慮して主にNFCのために設定した条件である。Bm>330mTは、非接触給電用コイルに流れる比較的大きな電流によっても磁気飽和しないようにするために、主に非接触給電のために設定した条件である。   Among the above conditions, 20 ≦ μ ′ is a condition of magnetic permeability necessary for exchanging electric power or signals with the charger side or the reader / writer side by electromagnetic induction. μ ′ ≦ 500 is a condition set mainly for NFC because μ ″, which is a magnetic loss term, increases when μ ′ exceeds 500. μ ″ ≦ 200 is a condition set to ensure a necessary communication distance because the communication distance of NFC becomes shorter when μ ″ exceeds 200. As μ ″ is smaller, communication is possible even if it is separated from the reader / writer. tan δ ≦ 1.0 is a condition set mainly for NFC in consideration of the balance between communication efficiency by electromagnetic induction and magnetic loss. Bm> 330 mT is a condition set mainly for non-contact power feeding so as not to be magnetically saturated even by a relatively large current flowing in the non-contact power feeding coil.

これらの条件を満たすことにより、磁性体10は、電力系と信号系の双方に対応できる磁気シールドとなる。すなわち、磁性体10が上記の条件を満たすものであるため、同一の磁性体10で非接触通信用コイル及び非接触給電用コイルに対して効果的に磁気シールドを行うことができる。そして、そのような磁性体10上に非接触通信用コイル及び非接触給電用コイルを一体的に設けて一体化コイルユニットとしたことで、省スペース化を図ることができ、例えば小型モバイル機器への搭載に有利である。すなわち、既に組み込まれていることの多いNFCに加え、小型モバイル機器に非接触給電機能を搭載することが小型化により容易となる。   By satisfying these conditions, the magnetic body 10 becomes a magnetic shield that can handle both the power system and the signal system. That is, since the magnetic body 10 satisfies the above conditions, the same magnetic body 10 can effectively perform magnetic shielding on the non-contact communication coil and the non-contact power supply coil. Then, by providing a non-contact communication coil and a non-contact power supply coil integrally on such a magnetic body 10 to form an integrated coil unit, it is possible to save space, for example, to a small mobile device. It is advantageous for mounting. In other words, in addition to NFC that is already often incorporated, it is easy to mount a non-contact power feeding function in a small mobile device due to downsizing.

図5は、本発明の実施の形態2に係る非接触伝送デバイス2の平面図である。図6は、非接触伝送デバイス2の模式的配線図((A)はスイッチ105オフ状態、(B)はスイッチ105オン状態)である。図7は、非接触伝送デバイス2の等価回路図である。なお、図6及び図7において、第1の巻線部20を点線で示している。本実施の形態は、実施の形態1と比較して、第2の引出線30aの途中すなわち非接触通信用端子102と第2の巻線部30の一端との間にスイッチ105が設けられている点で相違し、その他の点は同様である。スイッチ105は、例えばFET等のトランジスタからなる電子スイッチである。非接触通信時はスイッチ105をオフ、非接触給電時はスイッチ105をオンとする。スイッチ105を設けたことにより、非接触通信時に第1の巻線部20から第2の巻線部30に電流が流出することをより確実に防止することができる。   FIG. 5 is a plan view of the contactless transmission device 2 according to Embodiment 2 of the present invention. FIG. 6 is a schematic wiring diagram of the non-contact transmission device 2 ((A) is a switch 105 OFF state, (B) is a switch 105 ON state). FIG. 7 is an equivalent circuit diagram of the contactless transmission device 2. 6 and 7, the first winding portion 20 is indicated by a dotted line. In the present embodiment, a switch 105 is provided in the middle of the second lead wire 30 a, that is, between the contactless communication terminal 102 and one end of the second winding portion 30, as compared with the first embodiment. The other points are the same. The switch 105 is an electronic switch made of a transistor such as an FET. The switch 105 is turned off during non-contact communication, and the switch 105 is turned on during non-contact power feeding. By providing the switch 105, it is possible to more reliably prevent current from flowing from the first winding portion 20 to the second winding portion 30 during non-contact communication.

図8は、本発明の実施の形態3に係る非接触伝送デバイス3の正断面図である。本実施の形態は、実施の形態1と比較して、磁性体10が第1の巻線部20と第2の巻線部30との間のリング状の領域に突起部12を有する点で相違し、その他の点は同様である。突起部12は、凸部10と略同一高さである。なお、突起部12は、前記リング状の領域を1周する連続したリング状突起であってもよいし、複数の突起がリング状に配列されたものであってもよい。突起部12を設けた理由は次のとおりである。すなわち、非接触伝送デバイス3で非接触通信を行う場合、第2の巻線部30は非接触通信と無関係な導体部であり、第2の巻線部30による電磁波の干渉により非接触通信の通信距離が短くなるという問題がある。そこで、突起部12を設けると、非接触通信時の第2の巻線部30による干渉を低減でき、突起部12を設けない場合と比較して非接触通信の通信距離を長くすることができる。   FIG. 8 is a front sectional view of the non-contact transmission device 3 according to Embodiment 3 of the present invention. The present embodiment is different from the first embodiment in that the magnetic body 10 has a protrusion 12 in a ring-shaped region between the first winding portion 20 and the second winding portion 30. It is different and the other points are the same. The protrusion 12 is substantially the same height as the protrusion 10. The protrusion 12 may be a continuous ring-shaped protrusion that goes around the ring-shaped region, or a plurality of protrusions arranged in a ring shape. The reason why the protrusion 12 is provided is as follows. That is, when non-contact communication is performed by the non-contact transmission device 3, the second winding part 30 is a conductor part unrelated to non-contact communication, and non-contact communication is performed by interference of electromagnetic waves by the second winding part 30. There is a problem that the communication distance is shortened. Therefore, when the protrusion 12 is provided, interference by the second winding part 30 at the time of non-contact communication can be reduced, and the communication distance of non-contact communication can be increased compared to the case where the protrusion 12 is not provided. .

以下、非接触伝送デバイス及びバッテリを一体化したバッテリユニットの実施の形態について説明する。   Hereinafter, an embodiment of a battery unit in which a non-contact transmission device and a battery are integrated will be described.

図9(A)は、本発明の実施の形態4に係るバッテリユニット5を小型モバイル機器本体8に取り付ける場合の模式的分解図である。図9(B)は、比較例であって、NFCと非接触給電の各コイルを別々にして携帯電話に搭載する場合の模式的分解図である。なお、小型モバイル機器は、図示の例では携帯電話であるが、スマートフォンやデジタルカメラ、携帯ゲーム機、携帯音楽プレイヤ等の小型モバイル機器であってもよい。   FIG. 9A is a schematic exploded view when battery unit 5 according to Embodiment 4 of the present invention is attached to small mobile device body 8. FIG. 9B is a comparative example, and is a schematic exploded view when NFC and non-contact power feeding coils are separately mounted on a mobile phone. The small mobile device is a mobile phone in the illustrated example, but may be a small mobile device such as a smartphone, a digital camera, a portable game machine, or a portable music player.

図9(A)に示すように、バッテリユニット5は、小型モバイル機器のバッテリ7の表面(小型モバイル機器本体8とは反対側の面)に、非接触伝送デバイス6を接着ないし粘着により一体化したものである。非接触伝送デバイス6とバッテリ7は当初から一体に形成されてもよい。非接触伝送デバイス6は、実施の形態1から3のいずれかで説明したものを用いる。非接触伝送デバイス6の磁性体10(図1等)は、コイル搭載面と反対側の面がバッテリ7側になる配置である。2次電池であるバッテリ7は、アルミ等の金属ケーシングで表面が覆われている。バッテリユニット5は、小型モバイル機器本体8に取り付けられた状態でリッド9(バッテリケース)によって覆われる。リッド9は、小型モバイル機器本体8に対して着脱自在に取り付けられる。   As shown in FIG. 9A, in the battery unit 5, the non-contact transmission device 6 is integrated by adhesion or adhesion to the surface of the battery 7 of the small mobile device (the surface opposite to the small mobile device main body 8). It is a thing. The contactless transmission device 6 and the battery 7 may be integrally formed from the beginning. As the non-contact transmission device 6, the one described in any of the first to third embodiments is used. The magnetic body 10 (FIG. 1 etc.) of the non-contact transmission device 6 is arranged such that the surface opposite to the coil mounting surface is the battery 7 side. The surface of the battery 7 as a secondary battery is covered with a metal casing such as aluminum. The battery unit 5 is covered with a lid 9 (battery case) while being attached to the small mobile device main body 8. The lid 9 is detachably attached to the small mobile device body 8.

非接触伝送デバイス6と小型モバイル機器本体8との電気的接続の方法の例を以下に説明する。なお、非接触伝送デバイス6は、実施の形態1等で説明したように3端子構造(図1等に示す共通端子101、非接触通信用端子102及び非接触給電用端子103の3端子構造)であるが、図10以降においては便宜上、端子201〜204を備える4端子構造(図1等に示す共通端子101をNFC用と非接触給電用に2分割し、非接触通信用端子102及び非接触給電用端子103と合わせて4つの端子201〜204とした構造)として示す。端子201〜204の接続先についても同様である。   An example of a method of electrical connection between the contactless transmission device 6 and the small mobile device body 8 will be described below. The non-contact transmission device 6 has a three-terminal structure (a three-terminal structure including the common terminal 101, the non-contact communication terminal 102, and the non-contact power supply terminal 103 shown in FIG. 1) as described in the first embodiment. However, in FIG. 10 and subsequent figures, for convenience, a four-terminal structure including terminals 201 to 204 (the common terminal 101 shown in FIG. 1 and the like is divided into two parts for NFC and non-contact power feeding, and the non-contact communication terminal 102 and The structure is shown as four terminals 201 to 204 including the contact power supply terminal 103. The same applies to the connection destinations of the terminals 201 to 204.

図10は、非接触伝送デバイス6が小型モバイル機器本体8に直接電気的に接続される場合のバッテリユニット5と小型モバイル機器本体8の概略ブロック図である。非接触伝送デバイス6と小型モバイル機器本体8との電気的接合は、給電及び通信のどちらも小型モバイル機器本体8側に専用端子801〜804を既存の電源端子8aとは別に設けて非接触伝送デバイス6の端子201〜204と直接接合する。給電系は小型モバイル機器本体8内の過充電防止回路81等を経由してバッテリ7に給電し、信号系は小型モバイル機器本体8内へ信号を伝送してRFID信号処理回路82にて信号処理を行う。なお、バッテリ7と小型モバイル機器本体8との接続は、既存の電源端子7a,8aの相互接続によって成される。   FIG. 10 is a schematic block diagram of the battery unit 5 and the small mobile device body 8 when the contactless transmission device 6 is directly electrically connected to the small mobile device body 8. The electrical connection between the non-contact transmission device 6 and the small mobile device main body 8 is achieved by providing dedicated terminals 801 to 804 on the small mobile device main body 8 side separately from the existing power supply terminal 8a for both power feeding and communication. Directly joined to the terminals 201 to 204 of the device 6. The power supply system supplies power to the battery 7 via the overcharge prevention circuit 81 and the like in the small mobile device body 8, and the signal system transmits a signal into the small mobile device body 8 and performs signal processing in the RFID signal processing circuit 82. I do. The connection between the battery 7 and the small mobile device body 8 is made by mutual connection of the existing power terminals 7a and 8a.

図11は、バッテリ7が非接触伝送デバイスの増設に対応している場合のバッテリユニット5と小型モバイル機器本体8の概略ブロック図である。バッテリ7は、非接触伝送デバイス6との接点となる端子701〜704を有するとともに、小型モバイル機器本体8との接点となる端子711〜714を既存の電源端子7aとは別に有する。非接触伝送デバイス6とバッテリ7とを一体化する際に、端子201〜204と端子701〜704とを電気的に接続させる。この場合、バッテリユニット5を小型モバイル機器本体8の所定位置に取り付けることで、端子711〜714が小型モバイル機器本体8側の専用端子801〜804に接続され、給電及び通信のどちらの電気的接続も完了できる。図11におけるその他の点は図10と同様である。   FIG. 11 is a schematic block diagram of the battery unit 5 and the small mobile device main body 8 in the case where the battery 7 supports expansion of a contactless transmission device. The battery 7 has terminals 701 to 704 serving as contact points with the non-contact transmission device 6 and has terminals 711 to 714 serving as contact points with the small mobile device main body 8 separately from the existing power supply terminal 7a. When the contactless transmission device 6 and the battery 7 are integrated, the terminals 201 to 204 and the terminals 701 to 704 are electrically connected. In this case, by attaching the battery unit 5 to a predetermined position of the small mobile device body 8, the terminals 711 to 714 are connected to the dedicated terminals 801 to 804 on the small mobile device body 8 side. Can also be completed. Other points in FIG. 11 are the same as those in FIG.

図12は、バッテリユニット5が樹脂等のパッケージ5aに覆われて一体化されている場合のバッテリユニット5と小型モバイル機器本体8の概略ブロック図である。非接触伝送デバイス6の配線はパッケージ5aの内部にあり、当該配線と導通する接点である端子501〜504がパッケージ5aの表面に露出して設けられる。この場合も、バッテリユニット5を小型モバイル機器本体8の所定位置に取り付けることで、端子501〜504が小型モバイル機器本体8側の専用端子801〜804に接続され、給電及び通信のどちらの電気的接続も完了できる。図12におけるその他の点は図10と同様である。   FIG. 12 is a schematic block diagram of the battery unit 5 and the small mobile device main body 8 when the battery unit 5 is covered and integrated with a package 5a made of resin or the like. The wiring of the non-contact transmission device 6 is inside the package 5a, and terminals 501 to 504, which are contact points that are connected to the wiring, are exposed on the surface of the package 5a. Also in this case, by attaching the battery unit 5 to a predetermined position of the small mobile device body 8, the terminals 501 to 504 are connected to the dedicated terminals 801 to 804 on the small mobile device body 8 side. Connection can also be completed. Other points in FIG. 12 are the same as those in FIG.

図13は、バッテリユニット5に過充電防止回路52を内蔵した場合のバッテリユニット5と小型モバイル機器本体8の概略ブロック図である。これによれば、小型モバイル機器本体8を経由せずに非接触伝送デバイス6からバッテリ7に給電可能である。このため、図12に示す給電用の端子503,504,803,804は不要である。図13におけるその他の点は図12と同様である。   FIG. 13 is a schematic block diagram of the battery unit 5 and the small mobile device body 8 when the overcharge prevention circuit 52 is built in the battery unit 5. According to this, power can be supplied from the non-contact transmission device 6 to the battery 7 without going through the small mobile device main body 8. Therefore, the power feeding terminals 503, 504, 803, and 804 shown in FIG. 12 are not necessary. Other points in FIG. 13 are the same as those in FIG.

図14は、信号混合分離回路を用いる場合のバッテリユニット5と小型モバイル機器本体8の概略ブロック図である。信号混合分離回路53,83は、バッテリユニット5及び小型モバイル機器本体8にそれぞれ設けられる。信号混合分離回路53,83を用いることにより電源系の接続と信号系の接続を共用すれば、既存の電源端子に加えての端子の増設は必要ない。すなわち、図13における通信用の端子501,502,801,802は不要である。図14におけるその他の点は図13と同様である。   FIG. 14 is a schematic block diagram of the battery unit 5 and the small mobile device body 8 when the signal mixing / separating circuit is used. The signal mixing / separation circuits 53 and 83 are provided in the battery unit 5 and the small mobile device main body 8, respectively. If the power supply system connection and the signal system connection are shared by using the signal mixing / separation circuits 53 and 83, it is not necessary to add terminals in addition to the existing power supply terminals. That is, the communication terminals 501, 502, 801, and 802 in FIG. 13 are unnecessary. Other points in FIG. 14 are the same as in FIG.

以下、非接触伝送デバイスをバッテリケース用のリッド9の背面(内側の面)に一体化したバッテリリッドユニットの実施の形態について説明する。   Hereinafter, an embodiment of a battery lid unit in which the non-contact transmission device is integrated with the back surface (inner surface) of the battery case lid 9 will be described.

図15は、本発明の実施の形態5に係るバッテリリッドユニットと小型モバイル機器本体8の概略ブロック図である。非接触伝送デバイス6は、実施の形態1から3のいずれかで説明したものを用いる。通常のリッドには接点が無いので、専用の端子901〜904を新たに設け、小型モバイル機器本体8側の専用端子801〜804に接続する。図15におけるその他の点は、図10と同様である。   FIG. 15 is a schematic block diagram of the battery lid unit and the small mobile device body 8 according to Embodiment 5 of the present invention. As the non-contact transmission device 6, the one described in any of the first to third embodiments is used. Since normal lids do not have contacts, dedicated terminals 901 to 904 are newly provided and connected to dedicated terminals 801 to 804 on the small mobile device body 8 side. Other points in FIG. 15 are the same as those in FIG.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.

非接触伝送デバイスにおいて、磁性体10は、フェライト焼成物に替えて、金属圧粉磁心であってもよい。磁性体10の凸部11(コイルコアとして作用)は無くてもよい。第1の巻線部20及び第2の巻線部30は同心配置に限定されない。第1の巻線部20及び第2の巻線部30は角形形状であるとスペース効率がよいが、円形や長円形を始め、その他の形状としてもよい。   In the non-contact transmission device, the magnetic body 10 may be a metal dust core instead of the sintered ferrite product. The convex portion 11 (acting as a coil core) of the magnetic body 10 may be omitted. The first winding part 20 and the second winding part 30 are not limited to the concentric arrangement. The first winding portion 20 and the second winding portion 30 have a square shape and space efficiency is good. However, other shapes such as a circular shape and an oval shape may be used.

1,2 非接触伝送デバイス
5 バッテリユニット
7 バッテリ
8 小型モバイル機器本体
9 リッド
10 磁性体
11 凸部
20 第1の巻線部
30 第2の巻線部
101 共通端子
102 非接触通信用端子
103 非接触給電用端子
1, 2 Non-contact transmission device 5 Battery unit 7 Battery 8 Small mobile device main body 9 Lid 10 Magnetic body 11 Protruding part 20 First winding part 30 Second winding part 101 Common terminal 102 Non-contact communication terminal 103 Non Contact power supply terminal

Claims (10)

平板状の磁性体と、前記磁性体の一方の面に設けられたコイルとを備え、
前記コイルは、第1及び第2の巻線部と、第1から第3の端子部とを有し、
前記第1の巻線部の両端がそれぞれ前記第1及び第2の端子部に引き出され、
前記第2の巻線部の両端がそれぞれ前記第2及び第3の端子部に引き出され、
前記第1の巻線部を非接触通信用コイルとして利用し、前記第1及び第2の巻線部を合わせて非接触給電用コイルとして利用する、非接触伝送デバイス。
A flat magnetic body, and a coil provided on one surface of the magnetic body,
The coil has first and second winding portions, and first to third terminal portions,
Both ends of the first winding portion are drawn out to the first and second terminal portions, respectively.
Both ends of the second winding part are drawn out to the second and third terminal parts, respectively.
A contactless transmission device that uses the first winding portion as a contactless communication coil, and uses the first and second winding portions together as a contactless power supply coil.
前記第1の端子部が共通端子であり、前記第2の端子部が非接触通信用端子であり、前記第3の端子部が非接触給電用端子である、請求項1に記載の非接触伝送デバイス。   The non-contact according to claim 1, wherein the first terminal portion is a common terminal, the second terminal portion is a non-contact communication terminal, and the third terminal portion is a non-contact power supply terminal. Transmission device. 前記第2の端子部と前記第2の巻線部との間にスイッチが設けられている請求項1又は2に記載の非接触伝送デバイス。   The contactless transmission device according to claim 1, wherein a switch is provided between the second terminal portion and the second winding portion. 前記第1及び第2の巻線部は、1本分の線径の厚みとなるように前記磁性体の一方の面上で平面的に周回する、請求項1から3のいずれか一項に記載の非接触伝送デバイス。   The said 1st and 2nd coil | winding part turns around planarly on the one surface of the said magnetic body so that it may become the thickness of the wire diameter for one wire, The statement to any one of Claim 1 to 3 The contactless transmission device described. 前記第1の巻線部が前記第2の巻線部の外側に位置する請求項1から4のいずれか一項に記載の非接触伝送デバイス。   The contactless transmission device according to any one of claims 1 to 4, wherein the first winding portion is located outside the second winding portion. 前記磁性体は、前記第1の巻線部と前記第2の巻線部との間のリング状の領域において前記一方の面から立ち上がる凸部を有する、請求項1から5のいずれか一項に記載の非接触伝送デバイス。   The said magnetic body has a convex part which stands | starts up from said one surface in the ring-shaped area | region between the said 1st coil | winding part and the said 2nd coil | winding part. Contactless transmission device as described in. 前記磁性体は、前記第1及び第2の巻線部の内側において前記一方の面から立ち上がる凸部を有する、請求項1から6のいずれか一項に記載の非接触伝送デバイス。   The non-contact transmission device according to claim 1, wherein the magnetic body has a convex portion rising from the one surface inside the first and second winding portions. 前記第1及び第2の巻線部が実質的に角形形状である請求項1から7のいずれか一項に記載の非接触伝送デバイス。   The contactless transmission device according to any one of claims 1 to 7, wherein the first and second winding portions have a substantially square shape. 前記第1及び第2の巻線部が実質的に同心配置である請求項1から8のいずれか一項に記載の非接触伝送デバイス。   The contactless transmission device according to any one of claims 1 to 8, wherein the first and second winding portions are substantially concentrically arranged. 前記磁性体の、比透磁率μrの実部をμ'、比透磁率μrの虚部をμ''、tanδ=μ''/μ'としたとき、室温かつ14MHz以下の周波数において、
20≦μ'≦500、
μ''≦200、かつ
tanδ≦1.0
であり、さらに、
前記磁性体の飽和磁束密度をBmとしたとき、室温かつ磁界の強さ1.6kA/mにおいて、Bm>330mTである、請求項1から9のいずれか一項に記載の非接触伝送デバイス。
Said magnetic body, the real part of the relative permeability mu r mu ', the imaginary part of relative permeability μ r μ'', when the tanδ = μ''/μ' , at frequencies below room temperature and 14 MHz,
20 ≦ μ ′ ≦ 500,
μ '' ≦ 200, and
tanδ ≦ 1.0
And, moreover,
10. The non-contact transmission device according to claim 1, wherein Bm> 330 mT at room temperature and a magnetic field strength of 1.6 kA / m, where Bm is a saturation magnetic flux density of the magnetic material.
JP2011234272A 2011-10-25 2011-10-25 Non-contact transmission device Pending JP2013093429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234272A JP2013093429A (en) 2011-10-25 2011-10-25 Non-contact transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234272A JP2013093429A (en) 2011-10-25 2011-10-25 Non-contact transmission device

Publications (1)

Publication Number Publication Date
JP2013093429A true JP2013093429A (en) 2013-05-16

Family

ID=48616339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234272A Pending JP2013093429A (en) 2011-10-25 2011-10-25 Non-contact transmission device

Country Status (1)

Country Link
JP (1) JP2013093429A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100232A (en) * 2013-11-20 2015-05-28 日新電機株式会社 Non-contact power supply system
WO2015147133A1 (en) * 2014-03-28 2015-10-01 株式会社村田製作所 Antenna device and electronic apparatus
CN105405578A (en) * 2014-09-04 2016-03-16 三星电机株式会社 Case and apparatus including the same
WO2017027326A1 (en) 2015-08-07 2017-02-16 Nucurrent, Inc. Single layer multi mode antenna for wireless power transmission using magnetic field coupling
WO2017122499A1 (en) * 2016-01-13 2017-07-20 株式会社村田製作所 Antenna device and electronic device
WO2017138296A1 (en) * 2016-02-10 2017-08-17 株式会社村田製作所 Antenna device and electronic apparatus
CN108462261A (en) * 2018-02-09 2018-08-28 宁波微鹅电子科技有限公司 A kind of coil module, electric energy transmitting circuit and electric energy receiving circuit
CN109036818A (en) * 2018-07-25 2018-12-18 清华大学 A kind of Wireless charging coil for multi-rotor unmanned aerial vehicle
KR20190033996A (en) * 2017-09-22 2019-04-01 엘지이노텍 주식회사 Wireless communication enabled wireless charging device
KR20190046250A (en) * 2017-10-25 2019-05-07 삼성전자주식회사 Coil device for wireless power transfer
CN109849698A (en) * 2019-02-27 2019-06-07 哈尔滨工业大学 A kind of five phase wireless charging magnetic couplings applied to rail traffic
US10432033B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Electronic device having a sidewall configured to facilitate through-metal energy transfer via near field magnetic coupling
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10879705B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module with an electrical connector
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11152151B2 (en) 2017-05-26 2021-10-19 Nucurrent, Inc. Crossover coil structure for wireless transmission
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11336003B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Multi-layer, multi-turn inductor structure for wireless transfer of power
US20220200342A1 (en) 2020-12-22 2022-06-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11831174B2 (en) 2022-03-01 2023-11-28 Nucurrent, Inc. Cross talk and interference mitigation in dual wireless power transmitter
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit
US11996706B2 (en) 2023-06-29 2024-05-28 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013976A (en) * 2004-06-28 2006-01-12 Tdk Corp Soft magnetic substance and antenna unit using same
JP2012070529A (en) * 2010-09-24 2012-04-05 Nec Tokin Corp Non-contact power transmission and communication system
JP2013084915A (en) * 2011-10-12 2013-05-09 Tdk Taiwan Corp Induction module commonly used for short-range wireless communication and wireless charging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013976A (en) * 2004-06-28 2006-01-12 Tdk Corp Soft magnetic substance and antenna unit using same
JP2012070529A (en) * 2010-09-24 2012-04-05 Nec Tokin Corp Non-contact power transmission and communication system
JP2013084915A (en) * 2011-10-12 2013-05-09 Tdk Taiwan Corp Induction module commonly used for short-range wireless communication and wireless charging

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476566B2 (en) 2009-03-09 2022-10-18 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
US11916400B2 (en) 2009-03-09 2024-02-27 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
US11336003B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Multi-layer, multi-turn inductor structure for wireless transfer of power
US11335999B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Device having a multi-layer-multi-turn antenna with frequency
JP2015100232A (en) * 2013-11-20 2015-05-28 日新電機株式会社 Non-contact power supply system
WO2015147133A1 (en) * 2014-03-28 2015-10-01 株式会社村田製作所 Antenna device and electronic apparatus
US9941576B2 (en) 2014-03-28 2018-04-10 Murata Manufacturing Co., Ltd. Antenna device and electronic device
CN105405578A (en) * 2014-09-04 2016-03-16 三星电机株式会社 Case and apparatus including the same
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
WO2017027326A1 (en) 2015-08-07 2017-02-16 Nucurrent, Inc. Single layer multi mode antenna for wireless power transmission using magnetic field coupling
JP2018533238A (en) * 2015-08-07 2018-11-08 ニューカレント インコーポレイテッドNuCurrent, Inc. Single-layer multimode antenna for wireless power transfer using magnetic field coupling
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit
US11769629B2 (en) 2015-08-07 2023-09-26 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US11025070B2 (en) 2015-08-07 2021-06-01 Nucurrent, Inc. Device having a multimode antenna with at least one conductive wire with a plurality of turns
US11469598B2 (en) 2015-08-07 2022-10-11 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US11196266B2 (en) 2015-08-07 2021-12-07 Nucurrent, Inc. Device having a multimode antenna with conductive wire width
JP2022008313A (en) * 2015-08-07 2022-01-13 ニューカレント インコーポレイテッド Single layer multi-mode antenna for power transmission using magnetic field coupling
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US11670856B2 (en) 2015-08-19 2023-06-06 Nucurrent, Inc. Multi-mode wireless antenna configurations
US11316271B2 (en) 2015-08-19 2022-04-26 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10700413B2 (en) 2016-01-13 2020-06-30 Murata Manufacturing Co., Ltd. Antenna device and electronic apparatus
JPWO2017122499A1 (en) * 2016-01-13 2018-01-18 株式会社村田製作所 ANTENNA DEVICE AND ELECTRONIC DEVICE
WO2017122499A1 (en) * 2016-01-13 2017-07-20 株式会社村田製作所 Antenna device and electronic device
US10707573B2 (en) 2016-02-10 2020-07-07 Murata Manufacturing Co., Ltd. Antenna device and electronic apparatus
WO2017138296A1 (en) * 2016-02-10 2017-08-17 株式会社村田製作所 Antenna device and electronic apparatus
JPWO2017138296A1 (en) * 2016-02-10 2018-08-09 株式会社村田製作所 ANTENNA DEVICE AND ELECTRONIC DEVICE
US11011915B2 (en) 2016-08-26 2021-05-18 Nucurrent, Inc. Method of making a wireless connector transmitter module
US10879704B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module
US10916950B2 (en) 2016-08-26 2021-02-09 Nucurrent, Inc. Method of making a wireless connector receiver module
US10931118B2 (en) 2016-08-26 2021-02-23 Nucurrent, Inc. Wireless connector transmitter module with an electrical connector
US10938220B2 (en) 2016-08-26 2021-03-02 Nucurrent, Inc. Wireless connector system
US10879705B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module with an electrical connector
US10897140B2 (en) 2016-08-26 2021-01-19 Nucurrent, Inc. Method of operating a wireless connector system
US10903660B2 (en) 2016-08-26 2021-01-26 Nucurrent, Inc. Wireless connector system circuit
US10886751B2 (en) 2016-08-26 2021-01-05 Nucurrent, Inc. Wireless connector transmitter module
US10892646B2 (en) 2016-12-09 2021-01-12 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432031B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11418063B2 (en) 2016-12-09 2022-08-16 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432032B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Wireless system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432033B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Electronic device having a sidewall configured to facilitate through-metal energy transfer via near field magnetic coupling
US10868444B2 (en) 2016-12-09 2020-12-15 Nucurrent, Inc. Method of operating a system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11764614B2 (en) 2016-12-09 2023-09-19 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11177695B2 (en) 2017-02-13 2021-11-16 Nucurrent, Inc. Transmitting base with magnetic shielding and flexible transmitting antenna
US11431200B2 (en) 2017-02-13 2022-08-30 Nucurrent, Inc. Method of operating a wireless electrical energy transmission system
US11502547B2 (en) 2017-02-13 2022-11-15 Nucurrent, Inc. Wireless electrical energy transmission system with transmitting antenna having magnetic field shielding panes
US11264837B2 (en) 2017-02-13 2022-03-01 Nucurrent, Inc. Transmitting base with antenna having magnetic shielding panes
US11223234B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Method of operating a wireless electrical energy transmission base
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US10958105B2 (en) 2017-02-13 2021-03-23 Nucurrent, Inc. Transmitting base with repeater
US11705760B2 (en) 2017-02-13 2023-07-18 Nucurrent, Inc. Method of operating a wireless electrical energy transmission system
US11223235B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Wireless electrical energy transmission system
US11277029B2 (en) 2017-05-26 2022-03-15 Nucurrent, Inc. Multi coil array for wireless energy transfer with flexible device orientation
US11282638B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11152151B2 (en) 2017-05-26 2021-10-19 Nucurrent, Inc. Crossover coil structure for wireless transmission
US11283295B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Device orientation independent wireless transmission system
US11283296B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Crossover inductor coil and assembly for wireless transmission
US11652511B2 (en) 2017-05-26 2023-05-16 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11277028B2 (en) 2017-05-26 2022-03-15 Nucurrent, Inc. Wireless electrical energy transmission system for flexible device orientation
KR20190033996A (en) * 2017-09-22 2019-04-01 엘지이노텍 주식회사 Wireless communication enabled wireless charging device
KR102454875B1 (en) * 2017-09-22 2022-10-17 엘지이노텍 주식회사 Wireless communication enabled wireless charging device
KR20190046250A (en) * 2017-10-25 2019-05-07 삼성전자주식회사 Coil device for wireless power transfer
KR102484416B1 (en) 2017-10-25 2023-01-04 삼성전자주식회사 Coil device for wireless power transfer
CN108462261A (en) * 2018-02-09 2018-08-28 宁波微鹅电子科技有限公司 A kind of coil module, electric energy transmitting circuit and electric energy receiving circuit
CN109036818A (en) * 2018-07-25 2018-12-18 清华大学 A kind of Wireless charging coil for multi-rotor unmanned aerial vehicle
CN109849698B (en) * 2019-02-27 2020-07-14 哈尔滨工业大学 Five-phase wireless charging magnetic coupling mechanism applied to rail transit
CN109849698A (en) * 2019-02-27 2019-06-07 哈尔滨工业大学 A kind of five phase wireless charging magnetic couplings applied to rail traffic
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11756728B2 (en) 2019-07-19 2023-09-12 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11811223B2 (en) 2020-01-03 2023-11-07 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11658517B2 (en) 2020-07-24 2023-05-23 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US20220200342A1 (en) 2020-12-22 2022-06-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11881716B2 (en) 2020-12-22 2024-01-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11831174B2 (en) 2022-03-01 2023-11-28 Nucurrent, Inc. Cross talk and interference mitigation in dual wireless power transmitter
US11996706B2 (en) 2023-06-29 2024-05-28 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter

Similar Documents

Publication Publication Date Title
JP5549818B2 (en) Non-contact transmission device, and battery unit and battery lid unit including the same
JP2013093429A (en) Non-contact transmission device
KR101179398B1 (en) Contactless power transmission device and electronic device having the same
US10574082B2 (en) Electronic device including non-contact charging module and battery
EP2518904B1 (en) Contactless power transmission device
CN105474459B (en) Receiving antenna and wireless power reception device comprising the receiving antenna
KR101339486B1 (en) Thin film coil and electronic device having the same
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
TWI717313B (en) Antenna device and electronic equipment
US9973023B2 (en) Inductive energy transfer coil structure
US10505257B2 (en) Antenna device and electronic apparatus
KR101827721B1 (en) Antenna module for car
US10186875B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
WO2013088912A1 (en) Antenna device and electronic instrument
US20150061400A1 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
CN209843948U (en) Double-coil device with wireless charging and near field communication functions
JP2014036116A (en) Receiver for non-contact power supply
KR101532052B1 (en) Antenna patch comprising common terminals for wireless charging and nfc communication
JP2017163676A (en) Non-contact charging coil assy
KR101546720B1 (en) Thin film coil, case assembly, non-contact power receiving device, and electronic device having the same
US9761371B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
KR101546718B1 (en) Thin film coil, case assembly, non-contact power receiving device, and electronic device having the same
KR101546719B1 (en) Non-contact power receiving device, case assembly, and electronic device having the same
KR20150048695A (en) Thin film coil, case assembly, non-contact power receiving device, and electronic device having the same
KR101581695B1 (en) Coil substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150422