JPH11162874A - Ohmic joint electrode and semiconductor device using the same - Google Patents

Ohmic joint electrode and semiconductor device using the same

Info

Publication number
JPH11162874A
JPH11162874A JP34716297A JP34716297A JPH11162874A JP H11162874 A JPH11162874 A JP H11162874A JP 34716297 A JP34716297 A JP 34716297A JP 34716297 A JP34716297 A JP 34716297A JP H11162874 A JPH11162874 A JP H11162874A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
silicon substrate
sub
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34716297A
Other languages
Japanese (ja)
Other versions
JP4067159B2 (en
Inventor
Hiroaki Iwaguro
弘明 岩黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP34716297A priority Critical patent/JP4067159B2/en
Publication of JPH11162874A publication Critical patent/JPH11162874A/en
Application granted granted Critical
Publication of JP4067159B2 publication Critical patent/JP4067159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow ohmic joint which represents a good low contact resistance even when impurity concentration of a silicon substrate is low, by inserting a silicon sub-oxide film of specific film thickness between the silicon substrate and an ohmic joint metal. SOLUTION: A silicon substrate 1 is oxidized by thermal oxidation method or plasma oxidation method to generate a silicon dioxide (SiO2 ) 2 on the silicon substrate 1. At true interface between the silicon dioxide 1 and the silicon substrate, a sub-silicon oxide film [SiOx (x=0.5, 1.0, 1.5)] is formed instead of the silicon dioxide (SiO2 ). The thickness of the sub-silicon oxide film is 0.3-2.25 nm from the interface. In short, the silicon oxide film 2 of electrode structure is a sub oxide film [SiOx (x=0.5, 1.0, 1.5)]. So, a metal film and a sub-silicon oxide film are made to contact each other to obtain ohmic joint representing good and low contact resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はオーム性接合電極及びこ
れを用いた半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ohmic junction electrode and a semiconductor device using the same.

【0002】[0002]

【従来の技術】シリコン電子デバイスを作る上で金属半
導体接合は重要な要素である。この接合には、整流性を
示すショットキー接合、他は整流性のないオーム性接合
の2つがある。n型シリコン基板と金属を接触させて良
好な低接触抵抗を示すオーム性接合電極を形成するに
は、理論上、シリコン基板の不純物濃度を1020cm-3
以上にする必要がある。実用的には、シリコン基板の不
純物濃度が1019から1020cm-3でオーム性接合を作
っている。シリコンに不純物を多量に導入するために、
イオン注入・熱処理法や不純物デポジション・熱拡散法
などの方法が使われてきた。
2. Description of the Related Art Metal-semiconductor junctions are an important factor in making silicon electronic devices. This junction includes a Schottky junction exhibiting rectification and an ohmic junction having no rectification otherwise. In order to form an ohmic junction electrode exhibiting good low contact resistance by bringing a metal into contact with an n-type silicon substrate, theoretically, the impurity concentration of the silicon substrate should be 10 20 cm −3.
It is necessary to do above. Practically, an ohmic junction is formed when the impurity concentration of the silicon substrate is 10 19 to 10 20 cm -3 . In order to introduce a large amount of impurities into silicon,
Methods such as ion implantation and heat treatment, and impurity deposition and thermal diffusion have been used.

【0003】最近のシリコンウェーハの大口径化に伴
い、ウェーハの厚さは厚くなっている。縦型構造のパワ
ーデバイスにおいては、ウェーハの厚さが厚くなること
は、オ (2) ン抵抗の上昇を引き起こすことになるので、このオン抵
抗の上昇を抑えるためにウェーハ表側のデバイスを作製
した後、組み立て前にウェーハを裏側から削って薄くす
る。この裏側を薄くした後、裏側にオーム性接合電極を
作製する。しかしながら、このときシリコン基板の不純
物濃度は、1020cm-3よりも低いことが多い。表側に
デバイスがすでにできており、A1などの金属配線がな
されているため、高温熱処理が困難であり、イオン注入
・熱処理法や不純物デポジション・熱拡散法を使って意
識的に不純物をシリコン基板に導入することはできな
い。又、特開平7−307306号に示すように半導体
基板表面に電荷を内存する薄膜を設けてオーム性電極を
形成することも提案されている。
[0003] With the recent increase in diameter of silicon wafers, the thickness of the wafers is increasing. In a power device with a vertical structure, an increase in the thickness of the wafer causes an increase in the on-resistance. Therefore, a device on the front side of the wafer was manufactured to suppress the increase in the on-resistance. Thereafter, the wafer is shaved from the back side to reduce the thickness before assembling. After thinning the back side, an ohmic junction electrode is formed on the back side. However, at this time, the impurity concentration of the silicon substrate is often lower than 10 20 cm −3 . The device has already been formed on the front side, and metal wiring such as A1 has been made, so high-temperature heat treatment is difficult, and impurities are intentionally added to the silicon substrate by ion implantation / heat treatment or impurity deposition / thermal diffusion. Can not be introduced. It has also been proposed to form an ohmic electrode by providing a thin film containing electric charges on the surface of a semiconductor substrate as shown in Japanese Patent Application Laid-Open No. 7-307306.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような問
題に対して、たとえシリコン基板の不純物濃度が1020
cm-3よりも低くても良好な低接触抵抗を示すオーム性
接合を提供するものである。通常、シリコン基板の不純
物濃度が低いとき、その上に金属膜を堆積させると、金
属とシリコン基板の間でショットキー接触となる。この
ような場合でも、金属とシリコン基板の間にシリコン酸
化膜を介することで、良好な低接触抵抗を示すオーム性
接合を得る。
The present invention solves such a problem even if the impurity concentration of the silicon substrate is 10 20
It provides an ohmic junction exhibiting good low contact resistance even if it is lower than cm −3 . Usually, when the impurity concentration of the silicon substrate is low, when a metal film is deposited thereon, Schottky contact occurs between the metal and the silicon substrate. Even in such a case, an ohmic junction exhibiting good low contact resistance can be obtained by interposing a silicon oxide film between the metal and the silicon substrate.

【0005】[0005]

【課題を解決するための手段】本発明は、シリコン基板
とオーム接合用金属との間にシリコンサブ酸化膜[Si
Ox(x=0.5,1.0,1.5)]を介在せしめ且
つ前記酸化膜の厚さを0.3nm〜2.25nmとした
ことを特徴とする。
According to the present invention, a silicon sub-oxide film [Si] is formed between a silicon substrate and an ohmic metal.
Ox (x = 0.5, 1.0, 1.5)] and the oxide film has a thickness of 0.3 nm to 2.25 nm.

【0006】シリコン基板を熱酸化法やプラズマ酸化法
で酸化させると、2酸化シリコン(SiO2)がシリコ
ン基板上には生成される。この2酸化シリコンとシリコ
ン基板の界面には、2酸化シリコン(SiO2)ではな
く、サブシリコン酸化膜[SiOx(x=0.5,1.
0,1.5)]が形成される。このサブシリコン酸化膜
の厚さは界面から2nm程度である。本発明の電極構造
のシリコン酸化膜とは (3) このサブ酸化膜[SiOx(x=0.5,1.0,1.
5)]のことである。金属膜とサブシリコン酸化膜とを
接触させることによって、良好で低接触抵抗を示すオー
ム性接合が得られる。サブシリコン酸化膜の化学的な活
性さによって、本発明の効果が得られるものと思われる
が、詳細な理由は明確ではない。2酸化シリコン層と金
属膜を接触させると、効果はまったくなくなる。
When a silicon substrate is oxidized by a thermal oxidation method or a plasma oxidation method, silicon dioxide (SiO 2) is generated on the silicon substrate. At the interface between the silicon dioxide and the silicon substrate, not a silicon dioxide (SiO2) but a sub-silicon oxide film [SiOx (x = 0.5, 1..
0, 1.5)] is formed. The thickness of this sub silicon oxide film is about 2 nm from the interface. What is the silicon oxide film having the electrode structure of the present invention? (3) This sub-oxide film [SiOx (x = 0.5, 1.0, 1..
5)]. By contacting the metal film with the sub-silicon oxide film, an ohmic junction exhibiting good and low contact resistance can be obtained. It is considered that the effect of the present invention can be obtained by the chemical activity of the sub-silicon oxide film, but the detailed reason is not clear. When the silicon dioxide layer is brought into contact with the metal film, the effect is completely lost.

【0007】[0007]

【実施例】図1は本発明の一実施例を示す断面図で図中
1はシリコン基板、2はシリコンサブ酸化膜、3は電極
金属である。図2は本発明の酸化膜の厚さの有効性を調
べるためのデバイス構造を示す。使用したシリコン基板
は、抵抗率が2mΩcm(不純物濃度:8×1019cm
-3)のn+シリコン基板6に、抵抗率が0.5Ωcm
(不純物濃度:1016cm-3)のシリコンエピタクシャ
ル層5を5μm成長させたものを使用した。このエピタ
クシャル面はミラーポリッシュ加工されており、表面の
ひずみは小さい。
1 is a sectional view showing an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a silicon substrate, 2 denotes a silicon sub-oxide film, and 3 denotes an electrode metal. FIG. 2 shows a device structure for examining the effectiveness of the oxide film thickness of the present invention. The silicon substrate used has a resistivity of 2 mΩcm (impurity concentration: 8 × 10 19 cm)
-3 ) The resistivity of the n + silicon substrate 6 is 0.5 Ωcm.
The silicon epitaxial layer 5 (impurity concentration: 10 16 cm −3 ) grown to 5 μm was used. This epitaxial surface is mirror polished, and the surface distortion is small.

【0008】図2の構造を作製するための製造プロセス
は、まず、シリコン基板を希沸酸で1分間洗浄した後、
ドライ酸化法を用いて800℃、30分間酸化させた。
酸化膜厚は約3nmである。次に、その酸化膜の厚さを
変えるために希沸酸(HF:H2O=1:100)液中
に一定の時間だけ浸漬させた。この希沸酸で上記3nm
の酸化膜を完全にエッチングするには、100秒の時間
がかかった。さらに、上部電極4を形成するために、シ
リコンエピタクシャル層5の上にチタン膜をスパッタ法
で500nmの厚さに堆積した後、ホトリソグラフィ技
術を使って図2に示すように0.9mm角にパターン化
した。チタンの化学エッチングには希沸酸を使用した。
エッチング時間は2.5分間である。ホトレジストは、
沸騰硝酸を用いて除去した。最後に、シリコン基板の裏
側にチタンを100nm、ニッケルを500nm、銀を
100nm真空蒸着し、下部電極7を形成した。下部電
極7はオーム性接合電極である。
The manufacturing process for fabricating the structure of FIG. 2 is as follows.
Oxidation was performed at 800 ° C. for 30 minutes using a dry oxidation method.
The oxide film thickness is about 3 nm. Next, in order to change the thickness of the oxide film, it was immersed in a dilute hydrofluoric acid (HF: H 2 O = 1: 100) solution for a certain period of time. The above-mentioned 3 nm
It took 100 seconds to completely etch the oxide film. Further, in order to form the upper electrode 4, a titanium film is deposited on the silicon epitaxial layer 5 to a thickness of 500 nm by a sputtering method, and then, as shown in FIG. Patterned. Dilute hydrofluoric acid was used for chemical etching of titanium.
The etching time is 2.5 minutes. Photoresist
Removed using boiling nitric acid. Finally, 100 nm of titanium, 500 nm of nickel, and 100 nm of silver were vacuum-deposited on the back side of the silicon substrate to form the lower electrode 7. The lower electrode 7 is an ohmic junction electrode.

【0009】(4) 図3は各HF浸漬時間に対する評価デバイス(図2)の
電流−電圧特性を示すもので、図2において電極4をプ
ラス(+)、電極7をマイナス(−)にした時を第一象
限に示し(順方向特性)、又極性を逆にした時を第3象
限に示した(逆方向特性)ものである。HF浸漬しない
時(酸化膜の厚さ3nm)図中特性Aに示すように順方
向、逆方向共、電流は全く流れない。HF浸漬時間を増
加するのに伴って電流は両方向共流れ始め酸化膜が厚さ
1.5nmで(浸漬時間50秒)で特性Bに示すオーミ
ック特性が得られている。更に浸漬時間を増し約100
秒で酸化膜はなくなり特性Cに示す整流特性(ショット
キー特性)になった。
(4) FIG. 3 shows the current-voltage characteristics of the evaluation device (FIG. 2) with respect to each HF immersion time. In FIG. 2, the electrode 4 is plus (+) and the electrode 7 is minus (-). The time is shown in the first quadrant (forward characteristic), and the time when the polarity is reversed is shown in the third quadrant (reverse characteristic). When HF is not immersed (the thickness of the oxide film is 3 nm), no current flows at all in the forward and reverse directions as shown by the characteristic A in the figure. As the HF immersion time increases, the current starts to flow in both directions, and the oxide film has a thickness of 1.5 nm (the immersion time is 50 seconds), and the ohmic characteristics shown in the characteristic B are obtained. Further increase the immersion time to about 100
In seconds, the oxide film disappeared, and the rectification characteristics (Schottky characteristics) shown in Characteristic C were obtained.

【0010】図4は図3の電流−電圧特性から抵触抵抗
の変化を示す値(ΔR)のHF浸漬時間依存性を示す特
性図で横軸は浸漬時間S(秒)、縦軸に変化値ΔR(m
Ωcm2)を示す。なお、ΔRは酸化膜を介さない従来
デバイスの抵抗値(図3C)を基準に算出した。又、こ
の時の抵抗値は第1象限の特性から求めた。この方法に
より接触抵抗以外の抵抗成分は相殺され、接触抵抗の変
化分のみ得られる。ΔRの値がマイナス(負)であるこ
とは従来デバイスより接触抵抗が減少していることを意
味する。このマイナス領域は図4から明らかなように浸
漬時間で25秒〜90秒の範囲即ち残余の酸化膜の厚さ
2.25nm〜0.3nmに相当する。
FIG. 4 is a characteristic diagram showing the HF immersion time dependency of the value (ΔR) indicating the change in the contact resistance from the current-voltage characteristics in FIG. 3, where the horizontal axis indicates the immersion time S (second) and the vertical axis indicates the change value. ΔR (m
Ωcm 2 ). Note that ΔR was calculated based on the resistance value of a conventional device without an oxide film (FIG. 3C). The resistance value at this time was obtained from the characteristics of the first quadrant. With this method, the resistance components other than the contact resistance are canceled, and only the change in the contact resistance is obtained. If the value of ΔR is minus (negative), it means that the contact resistance is smaller than that of the conventional device. As is apparent from FIG. 4, this minus region corresponds to a dipping time in the range of 25 seconds to 90 seconds, that is, the remaining oxide film thickness of 2.25 nm to 0.3 nm.

【0011】図5は酸化法をO2プラズマ照射法および
基板を2mΩcmにしたとき、接触抵抗が改善されるか
どうかを調べるためのデバイス構造を示す。使用したシ
リコン基板は、抵抗率が2mΩcm(不純物濃度:8×
1019cm-3)のn+シリコン基板6を使用した。この
構造を作製するため、まず、シリコン基板を希沸酸で1
分間洗浄した後、マイクロ波プラズマ照射装置で酸素プ
ラズマをシリコンに照射させた。すなわち、シリコン基
板の表側のみに酸素プラズマを照射させ、酸化させた。
プラズマパワーを1000W、酸素圧を0.5Tor
r、照射時間を2分とした。このときの酸化膜の厚さは
2.5nmであった。次に、その酸化膜の厚さを変える
ために希沸酸(HF:H2O=1:100)液中に一定
時間だけ浸漬させ、さらに、上部電極4を形成するため
に、シリコンの上にチタン膜をスパ (5) ッタ法で500nmの厚さに堆積した後、ホトリソグラ
フィ技術を使って0.9mm角にパターン化した。チタ
ンの化学エッチングには希沸酸を使用した。エッチング
時間は2.5分間である。ホトレジストは、沸騰硝酸を
用いて除去した。最後にシリコン基板の裏側にチタンを
100nm、ニッケルを500nm、銀を100nm真
空蒸着し、下部電極7を形成した。下部電極7はオーム
性接合電極である。
FIG. 5 shows a device structure for examining whether the contact resistance is improved when the oxidation method is O 2 plasma irradiation and the substrate is 2 mΩcm. The silicon substrate used had a resistivity of 2 mΩcm (impurity concentration: 8 ×
An n + silicon substrate 6 of 10 19 cm −3 ) was used. To fabricate this structure, a silicon substrate is first diluted with dilute hydrofluoric acid.
After washing for 1 minute, the silicon was irradiated with oxygen plasma using a microwave plasma irradiation apparatus. That is, only the front side of the silicon substrate was irradiated with oxygen plasma to be oxidized.
Plasma power 1000 W, oxygen pressure 0.5 Torr
r, the irradiation time was 2 minutes. At this time, the thickness of the oxide film was 2.5 nm. Next, it is immersed in a dilute hydrofluoric acid (HF: H 2 O = 1: 100) solution for a certain period of time to change the thickness of the oxide film. After a titanium film was deposited to a thickness of 500 nm by a spatula method, a pattern of 0.9 mm square was formed by photolithography. Dilute hydrofluoric acid was used for chemical etching of titanium. The etching time is 2.5 minutes. The photoresist was removed using boiling nitric acid. Finally, 100 nm of titanium, 500 nm of nickel, and 100 nm of silver were vacuum-deposited on the back side of the silicon substrate to form a lower electrode 7. The lower electrode 7 is an ohmic junction electrode.

【0012】図6は酸化膜厚に対するデバイスの(図
5)電流−電圧特性を示したものである。この特性は、
図5において上部電極4をプラス、下部電極7をマイナ
スにしたときと第1象限に描き、逆の場合を第3象限に
描いている。HF浸漬をしないとき(酸化膜厚:2.5
nm)、電流は順、逆の両方向とも流れていない
(A)。HF浸漬を30秒行って、酸化膜の厚さを、
1.6nmとしたとき、電流−電圧特性Bが得られた。
さらに、浸漬時間を90秒行って酸化膜を完全にエッチ
ングすると電流−電圧特性はCになった。図6から明ら
かなように、酸化膜を1.6nm残したときに得られた
特性Bは酸化膜のないときの特性Cよりも抵抗は低減し
ている。特性Cにおいてもオーミック特性が得られてい
るのは抵抗率が2mΩcmの基板を使用したためであ
る。結果として、酸化膜を介した電極構造とすることで
より低い接触抵抗を持ったオーミック特性が得られるこ
とがわかった。この実施例では、上部電極4の金属膜を
チタンとしたが、チタン以外の金属膜たとえばクロムに
対しても同様に本発明の効果を確認した。
FIG. 6 shows the current-voltage characteristics (FIG. 5) of the device with respect to the oxide film thickness. This property is
In FIG. 5, when the upper electrode 4 is plus and the lower electrode 7 is minus, it is drawn in the first quadrant, and the opposite case is drawn in the third quadrant. When not immersing in HF (oxide film thickness: 2.5
nm), and no current flows in both the forward and reverse directions (A). Perform HF immersion for 30 seconds to reduce the thickness of the oxide film.
When the thickness was set to 1.6 nm, current-voltage characteristics B were obtained.
Further, when the immersion time was 90 seconds and the oxide film was completely etched, the current-voltage characteristics became C. As is clear from FIG. 6, the resistance of the characteristic B obtained when the oxide film remains 1.6 nm is lower than that of the characteristic C without the oxide film. In the characteristic C, the ohmic characteristic is also obtained because a substrate having a resistivity of 2 mΩcm was used. As a result, it was found that ohmic characteristics with lower contact resistance can be obtained by using an electrode structure with an oxide film interposed. In this example, the metal film of the upper electrode 4 was titanium, but the effect of the present invention was similarly confirmed for a metal film other than titanium, for example, chromium.

【0013】図7は本発明の電極構造にパワーMOSF
ET(60V、40A級)のドレイン電極に適用したM
OSFETの出力特性図で図中特性Bは従来例(酸化膜
なし)特性Aは実施例を示す。従来例のドレイン電極構
造の出力特性Bのオン抵抗は、19.04mΩであるの
に対して、酸化膜を介したドレイン電極構造の出力特性
Aのオン抵抗は、16.31mΩとなり、酸化膜を介さ
ない電極構造の出力特性のオン抵抗よりも約14.3%
低下した。なお、MOSFETはアンチモン添加した抵
抗率が17mΩcm(不純物濃度約1018cm-3)シリ
コン基板にソー (6) ス領域、ドレイン領域、ゲート等の能動領域を形成した
後、ウェーハの裏側を削って薄くし、その表面に厚さ
1.2nmのシリコン酸化膜をシリコン基板の裏側に形
成した。その後、チタンを100nmの厚さだけ真空蒸
着し、さらに引き続きニッケルを500nm、銀を10
0nmの厚さだけ真空蒸着しドレイン電極とした。
FIG. 7 shows a power MOSF in an electrode structure according to the present invention.
M applied to the drain electrode of ET (60V, 40A class)
In the output characteristic diagram of the OSFET, the characteristic B in the figure is a conventional example (without an oxide film), and the characteristic A is an example. The on-resistance of the output characteristic B of the conventional drain electrode structure is 19.04 mΩ, whereas the on-resistance of the output characteristic A of the drain electrode structure via the oxide film is 16.31 mΩ. Approximately 14.3% of the ON resistance of the output characteristics of the electrode structure that does not pass through
Dropped. In addition, after forming an active region such as a source region, a drain region, and a gate on a silicon substrate having a resistivity of 17 mΩcm (impurity concentration of about 10 18 cm −3 ) doped with antimony, the back side of the wafer is shaved. A thin silicon oxide film having a thickness of 1.2 nm was formed on the back surface of the silicon substrate. Thereafter, titanium is vacuum-deposited to a thickness of 100 nm, nickel is further deposited at 500 nm, and silver is deposited at 10 nm.
Vacuum evaporation was performed to a thickness of 0 nm to form a drain electrode.

【0014】[0014]

【発明の効果】本発明によれば、0.3〜2.25nm
のシリコンサブ酸化膜を金属膜とシリコン基板の間には
さむことにより、良好なオーミック接触電極が得られ、
高性能デバイスの開発に極めて有効である。
According to the present invention, 0.3 to 2.25 nm
By sandwiching the silicon sub-oxide film between the metal film and the silicon substrate, a good ohmic contact electrode is obtained,
It is extremely effective for developing high performance devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の有効性を評価するデバイスの構造図FIG. 2 is a structural diagram of a device for evaluating the effectiveness of the present invention.

【図3】評価デバイスの電圧−電流特性図FIG. 3 is a voltage-current characteristic diagram of an evaluation device.

【図4】HF浸漬時間依存性を示す特性図FIG. 4 is a characteristic diagram showing HF immersion time dependency.

【図5】他の評価デバイスの電流−電圧特性図FIG. 5 is a current-voltage characteristic diagram of another evaluation device.

【図6】評価デバイスの電流−電圧特性図FIG. 6 is a current-voltage characteristic diagram of an evaluation device.

【図7】本発明をMOSFETに適用した出力特性図FIG. 7 is an output characteristic diagram in which the present invention is applied to a MOSFET.

【符号の説明】 1,6 シリコン基板 2 シリコンサブ酸化膜 (7) 3 電極金属 4,7 電極 5 エビタキシアル層[Description of Signs] 1,6 Silicon substrate 2 Silicon sub-oxide film (7) 3 Electrode metal 4,7 Electrode 5 Epitaxial layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板とオーム接合用金属との間
にシリコンサブ酸化膜[SiOx(x=0.5,1.
0,1.5)]を介在せしめ且つ前記酸化膜の厚さを
0.3nm〜2.25nmとしたことを特徴とするオー
ム性接合電極。
1. A silicon sub-oxide film [SiOx (x = 0.5, 1....) Between a silicon substrate and an ohmic bonding metal.
0,1.5)], and the thickness of the oxide film is 0.3 nm to 2.25 nm.
【請求項2】 n型シリコン基板を用い且つ前記基板の
不純物濃度を1016cm-3乃至1020cm-3としたこと
を特徴とする請求項1のオーム性接合電極。
2. The ohmic junction electrode according to claim 1, wherein an n-type silicon substrate is used and the impurity concentration of said substrate is set to 10 16 cm −3 to 10 20 cm −3 .
【請求項3】 シリコン基板に能動領域を形成し、前記
シリコン基板の表面もしくは裏面にシリコンサブ酸化膜
[SiOx(x=0.5,1.0,1.5)]を介して
電極金属を接合したことを特徴とする半導体装置。
3. An active region is formed on a silicon substrate, and an electrode metal is formed on the front or back surface of the silicon substrate via a silicon sub-oxide film [SiOx (x = 0.5, 1.0, 1.5)]. A semiconductor device characterized by being joined.
JP34716297A 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP4067159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34716297A JP4067159B2 (en) 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34716297A JP4067159B2 (en) 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH11162874A true JPH11162874A (en) 1999-06-18
JP4067159B2 JP4067159B2 (en) 2008-03-26

Family

ID=18388340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34716297A Expired - Fee Related JP4067159B2 (en) 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4067159B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536047A (en) * 2002-08-12 2005-11-24 エイコーン・テクノロジイズ・インコーポレーテッド Insulated gate field effect transistor with passive Schottky barrier to channel
JP2008028291A (en) * 2006-07-25 2008-02-07 Mitsubishi Electric Corp Nitride semiconductor device and method for manufacturing the same
WO2015194590A1 (en) * 2014-06-18 2015-12-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116640B2 (en) 2018-09-07 2022-08-10 株式会社東芝 semiconductor equipment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355613B2 (en) 2002-08-12 2022-06-07 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
JP4713884B2 (en) * 2002-08-12 2011-06-29 エイコーン・テクノロジイズ・インコーポレーテッド Insulated gate field effect transistor with passive Schottky barrier to channel
JP2005536047A (en) * 2002-08-12 2005-11-24 エイコーン・テクノロジイズ・インコーポレーテッド Insulated gate field effect transistor with passive Schottky barrier to channel
US11056569B2 (en) 2002-08-12 2021-07-06 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
US11018237B2 (en) 2002-08-12 2021-05-25 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10950707B2 (en) 2002-08-12 2021-03-16 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
JP2008028291A (en) * 2006-07-25 2008-02-07 Mitsubishi Electric Corp Nitride semiconductor device and method for manufacturing the same
US11610974B2 (en) 2011-11-23 2023-03-21 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11804533B2 (en) 2011-11-23 2023-10-31 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10050133B2 (en) 2014-06-18 2018-08-14 Fuji Electric Co., Ltd. Application of thin insulating film layer in semiconductor device and method of manufacturing semiconductor device
JPWO2015194590A1 (en) * 2014-06-18 2017-04-20 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
CN105814693A (en) * 2014-06-18 2016-07-27 富士电机株式会社 Semiconductor device and semiconductor device manufacturing method
WO2015194590A1 (en) * 2014-06-18 2015-12-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US11843040B2 (en) 2016-06-17 2023-12-12 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US11462643B2 (en) 2016-11-18 2022-10-04 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height

Also Published As

Publication number Publication date
JP4067159B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JPS63308387A (en) Manufacture of semiconductor device
JPH0496227A (en) Etching method
JP4067159B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPS61110449A (en) Manufacture of semiconductor device
US4116722A (en) Method for manufacturing compound semiconductor devices
JPH01259546A (en) Manufacture of semiconductor device
JP3358284B2 (en) Method for manufacturing thin film transistor
JPS63164477A (en) Manufacture of field effect transistor with self-aligning gate
JPS63221668A (en) Schottky barrier diode and manufacture thereof
JPH0366815B2 (en)
JPH04367276A (en) Thin film transistor and manufacture thereof
JP3638189B2 (en) Method for manufacturing field effect transistor
JPS58199869A (en) Etching method
JP2646614B2 (en) Method for manufacturing semiconductor device
JPH056344B2 (en)
JPS63200558A (en) Manufacture of semiconductor device
JPS5918872B2 (en) Manufacturing method of insulated gate field effect semiconductor device
JPS62222672A (en) Schottky barrier type semiconductor device and manufacture thereof
JPH03201541A (en) Manufacture of field effect transistor
JPH03126231A (en) Manufacture of field effect transistor
JPH05326554A (en) Manufacture of field effect transistor
JPH07183530A (en) Manufacture of thin film transistor
JPH06342799A (en) Semiconductor device and manufacture thereof
JPH0430436A (en) Manufacture of field effect semiconductor device
JPS6037773A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees