JPH11156360A - Method for operation of water treatment plant - Google Patents

Method for operation of water treatment plant

Info

Publication number
JPH11156360A
JPH11156360A JP9321823A JP32182397A JPH11156360A JP H11156360 A JPH11156360 A JP H11156360A JP 9321823 A JP9321823 A JP 9321823A JP 32182397 A JP32182397 A JP 32182397A JP H11156360 A JPH11156360 A JP H11156360A
Authority
JP
Japan
Prior art keywords
membrane
water
permeated water
tank
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9321823A
Other languages
Japanese (ja)
Inventor
Hajime Ito
肇 伊藤
Toshikazu Okumura
敏和 奥村
Kanji Tokushima
幹治 徳島
Koichi Okada
公一 岡田
Kazuyuki Honda
和之 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9321823A priority Critical patent/JPH11156360A/en
Publication of JPH11156360A publication Critical patent/JPH11156360A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operation of a water treatment plant wherein fouling hardly occurs even when the filtration quantity of a membrane separation apparatus is increased. SOLUTION: Filtration is caused through a membrane surface by making the suction pressure of a suction pump 29 act on a permeated water channel of a membrane separation apparatus. When membrane permeated water flowing into the permeated water channel after permeating a membrane surface is discharged through a permeated water discharging pipe 28, a specific flow quantity of aerated air which is set according to the quantity of a discharged water flow rate of the membrane permeated water is ejected through an aeration device 21, and a membrane surface of the upward membrane separation apparatus 22 is washed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、散気装置および膜
分離装置を浸漬設置した曝気槽を備えた水処理装置の運
転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a water treatment apparatus having an aeration tank in which a diffuser and a membrane separator are installed.

【0002】[0002]

【従来の技術】従来の水処理装置として、たとえば図2
に示したような、流量調整槽1と散気装置2および膜分
離装置3を浸漬設置した曝気槽4とを備えた浄化槽があ
る。膜分離装置3は、管状や平板状の膜エレメント3a
を配列したものであって、各膜エレメント3aが散気装
置2の上方に位置するように設置されており、各膜エレ
メント3aの透過水流路に連通した透過水導出管5は吸
引ポンプ6を介装し、浄化槽の外部で開口している。
2. Description of the Related Art As a conventional water treatment apparatus, for example, FIG.
As shown in FIG. 2, there is a purification tank provided with a flow control tank 1, an aeration tank 4 in which an aeration device 2 and a membrane separation device 3 are immersed and installed. The membrane separation device 3 includes a tubular or flat membrane element 3a.
Are arranged such that each membrane element 3a is located above the air diffuser 2, and the permeated water outlet pipe 5 communicating with the permeated water flow path of each membrane element 3a is connected to the suction pump 6. It is interposed and opened outside the septic tank.

【0003】このような浄化槽では、流量調整槽1に流
入した原水7を曝気槽4に移送し、曝気槽4の内部で、
散気装置2より曝気する状態において、原水7中のBO
Dや窒素分を活性汚泥により分解するとともに、吸引ポ
ンプ6の吸引圧を各膜エレメント3aの透過水流路に作
用させることにより各膜エレメント3aの膜面において
活性汚泥混合液8を濾過し、膜面を透過して透過水流路
に流入した膜透過水を透過水導出管5を通じて槽外へ導
出している。またその際に、散気装置2より上昇する曝
気空気を利用して膜エレメント3aの膜面を洗浄するよ
うにしている。
In such a purification tank, the raw water 7 flowing into the flow control tank 1 is transferred to the aeration tank 4, and inside the aeration tank 4.
In the state of aeration from the diffuser 2, the BO in the raw water 7
D and nitrogen are decomposed by activated sludge, and the activated sludge mixed liquid 8 is filtered on the membrane surface of each membrane element 3a by applying the suction pressure of the suction pump 6 to the permeated water flow path of each membrane element 3a. Membrane permeated water that has passed through the surface and flowed into the permeated water flow path is led out of the tank through the permeated water outlet pipe 5. At this time, the membrane surface of the membrane element 3a is cleaned using aerated air rising from the air diffuser 2.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記したよ
うな浄化槽では従来、多量の原水が流入する時のために
流量調整槽の容量を十分に大きくしていた。しかし、そ
れでは必然的に浄化槽容量が大きくなるので、流量調整
槽内の水位が所定の高水位を越えた時点で、流量調整槽
から曝気槽への原水の移送量を増加させるとともに、曝
気槽における膜分離装置の濾過量を増大させるようにし
て装置のコンパクト化を図ったものも提案されている。
しかし、後者においては、散気装置による曝気空気量を
一定としているため、膜分離装置の膜面のファウリング
を防止するには十分ではないという問題がある。
By the way, in the above-mentioned septic tank, conventionally, the capacity of the flow rate adjusting tank has been sufficiently increased in case a large amount of raw water flows. However, since the septic tank capacity inevitably increases, the amount of raw water transferred from the flow control tank to the aeration tank is increased when the water level in the flow control tank exceeds a predetermined high water level. There is also proposed a membrane separation device in which the filtration amount is increased to reduce the size of the device.
However, in the latter, there is a problem that it is not enough to prevent fouling of the membrane surface of the membrane separation device because the amount of aerated air by the air diffuser is fixed.

【0005】本発明は上記問題を解決するもので、膜分
離装置の濾過量を増大させる時もファウリングが生じに
くい水処理装置の運転方法を提供することを目的とする
ものである。
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a method of operating a water treatment apparatus in which fouling is less likely to occur even when the filtration amount of the membrane separation apparatus is increased.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に、本発明の請求項1記載の水処理装置の運転方法は、
曝気槽の内部に膜分離装置を浸漬設置し、膜分離装置の
透過水流路に連通して設けた透過水導出管に吸引ポンプ
を介装し、ブロワなどの給気源に連通する散気装置を膜
分離装置の下方に設けた水処理装置の運転方法であっ
て、前記吸引ポンプの吸引圧を膜分離装置の透過水流路
に作用させることにより膜面において濾過を行い、膜面
を透過して透過水流路内に流入した膜透過水を透過水導
出管により導出するに際し、膜透過水の導出流量の大き
さに応じて設定した所定流量の曝気空気を散気装置を通
じて噴出させ、上方の膜分離装置の膜面を洗浄すること
を特徴とする。
In order to solve the above-mentioned problems, a method for operating a water treatment apparatus according to claim 1 of the present invention comprises:
An aeration device in which a membrane separation device is immersed and installed in an aeration tank, a suction pump is interposed in a permeated water outlet pipe provided in communication with the permeated water flow path of the membrane separation device, and the air supply source such as a blower is connected. Is a method of operating a water treatment apparatus provided below the membrane separation device, wherein filtration is performed on the membrane surface by applying the suction pressure of the suction pump to the permeated water flow path of the membrane separation device, and permeation through the membrane surface is performed. When the membrane permeated water that has flowed into the permeated water flow path is led out by the permeated water outlet pipe, a predetermined amount of aerated air set according to the magnitude of the flow rate of the permeated water discharged through the diffuser is blown out, and The membrane surface of the membrane separation device is washed.

【0007】請求項2記載の浄化槽の運転方法は、流量
調整槽を備えた水処理装置において、流量調整槽内の原
水の水位を測定し、測定した水位の高さに応じて設定し
た所定流量の原水を曝気槽に移送し、原水の移送流量の
大きさに応じて設定した所定流量の膜透過水を導出する
ことを特徴とする。
According to a second aspect of the present invention, there is provided a method for operating a septic tank, comprising the steps of: measuring a raw water level in a flow regulating tank in a water treatment apparatus provided with a flow regulating tank; The raw water is transferred to an aeration tank, and a predetermined flow rate of the membrane permeated water set according to the transfer flow rate of the raw water is derived.

【0008】上記した構成によれば、膜透過水の導出流
量が増大された時には導出流量に対応する多量の曝気空
気が散気装置を通じて噴出され、曝気空気により生起さ
れる速い上昇流によって上方の膜分離装置の膜面が効果
的に洗浄されるので、ファウリングは生じにくい。
According to the above-described structure, when the flow rate of the membrane permeated water is increased, a large amount of aerated air corresponding to the flow rate is jetted through the air diffuser, and the upward flow generated by the aerated air causes an upward flow. Since the membrane surface of the membrane separation device is effectively cleaned, fouling hardly occurs.

【0009】また、原水の流入量が多く、流量調整槽内
の水位が高まった時には、その水位に対応する多量の原
水が流量調整槽から曝気槽へ移送され、曝気槽で移送流
量に対応して濾過が行われるので、流量調整槽における
原水滞留時間は短く、流量調整容量は小さくてすむ。
When the flow rate of the raw water is large and the water level in the flow control tank rises, a large amount of raw water corresponding to the water level is transferred from the flow control tank to the aeration tank, and the aeration tank controls the flow rate. Since filtration is performed, the raw water residence time in the flow control tank is short, and the flow control capacity is small.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら説明する。図1に示した浄化槽は、流量
調整槽20と散気装置21および膜分離装置22を浸漬
設置した曝気槽23とを備えており、流量調整槽21か
ら曝気槽23へ導かれた原水移送管24には移送ポンプ
25,流量調整弁26が介装されている。
Embodiments of the present invention will be described below with reference to the drawings. The purification tank shown in FIG. 1 includes a flow control tank 20 and an aeration tank 23 in which a diffuser 21 and a membrane separator 22 are immersed, and a raw water transfer pipe guided from the flow control tank 21 to the aeration tank 23. A transfer pump 25 and a flow control valve 26 are interposed in 24.

【0011】散気装置21は給気量を調節自在なブロワ
27に連通している。膜分離装置22は、管状あるいは
平板状の膜エレメント22aを配列したものであり、各
膜エレメント22aが散気装置21の上方に位置するよ
うに設置されている。各膜エレメント22aの透過水流
路(図示せず)に連通した透過水導出管28は、管路途
中に吸引ポンプ29と流量調整弁30とを介装し、外部
の放流路(図示せず)に導かれている。
The air diffuser 21 communicates with a blower 27 capable of adjusting the amount of air supply. The membrane separation device 22 is configured by arranging tubular or flat membrane elements 22 a, and is installed such that each membrane element 22 a is located above the air diffuser 21. The permeated water outlet pipe 28 communicating with the permeated water flow path (not shown) of each membrane element 22a has a suction pump 29 and a flow control valve 30 interposed in the middle of the pipe, and an external discharge flow path (not shown). Is led to.

【0012】流量調整槽20の内部には水位計31など
の水位測定手段が設けられており、この水位計31と流
量調整弁26と流量調整弁30とに電気的に接続して、
水位計32により測定される所定の高水位HWLと中水
位MWLと低水位LWLとにおいて流量調整弁26と流
量調整弁30とを開閉制御する制御装置32が設けられ
ている。移送ポンプ25,吸引ポンプ28は一定回転数
で駆動される。
A water level measuring means such as a water level gauge 31 is provided inside the flow rate adjusting tank 20, and is electrically connected to the water level gauge 31, the flow rate adjusting valve 26 and the flow rate adjusting valve 30, and
A control device 32 is provided for controlling the opening and closing of the flow control valve 26 and the flow control valve 30 at predetermined high water level HWL, middle water level MWL, and low water level LWL measured by the water level gauge 32. The transfer pump 25 and the suction pump 28 are driven at a constant rotation speed.

【0013】上記した構成における作用を説明する。原
水33を流量調整槽20の内部に導入するとともに、流
量調整槽20内の原水33の水位を水位計31によって
連続的にあるいは間欠的に測定する。
The operation of the above configuration will be described. The raw water 33 is introduced into the flow control tank 20, and the water level of the raw water 33 in the flow control tank 20 is continuously or intermittently measured by the water level meter 31.

【0014】測定した水位が所定の高水位HWLと低水
位LWLとの間の中間水位MWLにある時は、制御装置
32によって流量調整弁26と流量調整弁30とを、定
流量C1が流れる適当開度に維持する。また、散気装置
21を通じて、膜透過水が導出される定流量C2に対し
て予め設定した定流量A1で曝気されるようにブロワ2
7を維持する。
When the measured water level is at the intermediate water level MWL between the predetermined high water level HWL and the low water level LWL, the control device 32 controls the flow through the flow control valve 26 and the flow control valve 30 so that the constant flow C1 flows. Maintain the opening. Further, the blower 2 is blown through the air diffuser 21 so as to be aerated at a predetermined constant flow rate A1 with respect to the constant flow rate C2 at which the membrane permeated water is discharged.
Maintain 7

【0015】そして、この状態において、移送ポンプ2
5により原水移送管24を通じて流量調整槽20内の原
水33を定流量C1で曝気槽23へ移送し、曝気槽23
の内部で、散気装置21により定流量A1で曝気しなが
ら、流入する原水33を活性汚泥によって処理する。ま
た、曝気空気により生起される上昇流によって上方の膜
エレメント22aの膜面を洗浄しつつ、吸引ポンプ28
より各膜エレメント22aの透過水流路に作用する吸引
圧によって槽内の活性汚泥混合液34を各膜エレメント
22aで濾過し、膜面を透過して膜透過水流路に流入し
た膜透過水を透過水導出管27を通じて定流量C1で曝
気槽23の外部に導出する。
In this state, the transfer pump 2
5, the raw water 33 in the flow regulating tank 20 is transferred to the aeration tank 23 at a constant flow rate C1 through the raw water transfer pipe 24,
Inside, the raw water 33 flowing in is treated with activated sludge while aeration is performed at a constant flow rate A1 by the air diffuser 21. The suction pump 28 cleans the upper surface of the membrane element 22a by the upward flow generated by the aerated air.
The activated sludge mixture 34 in the tank is filtered by each membrane element 22a by the suction pressure acting on the permeated water flow path of each membrane element 22a, and the permeated water permeating through the membrane surface and flowing into the permeated water flow path is permeated. The water is led out of the aeration tank 23 through the water outlet pipe 27 at a constant flow rate C1.

【0016】流量調整槽20において所定の高水位HW
Lより高い水位が測定された時は、制御装置32により
流量調整弁26と流量調整弁29とを調節して、定流量
C2(>C1)の原水33を曝気槽23へ移送し、定流
量C2の膜透過水を曝気槽23の外部に導出するととも
に、ブロワ27を調節して、膜透過水が導出される定流
量C2に対して予め設定した定流量A2(>A1)で曝
気する状態において、上記と同様にして処理する。
In the flow control tank 20, a predetermined high water level HW
When a water level higher than L is measured, the control device 32 adjusts the flow control valve 26 and the flow control valve 29 to transfer the raw water 33 having a constant flow rate C2 (> C1) to the aeration tank 23, A state where the membrane permeated water of C2 is led out of the aeration tank 23 and the blower 27 is adjusted to aerate at a constant flow rate A2 (> A1) set in advance with respect to the constant flow rate C2 at which the membrane permeated water is led out. In the same manner as above.

【0017】流量調整槽20において所定の低水位LW
Lより低い水位が測定された時は、制御装置32により
流量調整弁26と流量調整弁29とを調節して、定流量
C3(<C1)の原水33を曝気槽23へ移送し、定流
量C3の膜透過水を曝気槽23の外部に導出するととも
に、ブロワ27を調節して、膜透過水が導出される定流
量C3に対して予め設定した曝気流量A3(<A1)で
曝気する状態において、上記と同様にして処理する。
In the flow control tank 20, a predetermined low water level LW
When a water level lower than L is measured, the control device 32 adjusts the flow control valve 26 and the flow control valve 29 to transfer the raw water 33 having a constant flow rate C3 (<C1) to the aeration tank 23, A state in which the membrane permeated water of C3 is led out of the aeration tank 23 and the blower 27 is adjusted to aerate at a predetermined aeration flow rate A3 (<A1) with respect to a constant flow rate C3 at which the membrane permeated water is led out. In the same manner as above.

【0018】つまり、原水33の流入量が多く、流量調
整槽20内の水位が高まった時ほど、流量調整槽20か
ら曝気槽23への原水33の移送量を増大し、曝気槽2
3における濾過量を増大するようにしたので、流量調整
槽20における原水滞留時間は短くなり、流量調整容量
は小さくてすむ。
That is, as the flow rate of the raw water 33 increases and the water level in the flow control tank 20 rises, the transfer amount of the raw water 33 from the flow control tank 20 to the aeration tank 23 increases, and the aeration tank 2
Since the amount of filtration in step 3 is increased, the raw water residence time in the flow control tank 20 is shortened, and the flow control capacity is small.

【0019】そして、濾過量が大きい時ほど、曝気量を
増大するようにしたので、膜エレメント22aに目詰ま
りが生じ易い時には速い上昇流が供給されることにな
り、膜面はその強いせん断力で効果的に洗浄される。
Since the aeration amount is increased as the filtration amount is increased, a fast upward flow is supplied when the membrane element 22a is likely to be clogged. Is effectively cleaned.

【0020】なお、上記においては、原水の移送量およ
び膜透過水の導出量をそれぞれ、移送ポンプ,吸引ポン
プを一定回転数で駆動する状態において流量調整弁で調
整するようにしたが、図示した装置構成において、移送
ポンプ,吸引ポンプをインバータ制御するようにしても
よい。
In the above description, the transfer amount of the raw water and the discharge amount of the membrane permeated water are respectively adjusted by the flow control valve in a state where the transfer pump and the suction pump are driven at a constant rotation speed. In the device configuration, the transfer pump and the suction pump may be controlled by an inverter.

【0021】また、上記においては流量調整槽として説
明したが、流量調整機能を持たせた脱窒槽などであって
も同様に運転すればよい。
In the above description, the flow control tank is described, but a denitrification tank having a flow control function may be operated in the same manner.

【0022】[0022]

【発明の効果】以上のように本発明によれば、濾過量の
増大に応じて曝気量を増大させるようにしたことによ
り、散気装置の上方に設置した膜分離装置の膜面を洗浄
する適度なせん断流を確保することができ、ファウリン
グを防止して、膜寿命を延ばすことができる。
As described above, according to the present invention, the aeration amount is increased in accordance with the increase in the filtration amount, so that the membrane surface of the membrane separation device installed above the diffuser is cleaned. An appropriate shear flow can be secured, fouling can be prevented, and the life of the membrane can be extended.

【0023】また、原水の流入量が多く、流量調整槽内
の水位が高まった時に、流量調整槽から曝気槽への原水
の移送量を増大し、曝気槽内での膜分離装置の濾過量を
増大させるようにしたことにより、流量調整容量を小さ
く設計することができ、装置のコンパクト化を図れる。
When the flow rate of the raw water is large and the water level in the flow control tank rises, the transfer rate of the raw water from the flow control tank to the aeration tank is increased, and the filtration amount of the membrane separation device in the aeration tank is increased. Is increased, the flow rate adjustment capacity can be designed to be small, and the apparatus can be made compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における浄化槽の運転方法
を説明する浄化槽の概略全体構成図である。
FIG. 1 is a schematic overall configuration diagram of a septic tank illustrating an operation method of the septic tank in one embodiment of the present invention.

【図2】従来の浄化槽の概略全体構成を示した説明図で
ある。
FIG. 2 is an explanatory diagram showing a schematic overall configuration of a conventional septic tank.

【符号の説明】[Explanation of symbols]

20 流量調整槽 21 散気装置 22 膜分離装置 22a 膜エレメント 23 曝気槽 24 原水移送管 27 ブロワ 28 透過水導出管 29 吸引ポンプ 31 水位計 33 原水 34 活性汚泥混合液 20 Flow control tank 21 Aerator 22 Membrane separator 22a Membrane element 23 Aeration tank 24 Raw water transfer pipe 27 Blower 28 Permeate discharge pipe 29 Suction pump 31 Water level gauge 33 Raw water 34 Activated sludge mixture

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 公一 兵庫県尼崎市浜一丁目1番1号 株式会社 クボタ技術開発研究所内 (72)発明者 本田 和之 滋賀県甲賀郡甲西町高松2番地の1 株式 会社クボタ滋賀工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Koichi Okada 1-1-1 Hama, Amagasaki-shi, Hyogo Inside Kubota Research Institute of Technology (72) Inventor Kazuyuki Honda 2 Takamatsu, Kosai-cho, Koga-gun, Shiga Prefecture 1 Kubota Shiga Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 曝気槽の内部に膜分離装置を浸漬設置
し、膜分離装置の透過水流路に連通して設けた透過水導
出管に吸引ポンプを介装し、ブロワなどの給気源に連通
する散気装置を膜分離装置の下方に設けた水処理装置の
運転方法であって、前記吸引ポンプの吸引圧を膜分離装
置の透過水流路に作用させることにより膜面において濾
過を行い、膜面を透過して透過水流路内に流入した膜透
過水を透過水導出管により導出するに際し、膜透過水の
導出流量の大きさに応じて設定した所定流量の曝気空気
を散気装置を通じて噴出させ、上方の膜分離装置の膜面
を洗浄することを特徴とする水処理装置の運転方法。
1. A membrane separation device is immersed and installed in an aeration tank, and a suction pump is interposed in a permeated water outlet pipe provided in communication with a permeated water flow passage of the membrane separation device, and is connected to an air supply source such as a blower. An operating method of a water treatment apparatus provided with a communicating aeration device below the membrane separation device, wherein filtration is performed on the membrane surface by applying suction pressure of the suction pump to a permeated water flow path of the membrane separation device, When the membrane permeated water that has passed through the membrane surface and flowed into the permeated water flow path is led out by the permeated water outlet pipe, aeration air having a predetermined flow rate set according to the magnitude of the flow rate of the derived permeated water is passed through the air diffuser. A method for operating a water treatment apparatus, comprising jetting and washing a membrane surface of an upper membrane separation apparatus.
【請求項2】 流量調整槽を備えた水処理装置におい
て、流量調整槽内の原水の水位を測定し、測定した水位
の高さに応じて設定した所定流量の原水を曝気槽に移送
し、原水の移送流量の大きさに応じて設定した所定流量
の膜透過水を導出することを特徴とする請求項1記載の
水処理装置の運転方法。
2. In a water treatment apparatus provided with a flow control tank, a raw water level in the flow control tank is measured, and raw water having a predetermined flow rate set according to the measured water level is transferred to an aeration tank. The method for operating a water treatment apparatus according to claim 1, wherein a predetermined flow rate of the membrane permeated water set according to the magnitude of the transfer flow rate of the raw water is derived.
JP9321823A 1997-11-25 1997-11-25 Method for operation of water treatment plant Pending JPH11156360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9321823A JPH11156360A (en) 1997-11-25 1997-11-25 Method for operation of water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9321823A JPH11156360A (en) 1997-11-25 1997-11-25 Method for operation of water treatment plant

Publications (1)

Publication Number Publication Date
JPH11156360A true JPH11156360A (en) 1999-06-15

Family

ID=18136825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9321823A Pending JPH11156360A (en) 1997-11-25 1997-11-25 Method for operation of water treatment plant

Country Status (1)

Country Link
JP (1) JPH11156360A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane
JP2001334130A (en) * 2000-05-30 2001-12-04 Kubota Corp Membrane separation unit having flow rate regulating function
JP2003275759A (en) * 2002-03-20 2003-09-30 Hitachi Plant Eng & Constr Co Ltd Water treatment device
WO2006029465A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
JP2007167827A (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Eng Co Ltd Apparatus for treating activated sludge
JP2011522700A (en) * 2008-06-09 2011-08-04 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Water treatment method and system using membrane filtering system
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
JP2012528717A (en) * 2009-06-02 2012-11-15 シーメンス インダストリー インコーポレイテッド Membrane cleaning with pulsed gas slag and global aeration
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
JP2018034077A (en) * 2016-08-29 2018-03-08 株式会社クボタ Method for operating membrane separation device and membrane separation device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane
JP2001334130A (en) * 2000-05-30 2001-12-04 Kubota Corp Membrane separation unit having flow rate regulating function
JP2003275759A (en) * 2002-03-20 2003-09-30 Hitachi Plant Eng & Constr Co Ltd Water treatment device
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
WO2006029465A1 (en) * 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
JP2007167827A (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Eng Co Ltd Apparatus for treating activated sludge
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
JP2011522700A (en) * 2008-06-09 2011-08-04 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Water treatment method and system using membrane filtering system
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2012528717A (en) * 2009-06-02 2012-11-15 シーメンス インダストリー インコーポレイテッド Membrane cleaning with pulsed gas slag and global aeration
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
JP2018034077A (en) * 2016-08-29 2018-03-08 株式会社クボタ Method for operating membrane separation device and membrane separation device
WO2018043154A1 (en) * 2016-08-29 2018-03-08 株式会社クボタ Method for operating membrane separation device, and membrane separation device
US11452971B2 (en) 2016-08-29 2022-09-27 Kubota Corporation Method for operating membrane separation device with halt process

Similar Documents

Publication Publication Date Title
JPH11156360A (en) Method for operation of water treatment plant
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JPH07155758A (en) Waste water treating device
JPH10109095A (en) Water purifying treatment device
JPH04290590A (en) Membrane separator in septic tank
JP2001353497A (en) Mobile membrane separation unit
CN102276052B (en) Backwashing apparatus and method for aeration biofilter with lightweight filter material
JP4046445B2 (en) Wastewater treatment method
JP2001334130A (en) Membrane separation unit having flow rate regulating function
JPH10118684A (en) Immersion type membrane separation and activated sludge apparatus
JP3124197B2 (en) Sewage treatment equipment
JP2000042586A (en) Membrane separation type combined septic tank
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH06114388A (en) Biological filtering method
JP2001252679A (en) Waste water treating device and method
CN217016116U (en) Membrane module automatic cleaning system of marine MBR domestic sewage treatment device
KR0142581B1 (en) Wastewater Biofiltration Treatment Apparatus and Method Using Biofiltration Material
JPH04180892A (en) Method and apparatus for biological treatment of organic waste water
JP2001070938A (en) Immersion type membrane filter
JPH11347377A (en) Solid-liquid separation apparatus and washing method thereof
JP3832969B2 (en) Operation method of membrane separator
JPH1157772A (en) Waste water treatment
JPH11104690A (en) Septic tank
JPH08141585A (en) Purifying tank
JP3106063B2 (en) Membrane separation equipment