JP2003275759A - Water treatment device - Google Patents

Water treatment device

Info

Publication number
JP2003275759A
JP2003275759A JP2002077897A JP2002077897A JP2003275759A JP 2003275759 A JP2003275759 A JP 2003275759A JP 2002077897 A JP2002077897 A JP 2002077897A JP 2002077897 A JP2002077897 A JP 2002077897A JP 2003275759 A JP2003275759 A JP 2003275759A
Authority
JP
Japan
Prior art keywords
membrane
air
water
amount
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002077897A
Other languages
Japanese (ja)
Inventor
Kiyokazu Takemura
清和 武村
Naoto Onishi
直人 大西
Yutaka Okuno
裕 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002077897A priority Critical patent/JP2003275759A/en
Publication of JP2003275759A publication Critical patent/JP2003275759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce few bias in a stain situation on a film surface among respective film units dipped in a treatment tank and to extend the average life of the film units. <P>SOLUTION: In this water treatment device provided with the treatment tank 10 holding aerobic microorganisms, a plurality of groups of film units 14 dipped in the treatment tank 10, and diffusing pipes 16 for diffusing air to a lower part of each of the film units 14, the quantity of water to be treated which is sucked in from each of the film units 14 is made almost the same, and a controller 32 controls air quantity to be diffused from the diffusing pipes 16 on the basis of a detection value of each pressure gauge 26 provided in a secondary side pipe 24 of each of the film units 14. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水処理装置に係り、
特に処理槽内に膜分離手段を備えた水処理装置に関す
る。
TECHNICAL FIELD The present invention relates to a water treatment device,
In particular, it relates to a water treatment device provided with a membrane separating means in a treatment tank.

【0002】[0002]

【従来の技術】従来のこの種の水処理装置としては図4
に示したものが知られている。処理槽1には管路2から
流入した被処理水が満たされており、好気性の微生物が
高濃度に保持されている。また、処理槽1には複数基の
膜ユニット3からなる膜分離手段が浸漬されている。各
膜ユニット3の下方には散気管4が配設され、ブロワ5
からの圧縮空気が散気管4から散気される。膜ユニット
3の二次側には配管6が接続し、この配管6に流量計7
と吸引ポンプ8が設けられている。
2. Description of the Related Art FIG. 4 shows a conventional water treatment device of this type.
The ones shown in are known. The treatment tank 1 is filled with the water to be treated that has flowed in from the pipe line 2, and the aerobic microorganisms are kept at a high concentration. In addition, a membrane separation means including a plurality of membrane units 3 is immersed in the treatment tank 1. An air diffuser 4 is arranged below each membrane unit 3, and a blower 5
Compressed air from is diffused from the diffuser 4. A pipe 6 is connected to the secondary side of the membrane unit 3, and a flow meter 7 is connected to the pipe 6.
And a suction pump 8 are provided.

【0003】処理槽1内の被処理水は高濃度に保持され
微生物による酸化作用によって生物処理され浄化され
る。被処理水は各膜ユニット3の二次側から配管6を介
して吸引ポンプ8によって吸引され処理水として装置外
に排出される。この際、吸引ポンプ8は流量計7で検出
される処理水量が一定となるように、例えば回転数制御
によって駆動される。散気管4から散気される空気は微
生物の生物処理に必要な酸素源として利用される。ま
た、散気によるエネルギが被処理水を流動させ、膜ユニ
ット3の膜面での濃度分極を防止するとともに、膜面の
洗浄にも利用される。上記の生物処理に必要な空気量と
膜洗浄に必要な空気量とを比較すると通常は前者の方が
多い。したがって、散気管4では生物処理に必要な空気
量を複数基の膜ユニット3の基数で割った量を各膜ユニ
ット3の下方から均等に散気するようにしている。
The water to be treated in the treatment tank 1 is maintained at a high concentration and biologically treated and purified by the oxidizing action of microorganisms. The water to be treated is sucked by the suction pump 8 from the secondary side of each membrane unit 3 through the pipe 6 and discharged to the outside of the apparatus as treated water. At this time, the suction pump 8 is driven by, for example, rotation speed control so that the amount of treated water detected by the flow meter 7 becomes constant. The air diffused from the air diffuser 4 is used as an oxygen source required for biological treatment of microorganisms. Further, the energy due to air diffusion causes the water to be treated to flow, prevents concentration polarization on the membrane surface of the membrane unit 3, and is also used for cleaning the membrane surface. When comparing the amount of air required for the biological treatment with the amount of air required for membrane cleaning, the former is usually higher. Therefore, in the air diffuser 4, the amount of air required for biological treatment is divided by the number of the plurality of membrane units 3 to uniformly diffuse air from the lower side of each membrane unit 3.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記複
数基の膜ユニットは処理槽内での配置等によって被処理
水との接触状況がそれぞれ異なる。このため、運転を長
時間継続すると、各膜ユニットの間で膜面の汚れ状況に
偏りが生じる。したがって、上記の散気による膜洗浄と
は別個に定期的な薬品洗浄を実施した場合でも、汚染状
態がひどい膜ユニットには汚染の履歴が残り易く、寿命
を縮めるという問題点があった。本発明の目的は上記従
来技術の問題点を改善し、各膜ユニットの間で膜面の汚
れ状況に偏りが生じ難く、膜ユニットの平均寿命を延ば
すことができる水処理装置を提供することにある。
However, the contact states of the plurality of membrane units with the water to be treated are different depending on the arrangement in the treatment tank and the like. For this reason, when the operation is continued for a long time, the condition of fouling of the membrane surface becomes uneven among the membrane units. Therefore, even when the periodical chemical cleaning is performed separately from the above-mentioned film cleaning by air diffusion, there is a problem that the history of contamination is apt to remain in the membrane unit having a serious contamination state and the life is shortened. An object of the present invention is to improve the above-mentioned problems of the prior art, and to provide a water treatment apparatus capable of prolonging the average life of a membrane unit, in which the soiling state of the membrane surface is less likely to be biased among the membrane units. is there.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
被処理水を満たした処理槽と、この処理槽内に浸漬され
た複数基の膜ユニットと、これらの各膜ユニットの下方
に空気を散気する散気手段とを備え、前記処理槽に流入
した被処理水を前記各膜ユニットの二次側から吸引して
処理水として処理槽外に排出するようにした水処理装置
において、前記散気手段から散気する空気量を前記各膜
ユニットごとに膜の汚れの程度に応じて調整可能とした
ことを特徴とする。
The invention according to claim 1 is
A treatment tank filled with water to be treated, a plurality of membrane units immersed in the treatment tank, and an air diffuser for diffusing air below each of these membrane units are provided, and flow into the treatment tank. In the water treatment device configured to suck the treated water from the secondary side of each of the membrane units and discharge the treated water to the outside of the treatment tank as treated water, the amount of air diffused from the diffuser is adjusted for each of the membrane units. It is characterized in that it can be adjusted according to the degree of contamination of the film.

【0006】請求項2に係る発明は、請求項1に係る発
明において、前記各膜ユニットの二次側の配管にそれぞ
れ圧力計を配備し、各膜ユニットから吸引する処理水の
水量をほぼ同一にした場合に前記各圧力計によって検出
される吸引圧に応じて、前記散気手段が各膜ユニットに
散気する空気量を制御する制御手段を備えたことを特徴
とする。
In the invention according to claim 2, in the invention according to claim 1, pressure gauges are provided in the secondary side pipes of the respective membrane units, and the amount of treated water sucked from the respective membrane units is substantially the same. In this case, the air diffusing means is provided with control means for controlling the amount of air diffused to each membrane unit according to the suction pressure detected by each pressure gauge.

【0007】請求項3に係る発明は、請求項1に係る発
明において、前記各膜ユニットの二次側の配管にそれぞ
れ流量計を配備し、各膜ユニットに対する二次側の吸引
圧をほぼ同一にした場合に前記各流量計によって検出さ
れる処理水の流量に応じて、前記散気手段が各膜ユニッ
トに散気する空気量を制御する制御手段を備えたことを
特徴とする。
According to a third aspect of the invention, in the invention according to the first aspect, a flow meter is provided in each of the secondary side pipes of each of the membrane units, and the suction pressure on the secondary side for each of the membrane units is substantially the same. In this case, the diffusing means is provided with control means for controlling the amount of air diffused to each membrane unit according to the flow rate of the treated water detected by each flow meter.

【0008】上記の各発明によれば、膜の汚染が進行し
ている膜ユニットに対してより多くの散気量を割り当て
ることができ、各膜ユニットの間で膜面の汚れ状況に偏
りが生じることを抑制することができる。
According to each of the above inventions, it is possible to allocate a larger amount of air diffusion to a membrane unit in which the contamination of the membrane is progressing, and the soiling condition of the membrane surface is biased among the membrane units. This can be suppressed.

【0009】[0009]

【発明の実施の形態】図1は本発明の第1実施形態を示
す装置系統図である。処理槽10には管路12から流入
した被処理水が満たされており、好気性の微生物が高濃
度に保持されている。 また、処理槽10には複数基の
膜ユニット14からなる膜分離手段が浸漬されている。
各膜ユニット14の下方にはそれぞれ散気管16が配設
され、ブロワ18からの圧縮空気が散気管16から散気
される。各散気管16とブロワ18とを結ぶ複数の配管
20にはそれぞれ流量調節弁22が設けられている。各
膜ユニット14の二次側にはそれぞれ配管24が接続
し、各配管24にはそれぞれ圧力計26と流量計28と
吸引ポンプ30が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing a first embodiment of the present invention. The treatment tank 10 is filled with the water to be treated that has flowed in from the conduit 12, and the aerobic microorganisms are kept at a high concentration. In addition, a membrane separation unit including a plurality of membrane units 14 is immersed in the treatment tank 10.
Air diffusers 16 are arranged below the respective membrane units 14, and the compressed air from the blower 18 is diffused from the air diffusers 16. A flow control valve 22 is provided in each of a plurality of pipes 20 that connect each air diffuser 16 and the blower 18. A pipe 24 is connected to the secondary side of each membrane unit 14, and a pressure gauge 26, a flow meter 28, and a suction pump 30 are provided in each pipe 24.

【0010】処理槽10内の被処理水は高濃度に保持さ
れ微生物による酸化作用によって生物処理され浄化され
る。被処理水は各膜ユニット14の二次側から配管24
を介して各吸引ポンプ30によって吸引され処理水とし
て装置外に排出される。各吸引ポンプ30は流量計28
で検出される処理水量が同一となるように、例えば回転
数制御によって駆動される。散気管16から散気される
空気は微生物の酸化作用に必要な酸素源として利用され
る。また、散気によるエネルギが被処理水を流動させ、
膜ユニット14の膜面での濃度分極を防止するととも
に、膜面の洗浄にも利用される。上記の生物処理に必要
な空気量と膜洗浄に必要な空気量とを比較すると通常は
前者の方が多い。したがって、ブロワ18はこの生物処
理に必要な空気量を常時、散気管14に供給する。そし
て、運転初期においてはこのブロワ18から供給される
空気量を複数基の膜ユニット14の基数で割った量を各
膜ユニット14の下方から均等に散気する。すなわち、
運転開始時は各配管20に設けられた流量調節弁22の
開度を同一に設定し、各散気管16から各膜ユニット1
4に向けて散気する空気量を均等にする。
The water to be treated in the treatment tank 10 is kept at a high concentration and biologically treated and purified by the oxidizing action of microorganisms. The water to be treated is piped 24 from the secondary side of each membrane unit 14.
Is sucked by each suction pump 30 and discharged as treated water to the outside of the apparatus. Each suction pump 30 is a flow meter 28
It is driven by, for example, the rotation speed control so that the treated water amounts detected in 1 are the same. The air diffused from the air diffuser 16 is used as an oxygen source required for the oxidizing action of microorganisms. In addition, the energy from aeration causes the treated water to flow,
It prevents concentration polarization on the membrane surface of the membrane unit 14 and is also used for cleaning the membrane surface. When comparing the amount of air required for the biological treatment with the amount of air required for membrane cleaning, the former is usually higher. Therefore, the blower 18 constantly supplies the air diffuser 14 with the amount of air required for the biological treatment. Then, in the initial stage of the operation, the amount of air supplied from the blower 18 is divided by the number of the plurality of membrane units 14 to uniformly diffuse air from below each of the membrane units 14. That is,
At the start of operation, the opening of the flow rate control valve 22 provided in each pipe 20 is set to the same, and each diffusing pipe 16 is connected to each membrane unit 1.
Make the amount of air diffused toward 4 even.

【0011】しかしながら、複数基の膜ユニット14は
処理槽内での配置等によって被処理水との接触状況がそ
れぞれ異なる。このため、運転を長時間継続すると、各
膜ユニット14の間で膜面の汚れ状況に偏りが生じる。
膜ユニットでの被処理水(処理水)の透過抵抗は膜面の
汚れの程度によって変化し、汚れの程度が大きくなるに
従って透過抵抗も大きくなる。このため、前述のとおり
各吸引ポンプ30を流量計28で検出される処理水量が
同一となるように駆動させると、膜面の汚れの程度が大
きい膜ユニット14での透過抵抗が上昇し、圧力計26
の検出値(吸引圧)が上昇する。一方、膜面の汚れの程
度が小さい膜ユニット14では透過抵抗がさほど上昇せ
ず、圧力計26の検出値(吸引圧)は比較的低い安定し
た値を維持する。これらの各圧力計26によって検出さ
れる検出値は制御器32に送信される。制御器32では
各圧力計26の検出値に応じて、各流量調節弁22の開
度を調整し、各散気管16から各膜ユニット14に向け
て散気する空気量を制御する。
However, the contact state of the plurality of membrane units 14 with the water to be treated differs depending on the arrangement in the treatment tank and the like. For this reason, when the operation is continued for a long time, the condition of fouling of the membrane surface becomes uneven among the membrane units 14.
The permeation resistance of the water to be treated (treated water) in the membrane unit changes depending on the degree of contamination on the membrane surface, and the permeation resistance increases as the degree of contamination increases. Therefore, as described above, when each suction pump 30 is driven so that the amount of treated water detected by the flow meter 28 becomes the same, the permeation resistance in the membrane unit 14 where the degree of fouling of the membrane surface is large rises, and the pressure is increased. 26 in total
Detection value (suction pressure) of increases. On the other hand, in the membrane unit 14 in which the degree of dirt on the membrane surface is small, the permeation resistance does not increase so much, and the detection value (suction pressure) of the pressure gauge 26 maintains a relatively low and stable value. The detection value detected by each of these pressure gauges 26 is transmitted to the controller 32. The controller 32 adjusts the opening degree of each flow rate control valve 22 according to the detection value of each pressure gauge 26, and controls the amount of air diffused from each diffuser pipe 16 toward each membrane unit 14.

【0012】すなわち、圧力計26の検出値が大きい膜
ユニット14は膜面の汚れの程度が大きいと判断できる
ので、その膜ユニット14に対応する流量調節弁22の
開度を大きくする。すると、その膜ユニット14に向け
て散気される散気管16からの空気量が増加する。空気
量が増加すると膜ユニット14に対する膜面洗浄作用が
強くなり、膜面の清浄度が回復する。すると、その膜ユ
ニット14の透過抵抗が低くなり、対応する圧力計26
の検出値も小さくなる。したがって、上記のような制御
器32による各流量調節弁22の開度の調整を継続する
ことによって、複数基の膜ユニット14を膜面の汚れ状
況に偏りが生じないように運転することができる。
That is, since it can be judged that the membrane unit 14 having a large detection value of the pressure gauge 26 has a large degree of fouling of the membrane surface, the opening degree of the flow control valve 22 corresponding to the membrane unit 14 is increased. Then, the amount of air from the air diffuser 16 diffused toward the membrane unit 14 increases. When the amount of air increases, the action of cleaning the membrane surface of the membrane unit 14 becomes stronger, and the cleanliness of the membrane surface is restored. Then, the permeation resistance of the membrane unit 14 becomes low, and the corresponding pressure gauge 26
The detected value of is also small. Therefore, by continuing the adjustment of the opening degree of each flow rate control valve 22 by the controller 32 as described above, it is possible to operate the plurality of membrane units 14 so that there is no unevenness in the dirty state of the membrane surface. .

【0013】図2は制御器32によって制御される3基
の膜ユニットでの散気量をモデル化して示した説明図で
ある。(イ)は運転開始時を示し、各膜ユニットA,
B,Cではそれぞれ均等な散気量である100量を散気
する。この散気量の100量は生物処理に必要な散気量
300量を膜ユニットの基数3で除した量であり、ま
た、膜洗浄に必要な標準散気量である60量を十分に上
廻る量である。(ロ)は一定期間の運転が経過した時の
各膜ユニットA,B,Cでの散気量を例示している。最
も汚れの少ない膜ユニットCでは膜洗浄に必要な標準散
気量の60量が保持される。汚れが中程度の膜ユニット
Aでは散気量が80量とされる。最も汚れの激しい膜ユ
ニットBでは散気量が最大の160量とされる。この場
合、各膜ユニットA,B,Cの散気量の合計は生物処理
に必要な散気量300量に維持されているので、ブロワ
18の負荷を増強させる必要がない。なお、各膜ユニッ
トA,B,Cの各散気量がそれぞれのユニットに対応し
て設けられた圧力計26の検出値に基いて制御器32で
演算された結果値であることはいうまでもない。
FIG. 2 is an explanatory view showing a model of the air diffusion amount in the three membrane units controlled by the controller 32. (A) indicates the start of operation, and each membrane unit A,
In B and C, the amount of 100, which is an even amount of air, is diffused. The amount of air diffusion of 100 is the amount of air diffusion required for biological treatment of 300 divided by the number of membrane units, which is 3, and the standard amount of air diffusion required for membrane cleaning of 60 is sufficiently higher. It is the amount of rotation. (B) illustrates the amount of air diffused in each of the membrane units A, B, and C when the operation for a certain period of time has elapsed. In the membrane unit C with the least contamination, the standard air diffusion amount of 60 required for membrane cleaning is retained. In the membrane unit A with a medium degree of fouling, the amount of air diffused is 80. In the membrane unit B which is the most polluted, the amount of air diffused is 160, which is the maximum. In this case, the total aeration amount of each of the membrane units A, B and C is maintained at the aeration amount of 300 required for biological treatment, so that it is not necessary to increase the load of the blower 18. In addition, it goes without saying that the aeration amount of each membrane unit A, B, C is a result value calculated by the controller 32 based on the detection value of the pressure gauge 26 provided corresponding to each unit. Nor.

【0014】上述のとおり、本実施形態によれば複数基
の膜ユニット14から吸引する処理水の水量を一定にし
た場合における各膜ユニット13の汚れの程度をそれぞ
れのユニットに対応して設けられた圧力計26の検出値
(吸引圧)によって判定するようにした。そして、これ
らの圧力計26の検出値に応じて、汚れが激しい膜ユニ
ット14、すなわち、圧力計26の検出値が大きい膜ユ
ニット14に対する散気量をより多くするように制御す
るので、複数の膜ユニット14を膜面の汚れ状況に偏り
が生じないように運転することができる。しかも散気量
の合計を生物処理に必要な散気量に維持しつつ各膜ユニ
ットの散気量を調整するので、ブロワ18の負荷を増強
させる必要がない。
As described above, according to the present embodiment, the degree of fouling of each membrane unit 13 when the amount of treated water sucked from the plurality of membrane units 14 is constant is set corresponding to each unit. The determination is made based on the detection value (suction pressure) of the pressure gauge 26. Then, according to the detection values of these pressure gauges 26, the amount of air diffused to the membrane unit 14 which is heavily contaminated, that is, the membrane unit 14 where the detection value of the pressure gauge 26 is large, is controlled to be larger, It is possible to operate the membrane unit 14 so that the soiling condition of the membrane surface is not biased. Moreover, since the total amount of diffused air is adjusted to the amount of diffused air required for biological treatment, the amount of diffused air of each membrane unit is adjusted, so that it is not necessary to increase the load on the blower 18.

【0015】なお、散気量を多くしても圧力計26の検
出値が低下しない、すなわち、膜面の汚れが思うように
改善されないケースが想定される。したがって、各膜ユ
ニットの散気量には上限(例えば、膜洗浄に必要な標準
散気量の3倍)を設けることが好ましい。この場合、上
限の散気量に達した膜ユニットに対しては過大な吸引圧
が作用しないように、吸引する処理水の水量を相対的に
減少させる措置を講じることが好ましい。すなわち、図
1において各流量計28の検出値を制御器32に送信
し、制御器32では散気量を上限にしても圧力計26の
検出値が低下しない膜ユニットについては吸引する処理
水の水量を減少させるように吸引ポンプ30の稼動を制
御する。吸引水量を減少させることによって吸引圧が低
下し、当該膜ユニットに過大な吸引圧が作用することを
防止することができる。この際、複数基の膜ユニット全
体の吸引水量を一定値以上に保持したい時は、膜の汚れ
が少なく、圧力計26の検出値が低い膜ユニットの吸引
水量を増加させるように吸引ポンプ30を制御すればよ
い。
It is assumed that the detected value of the pressure gauge 26 does not decrease even if the amount of air diffused is increased, that is, the contamination of the film surface is not improved as expected. Therefore, it is preferable to set an upper limit (for example, three times the standard air volume required for membrane cleaning) to the air volume of each membrane unit. In this case, it is preferable to take measures to relatively reduce the amount of the treated water to be sucked, so that an excessive suction pressure does not act on the membrane unit that has reached the upper limit air diffusion amount. That is, in FIG. 1, the detection value of each flow meter 28 is transmitted to the controller 32, and the controller 32 does not lower the detection value of the pressure gauge 26 even if the air diffusion amount is set to the upper limit. The operation of the suction pump 30 is controlled so as to reduce the amount of water. It is possible to prevent the suction pressure from decreasing by reducing the suction water amount, and to prevent an excessive suction pressure from acting on the membrane unit. At this time, when it is desired to maintain the suction water amount of the entire plurality of membrane units at a certain value or more, the suction pump 30 is increased so as to increase the suction water amount of the membrane unit in which the membrane is less contaminated and the detection value of the pressure gauge 26 is low. You can control it.

【0016】図3は本発明の第2実施形態を示す装置系
統図である。図中、図1に示した要素と同一の符号を付
した要素は図1の場合と同様の機能を有しており、説明
を省略する。この第2実施形態では各膜ユニット14の
二次側の各配管24が共通の配管34に統合され、この
配管34に共通の圧力計36と共通の吸引ポンプ38が
設けられている。吸引ポンプ38を稼動することによっ
て、各膜ユニット14の二次側の各配管24にはほぼ同
一の吸引圧が作用する。すると、各膜ユニット14では
膜の汚れ状況に対応した透過抵抗に基づき、それぞれ異
なった量の処理水が各配管24に吸引され、吸引水量が
各流量計28によって検出される。これらの各流量計2
8の検出値は制御器40に送信される。制御器40では
各流量計28の検出値に応じて、各流量調節弁22の開
度を調整し、各散気管16から各膜ユニット14に向け
て散気する空気量を制御する。
FIG. 3 is an apparatus system diagram showing a second embodiment of the present invention. In the figure, elements given the same reference numerals as the elements shown in FIG. 1 have the same functions as in the case of FIG. In the second embodiment, the pipes 24 on the secondary side of the membrane units 14 are integrated into a common pipe 34, and the pipe 34 is provided with a common pressure gauge 36 and a common suction pump 38. By operating the suction pump 38, substantially the same suction pressure acts on each secondary pipe 24 of each membrane unit 14. Then, in each of the membrane units 14, different amounts of treated water are sucked into the pipes 24 based on the permeation resistance corresponding to the fouling condition of the membrane, and the amount of sucked water is detected by the flowmeters 28. Each of these flow meters 2
The detected value of 8 is transmitted to the controller 40. The controller 40 adjusts the opening degree of each flow rate control valve 22 according to the detection value of each flow meter 28, and controls the amount of air diffused from each diffuser pipe 16 toward each membrane unit 14.

【0017】すなわち、流量計28の検出値が小さい時
は、当該膜ユニット14の膜の汚れがひどく、膜の透過
抵抗が大きいことに通じる。したがって、制御器40で
は当該流量計28に対応する膜ユニット14の流量調節
弁22の開度を大きくして、散気管16からの散気量を
多くするように制御する。流量計28の検出値が大きい
時は逆に対応する膜ユニット14への散気量を少なくす
るように制御する。また、制御器40では各流量計28
の検出値を合計し、複数の膜ユニット全体の吸引水量が
一定値以上となるように、吸引ポンプ38の稼動を制御
する。共通の圧力計36の検出値が上限に達した時には
複数の膜ユニットの全体的な膜の汚れが進行していると
判定されるので、定常運転とは別個に行う薬品洗浄など
の必要な措置を講じる。
That is, when the detected value of the flow meter 28 is small, it means that the membrane of the membrane unit 14 is heavily soiled and the permeation resistance of the membrane is large. Therefore, the controller 40 controls to increase the opening degree of the flow rate control valve 22 of the membrane unit 14 corresponding to the flow meter 28 to increase the amount of air diffused from the air diffuser 16. When the detected value of the flow meter 28 is large, conversely, control is performed so as to reduce the amount of air diffused to the corresponding membrane unit 14. In the controller 40, each flow meter 28
The total of the detected values of (1) and (2) are summed, and the operation of the suction pump 38 is controlled so that the suction water amount of the entire plurality of membrane units becomes a certain value or more. When the detection value of the common pressure gauge 36 reaches the upper limit, it is determined that the entire membrane of the plurality of membrane units is contaminated, so necessary measures such as chemical cleaning performed separately from the steady operation. Take action.

【0018】この第2実施形態によれば、第1実施形態
と同様に膜の汚れ程度が大きい膜ユニット14に対して
選択的に散気量を増大させるので、複数の膜ユニット1
4を膜面の汚れ状況に偏りが生じないように運転するこ
とができる。しかも散気量の合計を生物処理に必要な散
気量に維持しつつ各膜ユニットの散気量を調整すれば、
ブロワ18の負荷を増強させる必要がない。また、第1
実施形態に比べて圧力計や吸引ポンプを共用化できるの
で装置の簡略化を図ることができる。
According to the second embodiment, as in the first embodiment, the air diffusion amount is selectively increased with respect to the membrane unit 14 in which the degree of fouling of the membrane is large.
4 can be operated so that the dirt on the membrane surface is not biased. Moreover, by adjusting the air volume of each membrane unit while maintaining the total air volume to the air volume necessary for biological treatment,
There is no need to increase the load on the blower 18. Also, the first
Since the pressure gauge and the suction pump can be shared as compared with the embodiment, the device can be simplified.

【0019】上記の各実施形態では、処理槽内に好気性
の微生物を高濃度に保持し、被処理水を生物処理する場
合について説明した。しかしながら、本発明はこれに限
らず、濾過処理を主目的とした水処理装置にも適用可能
である。
In each of the above-mentioned embodiments, the case where the aerobic microorganisms are maintained at a high concentration in the treatment tank and the water to be treated is biologically treated has been described. However, the present invention is not limited to this, and can be applied to a water treatment device whose main purpose is filtration treatment.

【0020】[0020]

【発明の効果】本発明の水処理装置によれば、処理槽内
に浸漬された複数基の膜ユニットへの散気量を各膜ユニ
ットごとに膜の汚れの程度に応じて調整可能としたの
で、各膜ユニットの間で膜面の汚れ状況に偏りが生じ難
く、膜ユニットの平均寿命を延ばすことができる。
According to the water treatment apparatus of the present invention, the amount of air diffused into a plurality of membrane units immersed in the treatment tank can be adjusted for each membrane unit according to the degree of membrane fouling. Therefore, the soiling condition of the membrane surface is unlikely to be biased among the membrane units, and the average life of the membrane units can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示す装置系統図であ
る。
FIG. 1 is a device system diagram showing a first embodiment of the present invention.

【図2】第1実施形態に係る各膜ユニットでの散気量を
モデル化して示した説明図である。
FIG. 2 is an explanatory diagram showing a modeled amount of air diffused in each membrane unit according to the first embodiment.

【図3】本発明の第2実施形態を示す装置系統図であ
る。
FIG. 3 is a device system diagram showing a second embodiment of the present invention.

【図4】従来技術に係る水処理装置の装置系統図であ
る。
FIG. 4 is a device system diagram of a water treatment device according to a conventional technique.

【符号の説明】[Explanation of symbols]

10……処理槽 14……膜ユニット 16……散気管 22……流量調節弁 24……配管 26、36……圧力計 28……流量計 30、38……吸引ポンプ 32、40……制御器 10 ... Treatment tank 14 ... Membrane unit 16 ... Air diffuser 22 ... Flow control valve 24 …… Piping 26, 36 ... Pressure gauge 28 ... Flowmeter 30, 38 ... Suction pump 32, 40 ... Controller

フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA93 JA31Z JA63Z KA12 KA31 KA44 KA67 KB21 KC14 KE08P KE08Q KE22Q KE30Q PA01 PB08 PB24 PC62 4D028 BC12 BC17 BD06 BD17 CA09 CC09 Continued front page    F-term (reference) 4D006 GA06 GA07 HA93 JA31Z                       JA63Z KA12 KA31 KA44                       KA67 KB21 KC14 KE08P                       KE08Q KE22Q KE30Q PA01                       PB08 PB24 PC62                 4D028 BC12 BC17 BD06 BD17 CA09                       CC09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被処理水を満たした処理槽と、この処理槽
内に浸漬された複数基の膜ユニットと、これらの各膜ユ
ニットの下方に空気を散気する散気手段とを備え、前記
処理槽に流入した被処理水を前記各膜ユニットの二次側
から吸引して処理水として処理槽外に排出するようにし
た水処理装置において、 前記散気手段から散気する空気量を前記各膜ユニットご
とに膜の汚れの程度に応じて調整可能としたことを特徴
とする水処理装置。
1. A treatment tank filled with water to be treated, a plurality of membrane units immersed in the treatment tank, and air diffusing means for diffusing air below each of these membrane units, In a water treatment device configured to suck the treated water that has flowed into the treatment tank from the secondary side of each of the membrane units and discharge the treated water to the outside of the treatment tank as treated water, the amount of air diffused from the diffuser is A water treatment device, wherein each of the membrane units can be adjusted according to the degree of contamination of the membrane.
【請求項2】前記各膜ユニットの二次側の配管にそれぞ
れ圧力計を配備し、各膜ユニットから吸引する処理水の
水量をほぼ同一にした場合に、前記各圧力計によって検
出される吸引圧に応じて前記散気手段が各膜ユニットに
散気する空気量を制御する制御手段を備えたことを特徴
とする請求項1に記載の水処理装置。
2. Suctions detected by the pressure gauges when pressure gauges are provided on the secondary side pipes of the respective membrane units and the amounts of treated water sucked from the respective membrane units are made substantially the same. The water treatment apparatus according to claim 1, further comprising a control unit that controls the amount of air diffused by each of the membrane units according to the pressure.
【請求項3】前記各膜ユニットの二次側の配管にそれぞ
れ流量計を配備し、各膜ユニットに対する二次側の吸引
圧をほぼ同一にした場合に前記各流量計によって検出さ
れる処理水の流量に応じて、前記散気手段が各膜ユニッ
トに散気する空気量を制御する制御手段を備えたことを
特徴とする請求項1に記載の水処理装置。
3. Treated water detected by each flow meter when a flow meter is provided on the secondary side pipe of each membrane unit and the suction pressure on the secondary side for each membrane unit is made substantially the same. The water treatment apparatus according to claim 1, wherein the air diffuser includes control means for controlling the amount of air diffused to each membrane unit according to the flow rate of the water.
JP2002077897A 2002-03-20 2002-03-20 Water treatment device Pending JP2003275759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077897A JP2003275759A (en) 2002-03-20 2002-03-20 Water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077897A JP2003275759A (en) 2002-03-20 2002-03-20 Water treatment device

Publications (1)

Publication Number Publication Date
JP2003275759A true JP2003275759A (en) 2003-09-30

Family

ID=29205867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077897A Pending JP2003275759A (en) 2002-03-20 2002-03-20 Water treatment device

Country Status (1)

Country Link
JP (1) JP2003275759A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152282A (en) * 2005-12-07 2007-06-21 Mitsubishi Rayon Eng Co Ltd Membrane separation active sludge treatment method
WO2008139618A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Rayon Engineering Co., Ltd. Method of water disposal
US20100300968A1 (en) * 2009-06-02 2010-12-02 Siemens Water Technologies Corp. Membrane cleaning with pulsed gas slugs
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
JP2014012243A (en) * 2012-07-04 2014-01-23 Hitachi Ltd Membrane separator
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
WO2014157488A1 (en) * 2013-03-27 2014-10-02 株式会社クボタ Operation method for organic-waste-water treatment device, and organic-waste-water treatment device
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
JP2017060940A (en) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 Water treatment method and water treatment apparatus
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
JPWO2017135235A1 (en) * 2016-02-01 2018-02-08 三菱ケミカル株式会社 Separation membrane diagnosis method, water treatment method, separation membrane diagnosis device, water treatment device, and separation membrane diagnosis program
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180705A (en) * 1986-02-05 1987-08-08 Hitachi Ltd Method for operating hollow yarn membrane filter
JPH06106167A (en) * 1992-09-28 1994-04-19 Kubota Corp Method and apparatus for solid-liquid separation of waste water
JPH10165782A (en) * 1996-12-05 1998-06-23 Matsushita Electric Ind Co Ltd Membrane module and operation thereof
JPH11123380A (en) * 1997-10-21 1999-05-11 Japan Organo Co Ltd Water treatment apparatus
JPH11156360A (en) * 1997-11-25 1999-06-15 Kubota Corp Method for operation of water treatment plant
JP2000354741A (en) * 1999-06-15 2000-12-26 Hitachi Plant Eng & Constr Co Ltd Immersion flat membrane separation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180705A (en) * 1986-02-05 1987-08-08 Hitachi Ltd Method for operating hollow yarn membrane filter
JPH06106167A (en) * 1992-09-28 1994-04-19 Kubota Corp Method and apparatus for solid-liquid separation of waste water
JPH10165782A (en) * 1996-12-05 1998-06-23 Matsushita Electric Ind Co Ltd Membrane module and operation thereof
JPH11123380A (en) * 1997-10-21 1999-05-11 Japan Organo Co Ltd Water treatment apparatus
JPH11156360A (en) * 1997-11-25 1999-06-15 Kubota Corp Method for operation of water treatment plant
JP2000354741A (en) * 1999-06-15 2000-12-26 Hitachi Plant Eng & Constr Co Ltd Immersion flat membrane separation device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
JP2007152282A (en) * 2005-12-07 2007-06-21 Mitsubishi Rayon Eng Co Ltd Membrane separation active sludge treatment method
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
JPWO2008139618A1 (en) * 2007-05-14 2010-07-29 三菱レイヨン・エンジニアリング株式会社 Water treatment method
JP5366402B2 (en) * 2007-05-14 2013-12-11 三菱レイヨン株式会社 Water treatment method
WO2008139618A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Rayon Engineering Co., Ltd. Method of water disposal
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US20100300968A1 (en) * 2009-06-02 2010-12-02 Siemens Water Technologies Corp. Membrane cleaning with pulsed gas slugs
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
JP2014012243A (en) * 2012-07-04 2014-01-23 Hitachi Ltd Membrane separator
WO2014034836A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Membrane surface washing method in membrane separation activated sludge method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
WO2014157488A1 (en) * 2013-03-27 2014-10-02 株式会社クボタ Operation method for organic-waste-water treatment device, and organic-waste-water treatment device
CN104903255A (en) * 2013-03-27 2015-09-09 株式会社久保田 Operation method for organic-waste-water treatment device, and organic-waste-water treatment device
JP2014188442A (en) * 2013-03-27 2014-10-06 Kubota Corp Operation method of organic wastewater treatment apparatus and organic wastewater treatment apparatus
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
JP2017060940A (en) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 Water treatment method and water treatment apparatus
JPWO2017135235A1 (en) * 2016-02-01 2018-02-08 三菱ケミカル株式会社 Separation membrane diagnosis method, water treatment method, separation membrane diagnosis device, water treatment device, and separation membrane diagnosis program

Similar Documents

Publication Publication Date Title
JP2003275759A (en) Water treatment device
JP6027474B2 (en) Operation method of organic waste water treatment device and organic waste water treatment device
JP4603395B2 (en) Filtration membrane cleaning method
WO2011105533A1 (en) Air cleaning device having air purification function and operation control method therefor
JP4248128B2 (en) Filter cloth diffuser
JP4403495B2 (en) Wastewater treatment equipment
JP2004337787A (en) Membrane separation activated sludge treatment tank
JPH0775782A (en) Membrane separator
JPH10165782A (en) Membrane module and operation thereof
JP3920725B2 (en) Aeration method and aeration system
JPH10118684A (en) Immersion type membrane separation and activated sludge apparatus
JP4524553B2 (en) Membrane separation activated sludge treatment equipment
JP4055077B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP2003236353A (en) Apparatus for producing ozonized water
JP5712453B2 (en) Wastewater treatment equipment
JP3105140B2 (en) Sewage treatment equipment
JPS6241058B2 (en)
JP2005095799A (en) Membrane activated sludge treatment apparatus
JP2011190693A (en) Water transfer pump and water treatment device
JP2000070935A (en) Septic tank
US20130209274A1 (en) Efficiency optimized air flow apparatus and method of operation
US8348624B2 (en) Efficiency optimized air flow apparatus and method
JPH1157765A (en) Septic tank
JP2023115286A (en) Aeration system, method for operating aeration system, and method for replacing blower
JP2001334280A (en) Septic tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212