JPH11125622A - Sh wave electromagnetic ultrasonic transducer and measuring method - Google Patents

Sh wave electromagnetic ultrasonic transducer and measuring method

Info

Publication number
JPH11125622A
JPH11125622A JP29192097A JP29192097A JPH11125622A JP H11125622 A JPH11125622 A JP H11125622A JP 29192097 A JP29192097 A JP 29192097A JP 29192097 A JP29192097 A JP 29192097A JP H11125622 A JPH11125622 A JP H11125622A
Authority
JP
Japan
Prior art keywords
permanent magnets
wave
electromagnetic ultrasonic
wave electromagnetic
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29192097A
Other languages
Japanese (ja)
Inventor
Tatsuya Hashimoto
達也 橋本
Yukimichi Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29192097A priority Critical patent/JPH11125622A/en
Publication of JPH11125622A publication Critical patent/JPH11125622A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To transmit and receive SH ultrasonic waves of a wide band in a short pulse waveform with high sensitivity, by disposing a plurality of alternately reversed permanent magnets with N, S poles arranged in a staggered manner with different distances. SOLUTION: A probe main body 3 of this SH wave electromagnetic ultrasonic transducer 1 has rectangular permanent magnets 2 alternately reversed with having N, S poles arranged in a staggered manner. Moreover, spacers 5 of different thicknesses are interposed between adjacent permanent magnets 2, and a rectangular flat coil 4 in plane is set below the probe main body 3. At this time, a distance between the permanent magnets 2 varies by the thickness of the spacer 5. SH waves generated when an alternating current is sent to the coil 4 have a chirp waveform corresponding to the distance of the permanent magnets 2. Since the distance between the permanent magnets varies from narrow to wide, SH waves can be oscillated in a wide band with high sensitivity from a short wavelength to a long wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石と発振・
受信用プローブコイルを有するSH波電磁超音波トラン
スデューサ及びそのトランスデューサを使用する計測方
法に関する。
TECHNICAL FIELD The present invention relates to a permanent magnet and an oscillator.
The present invention relates to an SH wave electromagnetic ultrasonic transducer having a receiving probe coil and a measurement method using the transducer.

【0002】[0002]

【従来の技術】板材を伝播する超音波の一つにSH波
(水平偏波横波)がある。SH波は、板の表面粗さ等の
影響を受けずに伝播するので、板材の内部欠陥の探傷や
物性値の計測に適している。また、電磁超音波は、被検
体に超音波を非接触で発生・検出できるので、音響結合
媒質の使用不可能なところで多く利用されている。冷延
薄鋼板の探傷及び物性値の計測には、上に述べた2つの
特徴を欠かすことができない。そこで、特開平1−23
9453号公報に記載されているようにSH波が発生・
検出できる電磁超音波トランスデューサが発明された。
図6は、従来のSH波電磁超音波トランスデューサの構
成図であり、このSH波電磁超音波トランスデューサ
は、直方体状の永久磁石2を、磁極面が表裏に位置し、
またN極とS極とが千鳥状になるように板状に配列した
探触子本体3と平面視矩形の扁平なコイル4とからなっ
ている。
2. Description of the Related Art One of ultrasonic waves propagating through a plate material is an SH wave (horizontally polarized transverse wave). Since the SH wave propagates without being affected by the surface roughness or the like of the plate, it is suitable for flaw detection of internal defects of the plate material and measurement of physical properties. In addition, electromagnetic ultrasonic waves can be generated and detected in a non-contact manner with respect to a subject, and thus are often used where an acoustic coupling medium cannot be used. The flaw detection and the measurement of physical properties of a cold-rolled thin steel sheet are indispensable for the above two features. Therefore, Japanese Patent Laid-Open No. 1-23
SH waves are generated as described in
An electromagnetic ultrasonic transducer that can be detected has been invented.
FIG. 6 is a configuration diagram of a conventional SH-wave electromagnetic ultrasonic transducer. In this SH-wave electromagnetic ultrasonic transducer, a rectangular parallelepiped permanent magnet 2 is arranged with its magnetic pole surfaces on the front and back.
Further, it comprises a probe main body 3 arranged in a plate shape so that the N pole and the S pole are staggered, and a flat coil 4 having a rectangular shape in plan view.

【0003】また、図7は、SH波(板波)の発生・検
出原理を示す説明図である。図に示すように、コイル4
は被検査体7の直上に配され、その上方に永久磁石2が
配されている。永久磁石2が被検査体7の表面に垂直
で、各永久磁石2の磁極の向きに対応して交互に逆方向
に働く磁界Bを発生させ、一方、コイル4に交流電流を
通流することによって被検査体7の表面近傍に渦電流I
を発生させる。磁界B及び渦電流Iの交互作用により、
被検査体7の表面に平行で、磁界B及び渦電流Iの双方
に対して垂直な向きのローレンツ力Fが発生し、それら
のローレンツ力Fの向きは、永久磁石2の幅Dのピッチ
で180゜反転する。このようなローレンツ力Fが被検
査体7の金属格子を表面に平行に振動させ、その振動方
向と垂直な方向、つまり被検査体7の厚み方向に対し角
θをなして被検査体7の内部を斜め下方向へ向かって伝
播するようなSH波(図中、Hで示す)を発生させる。
ここで、SH波の波長は下記式(1)で表される。 λ=v/f=2D・sin θ ・・・・・・(1) 但し λ:SH波の波長 v:音速 f:SH波の周波数 D:隣り合う永久磁石の中心間の距離
FIG. 7 is an explanatory view showing the principle of generation and detection of SH waves (plate waves). As shown in FIG.
Is disposed immediately above the test object 7, and the permanent magnet 2 is disposed thereabove. The permanent magnet 2 generates a magnetic field B perpendicular to the surface of the test object 7 and acting alternately in the opposite direction corresponding to the direction of the magnetic pole of each permanent magnet 2, while passing an alternating current through the coil 4. As a result, eddy current I
Generate. Due to the interaction of the magnetic field B and the eddy current I,
A Lorentz force F parallel to the surface of the test object 7 and perpendicular to both the magnetic field B and the eddy current I is generated. The direction of the Lorentz force F is determined by the pitch of the width D of the permanent magnet 2. Invert 180 °. Such a Lorentz force F causes the metal grid of the test object 7 to vibrate in parallel to the surface, and forms an angle θ with respect to a direction perpendicular to the vibration direction, that is, the thickness direction of the test object 7. An SH wave (shown as H in the drawing) that propagates obliquely downward in the interior is generated.
Here, the wavelength of the SH wave is represented by the following equation (1). λ = v / f = 2D · sin θ (1) where λ: wavelength of SH wave v: sound velocity f: frequency of SH wave D: distance between centers of adjacent permanent magnets

【0004】[0004]

【発明が解決しようとする課題】従来技術によるSH波
電磁超音波トランスデューサすなわちSH波電磁超音波
探触子は、等間隔で永久磁石が配置されているため、被
検査体に発生せしめるSH波はバースト波形状になり、
周波数帯域が狭くなる問題がある。このような超音波
は、時間分解能が低いため、探傷や音速測定のような物
性値測定には不適である。また、周波数帯域を広くする
ためには永久磁石の数を減らす方法があるが、磁石の数
を減らすと発生するSH波の音圧が下がるため、探傷・
計測の際にS/Nが悪くなる問題がある。
In the SH wave electromagnetic ultrasonic transducer according to the prior art, that is, the SH wave electromagnetic ultrasonic probe, permanent magnets are arranged at equal intervals, so that the SH wave generated on the object to be inspected is low. It becomes a burst wave shape,
There is a problem that the frequency band becomes narrow. Such ultrasonic waves are unsuitable for physical property measurement such as flaw detection and sound velocity measurement because of their low temporal resolution. In order to widen the frequency band, there is a method of reducing the number of permanent magnets. However, if the number of magnets is reduced, the sound pressure of the generated SH wave will be reduced.
There is a problem that S / N deteriorates during measurement.

【0005】本発明は、上記のような問題点を解決する
ためになされたもので、広帯域のSH波超音波を高感度
でかつ短いパルス波形で送受信できるSH波電磁超音波
トランスデューサ及びその計測方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an SH-wave electromagnetic ultrasonic transducer capable of transmitting and receiving a wide-band SH-wave ultrasonic wave with high sensitivity and a short pulse waveform, and a measuring method thereof. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明に係るSH波電磁
超音波トランスデューサは、磁極の向きを表裏交互に、
かつN極とS極を千鳥状に配列した複数の永久磁石と、
該永久磁石と被検査体の間に配置した扁平なコイルとを
具備するSH波電磁超音波トランスデューサにおいて、
前記永久磁石を相互の間隔が異なるように配置したこと
を特徴とするものである。具体的には、厚さの異なる非
磁性体のスペーサを介して各永久磁石を配置する。
The SH wave electromagnetic ultrasonic transducer according to the present invention has a magnetic pole alternately oriented front and back.
And a plurality of permanent magnets in which N and S poles are arranged in a staggered manner,
An SH wave electromagnetic ultrasonic transducer comprising the permanent magnet and a flat coil disposed between the test object,
The permanent magnets are arranged so as to be different from each other. Specifically, each permanent magnet is arranged via a nonmagnetic spacer having a different thickness.

【0007】このように構成することにより、SH波の
発振波長を決める永久磁石間の距離が、狭いものから広
いものまで存在するため、波長の短いSH波から波長の
長いSH波まで発振可能である。さらに、磁石の数を減
らすことなく探触子の広帯域化を図れるため、発振する
SH波の音圧は下がらない。したがって、本発明によれ
ば、高感度で広帯域のSH波電磁超音波トランスデュー
サが実現できる。
[0007] With this configuration, the distance between the permanent magnets that determines the oscillation wavelength of the SH wave ranges from a narrow one to a wide one, so that it is possible to oscillate from a short-wave SH wave to a long-wave SH wave. is there. Further, since the probe can be broadened without reducing the number of magnets, the sound pressure of the oscillating SH wave does not decrease. Therefore, according to the present invention, a high-sensitivity, wide-band SH-wave electromagnetic ultrasonic transducer can be realized.

【0008】また、本発明に係るSH波電磁超音波計測
方法は、前記のSH波電磁超音波トランスデューサを送
信用と受信用の2つを用いて、2探触子探傷法にて探傷
するものである。
Further, the SH wave electromagnetic ultrasonic measuring method according to the present invention is a method in which the above SH wave electromagnetic ultrasonic transducer is flaw-detected by a two-probe flaw detection method using two transmitting and receiving transducers. It is.

【0009】本発明のSH波電磁超音波トランスデュー
サは、永久磁石の間隔を任意に変化させているので、そ
の空間的な変化に対応するチャープ波形状のSH波を発
生する。実際、SH波は伝播するとき、時間的に周波数
を変化した形でSH波は被検査体を伝わる。送信に用い
たSH波電磁超音波探触子と同じ永久磁石の配置をした
SH波電磁超音波探触子を用いて、上記SH波を受信す
ると永久磁石間隔の空間的な変化のため、同位相で共鳴
するときにのみ受信信号を得ることができる。これは、
送信変調信号と参照変調信号を相間処理してパルス圧縮
することに等価である。以上のように本発明の計測方法
は、パルスSH波で探傷や計測することを可能にする。
Since the SH wave electromagnetic ultrasonic transducer of the present invention changes the interval between the permanent magnets arbitrarily, it generates a chirped SH wave corresponding to the spatial change. In fact, when the SH wave propagates, the SH wave propagates through the device under test in a form having a temporally changed frequency. When the SH wave is received using the SH-wave electromagnetic ultrasonic probe having the same permanent magnets as the SH-wave electromagnetic ultrasonic probe used for transmission, the SH-wave electromagnetic ultrasonic probe has a spatial change in the interval between the permanent magnets. A received signal can be obtained only when resonating in phase. this is,
This is equivalent to performing pulse compression by performing interphase processing on the transmission modulation signal and the reference modulation signal. As described above, the measuring method of the present invention enables flaw detection and measurement using pulsed SH waves.

【0010】[0010]

【発明の実施の形態】図1は本発明のSH波電磁超音波
トランスデューサの一例を示す構成図である。この探触
子本体3は、各々直方体状の永久磁石2を磁極の向きが
表裏交互に、かつN極とS極が千鳥状になるように配列
するとともに、隣り合う永久磁石2の間に厚さが異なる
スペーサ5を配置して構成したものである。そして、こ
のように構成された探触子本体3の下方に平面視矩形の
扁平なコイル4を配置してSH波電磁超音波トランスデ
ューサ1が構成される。
FIG. 1 is a block diagram showing an example of an SH-wave electromagnetic ultrasonic transducer according to the present invention. The probe main body 3 has rectangular parallelepiped permanent magnets 2 arranged so that the directions of magnetic poles are alternately turned upside down, and N poles and S poles are staggered. Are arranged by arranging spacers 5 having different characteristics. Then, a flat coil 4 having a rectangular shape in a plan view is arranged below the probe main body 3 configured as described above, and the SH-wave electromagnetic ultrasonic transducer 1 is configured.

【0011】永久磁石2の間隔は、各永久磁石2の間に
介在させたスペーサ5によって決められ、本実施例では
図の左側から順にスペーサ5の厚さを0.3〜5.5m
mに変化させている。このため、コイル4に交流電流を
通流することによって発生するSH波9は、永久磁石2
の間隔に対応して図3に示すようなチャープ波形とな
る。この発振波形のフーリエ変換は、図4(b)のよう
になり、半値全幅の比帯域幅は42%である。
The interval between the permanent magnets 2 is determined by the spacers 5 interposed between the permanent magnets 2. In the present embodiment, the thickness of the spacers 5 is 0.3 to 5.5 m in order from the left side of the drawing.
m. For this reason, the SH wave 9 generated by passing an alternating current through the coil 4
The chirp waveform as shown in FIG. The Fourier transform of this oscillation waveform is as shown in FIG. 4B, and the relative bandwidth of the full width at half maximum is 42%.

【0012】なお、本実施例ではスペーサ5はアクリル
の板を用いたが、これは非磁性体のものであれば何でも
よい。また、周波数帯域を本実施例より広くするには、
スペーサ5の厚さの最小値・最大値を本実施例より、そ
れぞれ小さくまたは大きくすればよい。さらに、S/N
を改善するには、本実施例より細かいステップでスペー
サ5の厚さを変えていき、永久磁石2の数を増やすとよ
い。
In this embodiment, an acrylic plate is used as the spacer 5, but any spacer may be used as long as it is a non-magnetic material. In order to make the frequency band wider than in this embodiment,
The minimum value and the maximum value of the thickness of the spacer 5 may be smaller or larger than those of the present embodiment. Furthermore, S / N
In order to improve the number of permanent magnets 2, it is preferable to change the thickness of the spacer 5 in smaller steps than in this embodiment.

【0013】図2は、本発明のSH波電磁超音波トラン
スデューサを2つ用い、2探触子探傷法にて探傷する方
法を示す図である。図2において、6a、6bはそれぞ
れ上記のように構成された送信用SH波電磁超音波探触
子と受信用SH波電磁超音波探触子である。この場合、
送信用と受信用の探触子6a、6bは永久磁石2間の間
隔が逆向きに変化するように配置する。7は被検査体、
8は超音波探傷器である。
FIG. 2 is a diagram showing a method for detecting a flaw by the two-probe flaw detection method using two SH-wave electromagnetic ultrasonic transducers of the present invention. In FIG. 2, reference numerals 6a and 6b denote a transmission SH-wave electromagnetic ultrasonic probe and a reception SH-wave electromagnetic ultrasonic probe configured as described above. in this case,
The transmitting and receiving probes 6a and 6b are arranged so that the interval between the permanent magnets 2 changes in opposite directions. 7 is the test object,
8 is an ultrasonic flaw detector.

【0014】超音波探傷器8からパルス的な交流電流を
送信用SH波電磁超音波探触子6aに通流すると、先に
示したごとく図3に示すようなチャープ波状のSH波9
aを被検査体7に発生せしめることができる。発生した
SH波9aは送信用SH波電磁超音波探触子6aの両側
方向に伝播し、被検査体7の反射体(端部または欠陥)
で反射されたSH波9bは受信用SH波電磁超音波探触
子6bで受信される。このとき、受信用SH波電磁超音
波トランスデューサ6bを反射SH波9bのチャープ波
の方向に配置しておくと、図4(a)に示すようなパル
ス幅の短い受信電流10が超音波探傷器8で得られる。
図4に示したSH波受信波形10は、パルス幅が約10
μs(図4(a))で、中心周波数は310kHz(図
4(b))である。
When a pulse-like alternating current is passed from the ultrasonic flaw detector 8 to the SH wave electromagnetic ultrasonic probe 6a for transmission, the chirped SH wave 9 as shown in FIG.
a can be generated in the test object 7. The generated SH wave 9a propagates in both directions of the transmission SH wave electromagnetic ultrasonic probe 6a, and is a reflector (edge or defect) of the inspection object 7.
The SH wave 9b reflected by the is received by the receiving SH wave electromagnetic ultrasonic probe 6b. At this time, if the receiving SH wave electromagnetic ultrasonic transducer 6b is arranged in the direction of the chirp wave of the reflected SH wave 9b, the receiving current 10 having a short pulse width as shown in FIG. 8 obtained.
The SH wave reception waveform 10 shown in FIG.
In μs (FIG. 4A), the center frequency is 310 kHz (FIG. 4B).

【0015】比較のために、従来技術によるSH波電磁
超音波探触子を用いてSH波を発生・検出したところ以
下のようになった。厚さ3.5mmの永久磁石を片側1
2個用いて、図6に示したようなSH波電磁超音波トラ
ンスデューサを構成し、470kHz、1波のパルス電
流をコイル4に通流したところ、被検査体に中心周波数
470kHzのSH波を発生せしめることができた。し
かし、発生したSH波の周波数帯域は、図5(b)のよ
うに半値全幅の比帯域幅で13%と狭く、受信波形11
のパルス幅も図5(b)のように約24μsのバースト
波形で非常に長いものであった。以上のように、本発明
によるSH波電磁超音波トランスデューサを用いること
によって従来の方法よりも中心周波数が低くなったにも
かかわらず、パルス幅が短くなっているため、時間分解
能が向上する。
For comparison, SH waves were generated and detected using a conventional SH wave electromagnetic ultrasonic probe, and the results were as follows. 3.5mm thick permanent magnet on one side
The SH wave electromagnetic ultrasonic transducer as shown in FIG. 6 is constituted by using two of the two, and when a pulse current of 470 kHz and one wave is passed through the coil 4, an SH wave having a center frequency of 470 kHz is generated in the test object. I was able to make it. However, the frequency band of the generated SH wave is as narrow as 13% in the relative bandwidth of the full width at half maximum as shown in FIG.
Was very long with a burst waveform of about 24 μs as shown in FIG. 5B. As described above, the use of the SH-wave electromagnetic ultrasonic transducer according to the present invention improves the temporal resolution because the pulse width is reduced despite the center frequency being lower than in the conventional method.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
SH波電磁超音波トランスデューサにおける永久磁石間
の間隔が異なるように永久磁石を配置したので、送受信
できるSH波電磁超音波の周波数帯域を広くすることが
でき、パルス幅を短くできるため、時間分解能が向上し
探傷における不感帯を少なくするなど、優れた効果を奏
する。
As described above, according to the present invention,
Since the permanent magnets are arranged so that the intervals between the permanent magnets in the SH wave electromagnetic ultrasonic transducer are different, the frequency band of the SH wave electromagnetic ultrasonic wave that can be transmitted and received can be widened, and the pulse width can be shortened, so that the time resolution can be improved. It has excellent effects such as improved and reduced dead zone in flaw detection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSH波電磁超音波トランスデューサの
構成図である。
FIG. 1 is a configuration diagram of an SH-wave electromagnetic ultrasonic transducer according to the present invention.

【図2】本発明のSH波電磁超音波計測方法を示す説明
図である。
FIG. 2 is an explanatory diagram showing an SH-wave electromagnetic ultrasonic measurement method of the present invention.

【図3】本発明のSH波電磁超音波トランスデューサに
より発生するSH波の概念図である。
FIG. 3 is a conceptual diagram of an SH wave generated by the SH wave electromagnetic ultrasonic transducer of the present invention.

【図4】(a)図は実施例におけるSH波を送受信して
得られた探傷波形を示し、(b)図は(a)図の受信信
号のスペクトラムである。
FIG. 4 (a) shows a flaw detection waveform obtained by transmitting and receiving SH waves in the embodiment, and FIG. 4 (b) shows a spectrum of the received signal of FIG. 4 (a).

【図5】(a)図は従来例におけるSH波を送受信して
得られた探傷波形を示し、(b)図は(a)図の受信信
号のスペクトラムである。
FIG. 5 (a) shows a flaw detection waveform obtained by transmitting and receiving SH waves in a conventional example, and FIG. 5 (b) shows the spectrum of the received signal in FIG. 5 (a).

【図6】従来のSH波電磁超音波トランスデューサの構
成図である。
FIG. 6 is a configuration diagram of a conventional SH-wave electromagnetic ultrasonic transducer.

【図7】従来のSH波電磁超音波トランスデューサによ
るSH波の発生原理を示す図である。
FIG. 7 is a diagram showing the principle of generation of SH waves by a conventional SH wave electromagnetic ultrasonic transducer.

【符号の説明】[Explanation of symbols]

1 SH波電磁超音波トランスデューサ 2 永久磁石 3 探触子本体 4 コイル 5 スペーサ 6a 送信用SH波電磁超音波探触子 6b 受信用SH波電磁超音波探触子 7 被検査体 8 超音波探傷器 9 SH波 DESCRIPTION OF SYMBOLS 1 SH-wave electromagnetic ultrasonic transducer 2 Permanent magnet 3 Probe body 4 Coil 5 Spacer 6a SH-wave electromagnetic ultrasonic probe for transmission 6b SH-wave electromagnetic ultrasonic probe for reception 7 Inspection object 8 Ultrasonic flaw detector 9 SH waves

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁極の向きを表裏交互に、かつN極とS
極を千鳥状に配列した複数の永久磁石と、該永久磁石と
被検査体の間に配置した扁平なコイルとを具備するSH
波電磁超音波トランスデューサにおいて、 前記永久磁石を相互の間隔が異なるように配置したこと
を特徴とするSH波電磁超音波トランスデューサ。
1. The magnetic pole direction is alternately changed between front and back, and N pole and S
SH comprising a plurality of permanent magnets in which the poles are arranged in a staggered manner, and a flat coil disposed between the permanent magnets and the test object
A wave electromagnetic ultrasonic transducer, wherein the permanent magnets are arranged so as to be different from each other.
【請求項2】 厚さの異なる非磁性体のスペーサを介し
て前記永久磁石を配置したことを特徴とする請求項1記
載のSH波電磁超音波トランスデューサ。
2. The SH wave electromagnetic ultrasonic transducer according to claim 1, wherein said permanent magnets are arranged via non-magnetic spacers having different thicknesses.
【請求項3】 請求項1または請求項2記載のSH波電
磁超音波トランスデューサを2つ用い、2探触子探傷法
にて探傷することを特徴とするSH波電磁超音波計測方
法。
3. An SH wave electromagnetic ultrasonic measurement method, comprising using two SH wave electromagnetic ultrasonic transducers according to claim 1 and performing flaw detection by a two probe flaw detection method.
JP29192097A 1997-10-24 1997-10-24 Sh wave electromagnetic ultrasonic transducer and measuring method Withdrawn JPH11125622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29192097A JPH11125622A (en) 1997-10-24 1997-10-24 Sh wave electromagnetic ultrasonic transducer and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29192097A JPH11125622A (en) 1997-10-24 1997-10-24 Sh wave electromagnetic ultrasonic transducer and measuring method

Publications (1)

Publication Number Publication Date
JPH11125622A true JPH11125622A (en) 1999-05-11

Family

ID=17775183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29192097A Withdrawn JPH11125622A (en) 1997-10-24 1997-10-24 Sh wave electromagnetic ultrasonic transducer and measuring method

Country Status (1)

Country Link
JP (1) JPH11125622A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241831B3 (en) * 2002-09-09 2004-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for the detection of material discontinuities in a test specimen
JP2013090237A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detection apparatus
GB2552858A (en) * 2016-08-11 2018-02-14 Guided Ultrasonics Ltd Transducer for guided wave inspection
CN110568060A (en) * 2019-10-15 2019-12-13 厦门大学 Coil self-excited ferromagnetic pipeline electromagnetic ultrasonic transducer, excitation device and receiving device
CN110702789A (en) * 2019-11-11 2020-01-17 北京航空航天大学 Electromagnetic ultrasonic transducer
CN111426756A (en) * 2020-05-13 2020-07-17 南昌航空大学 High-order SH guided wave imaging detection method and system for rail bottom crack of steel rail
WO2021255114A1 (en) * 2020-06-18 2021-12-23 Rosen Swiss Ag Method for non-destructively testing objects, in particular planar objects, made of a fibre-reinforced composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241831B3 (en) * 2002-09-09 2004-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for the detection of material discontinuities in a test specimen
JP2013090237A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detection apparatus
GB2552858A (en) * 2016-08-11 2018-02-14 Guided Ultrasonics Ltd Transducer for guided wave inspection
US11022436B2 (en) 2016-08-11 2021-06-01 Guided Ultrasonics Ltd. Determining a thickness of a region of wall- or plate-like structure
CN110568060A (en) * 2019-10-15 2019-12-13 厦门大学 Coil self-excited ferromagnetic pipeline electromagnetic ultrasonic transducer, excitation device and receiving device
CN110702789A (en) * 2019-11-11 2020-01-17 北京航空航天大学 Electromagnetic ultrasonic transducer
CN111426756A (en) * 2020-05-13 2020-07-17 南昌航空大学 High-order SH guided wave imaging detection method and system for rail bottom crack of steel rail
CN111426756B (en) * 2020-05-13 2023-06-16 南昌航空大学 High-order SH guided wave imaging detection method and system for rail bottom crack of steel rail
WO2021255114A1 (en) * 2020-06-18 2021-12-23 Rosen Swiss Ag Method for non-destructively testing objects, in particular planar objects, made of a fibre-reinforced composite material

Similar Documents

Publication Publication Date Title
US4127035A (en) Electromagnetic transducer
Wang et al. Numerical and experimental analysis of unidirectional meander-line coil electromagnetic acoustic transducers
RU2413214C2 (en) Apparatus for nondestructive inspection of ferromagnetic structural elements
US4218924A (en) Ultrasonic ellipsometer
Ogi et al. Line-focusing of ultrasonic SV wave by electromagnetic acoustic transducer
CN110220974B (en) SV ultrasonic body wave single-side focusing transducer suitable for aluminum plate defect detection
JP2015206782A (en) Residual stress evaluation method and residual stress evaluation device
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
JP4117366B2 (en) Electromagnetic ultrasonic flaw detection / measurement method and apparatus
US7434467B2 (en) Electromagnetic ultrasound converter
US7395715B2 (en) Electromagnetic ultrasound probe
JP3608423B2 (en) Electromagnetic ultrasonic measurement method and apparatus
JP3886843B2 (en) Electromagnetic ultrasonic transducer
JPS6145773B2 (en)
Kubrusly et al. Measurement of plate thickness based on the optimal unidirectional generation of ultrasonic waves using dual electromagnetic acoustic transducer
JP2001013118A (en) Electromagnetic ultrasonic probe
Murayama et al. Nondestructive evaluation of material properties with EMAT (formability in cold rolled steel sheets and residual stress in railroad wheel)
JPH07286916A (en) Method for measuring residual stress
JP2538596B2 (en) Electromagnetic ultrasonic transducer
JP2018141658A (en) Oscillating radar apparatus and data analysis apparatus
JPH01248052A (en) Ultrasonic flaw detection method and apparatus therefor
JPH06347449A (en) Crystal grain size evaluation method for metallic sheet
JPH07174735A (en) Correcting method for sensitivity of electromagnetic equipment angle-beam ultrasonic flaw detection
JP3037897B2 (en) Ear ratio measurement method for thin metal plates
RU2584274C1 (en) Electromagnetic acoustic converter for control of ferromagnetic materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104