JP2538596B2 - Electromagnetic ultrasonic transducer - Google Patents

Electromagnetic ultrasonic transducer

Info

Publication number
JP2538596B2
JP2538596B2 JP62138655A JP13865587A JP2538596B2 JP 2538596 B2 JP2538596 B2 JP 2538596B2 JP 62138655 A JP62138655 A JP 62138655A JP 13865587 A JP13865587 A JP 13865587A JP 2538596 B2 JP2538596 B2 JP 2538596B2
Authority
JP
Japan
Prior art keywords
conductor
receiving
ultrasonic transducer
transmitting
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62138655A
Other languages
Japanese (ja)
Other versions
JPS63302360A (en
Inventor
道雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62138655A priority Critical patent/JP2538596B2/en
Publication of JPS63302360A publication Critical patent/JPS63302360A/en
Application granted granted Critical
Publication of JP2538596B2 publication Critical patent/JP2538596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超音波探傷試験に使用する電磁超音波トラ
ンスジューサに係り、とりわけ精度よく探傷試験を行な
うことができる電磁超音波トランスジューサに関する。
The present invention relates to an electromagnetic ultrasonic transducer used in an ultrasonic flaw detection test, and particularly to an electromagnetic ultrasonic wave capable of performing a flaw detection test with high accuracy. Regarding transducers.

(従来の技術) 被検査材の溶接部等の超音波探傷試験を実施するに
は、超音波トランスジューサを必要とする。このような
超音波トランスジューサとしては、従来、種々のタイプ
のものが提案されている。これら超音波トランスジュー
サの1つとして電磁超音波トランスジューサが知られて
いる。この電磁超音波トランスジューサは、磁歪素子や
電歪素子を用いたものとは違って、ローレンツ力で被検
査材中に超音波を生起させるようにしたもので、被検査
材とは非接触状態にセットできるという特徴を備えてい
る。したがって、被検査材の表面に凹凸が存在している
ような場合でも格別な処置などを施すことなく試験を実
施することができる。
(Prior Art) In order to carry out an ultrasonic flaw detection test on a welded portion of a material to be inspected, an ultrasonic transducer is required. Various types of ultrasonic transducers have been conventionally proposed. An electromagnetic ultrasonic transducer is known as one of these ultrasonic transducers. This electromagnetic ultrasonic transducer is different from the one using a magnetostrictive element or an electrostrictive element in that it generates an ultrasonic wave in the material to be inspected by Lorentz force, and it is in a non-contact state with the material to be inspected. It has the feature that it can be set. Therefore, even if unevenness exists on the surface of the material to be inspected, the test can be performed without any special treatment.

ところで、このような電磁超音波トランスジューサ
は、通常、第7図に符号30で示すように、永久磁石4
と、永久磁石4の着磁方向と直交する一側面に薄い電気
絶縁体2を介して積層固着された高周波電流路形成用の
導電体3とで構成されている。上記永久磁石4は厚み方
法に磁化されている。また上記導電体3は、第8図に示
す如く導電性帯片によりコ字形部分が互い違いに連続す
るようジグザグ状に屈曲形成され、その分岐導電体3a,3
b,3c,…が一定距離(ピッチp)をおいて配置されてい
る。
By the way, such an electromagnetic ultrasonic transducer is usually provided with a permanent magnet 4 as shown by reference numeral 30 in FIG.
And a conductor 3 for forming a high-frequency current path, which is laminated and fixed on one side surface orthogonal to the magnetizing direction of the permanent magnet 4 via a thin electric insulator 2. The permanent magnet 4 is magnetized by the thickness method. As shown in FIG. 8, the conductor 3 is formed in a zigzag shape so that the U-shaped portions alternate with each other by conductive strips.
b, 3c, ... Are arranged at a constant distance (pitch p).

そして、以上のように構成された電磁超音波トランス
ジューサ30を用いて被検査材20の探傷試験を行なう場合
には、第7図に示すように高周波電流路を形成する導電
体3を、被検査材4の表面に所定の間隙18をあけて対向
させ、導電体3の両端7,8を高周波電源および信号送受
信装置(いずれも図示せず)に接続する。
When the flaw detection test of the material 20 to be inspected is performed using the electromagnetic ultrasonic transducer 30 configured as described above, the conductor 3 forming the high frequency current path is inspected as shown in FIG. Both ends 7 and 8 of the conductor 3 are connected to a high-frequency power source and a signal transmitting / receiving device (neither is shown) so as to face the surface of the material 4 with a predetermined gap 18 therebetween.

ここで、上記電磁超音波トランスジューサ30の動作は
次の通りである。
Here, the operation of the electromagnetic ultrasonic transducer 30 is as follows.

電磁超音波トランスジューサ30を、その導電体3を被
検査材20の表面に対向させてセットすると、第9図に破
線矢印で示すように、永久磁石4から出た磁力線13が被
検査材20の表面に直角に入射する。従って、被検査材20
の表面では、これと垂直なバイアス磁界15が印加された
状態となる。次に、導電体3に高周波電流を流すと、導
電体3の、互いに平行な分岐導電体3a,3b,3c,…には、
交互に逆向きの電流12が流れる。そこで、この電流12に
より被検査材20の表面には、電流12とは反対向きとな
る、交互に逆向きの高周波の誘導渦電流14が流れる。そ
してこの誘導渦電流14とバイアス磁界15との相互作用に
よって、被検査材20内には、その被検査材20の表面と平
行となるローレンツ力16が発生するが、このローレンツ
力16も交互に逆位相となる。この結果、被検査材20に生
起される送信用超音波17は横波で、かつ被検査材20の表
面に垂直な方向に対して斜めの斜角ビームとなって伝播
することとなる。
When the electromagnetic ultrasonic transducer 30 is set with its conductor 3 facing the surface of the material 20 to be inspected, as shown by the broken line arrow in FIG. It is incident on the surface at a right angle. Therefore, the inspected material 20
On the surface of, the bias magnetic field 15 perpendicular to this is applied. Next, when a high-frequency current is applied to the conductor 3, the parallel conductors 3a, 3b, 3c, ...
Alternating currents 12 flow alternately. Therefore, the current 12 causes the induction eddy current 14 of high frequency, which is in the opposite direction to the current 12 and alternately in the opposite direction, to flow on the surface of the inspection object 20. Then, due to the interaction between the induced eddy current 14 and the bias magnetic field 15, a Lorentz force 16 that is parallel to the surface of the inspected material 20 is generated in the inspected material 20, and the Lorentz force 16 also alternates. The phases are opposite. As a result, the transmission ultrasonic wave 17 generated in the inspection target material 20 is a transverse wave and propagates as an oblique beam oblique to the direction perpendicular to the surface of the inspection target material 20.

このような電磁超音波トランスジューサ30を用いて溶
接部近傍の超音波探傷試験を行なう場合には、第10図に
示すように電磁超音波トランスジューサ30を配置する。
すなわち、被検査材20の溶接部35の近傍に電磁超音波ト
ランスジューサ30を配置し、送信用超音波17を送信す
る。送信用超音波17は、欠陥32があると、反射をおこし
受信用超音波22として電磁超音波トランスジューサ30に
戻ってくる。このとき電磁超音波トラスジューサ30の導
電体3の両端7,8の電気波形を観測すると、第11図に示
した電気波形が得られる。第11図で符号33は電磁超音波
トランスジューサ30を用いて超音波を送信するための送
信パルスであり、符号34は欠陥32からの反射パルスであ
る。超音波探傷試験においては反射パルス34を検出して
欠陥の有無を判定すると同時に、送信パルス33と反射パ
ルス34の間の時間Tを測定して欠陥32の位置を判別して
いる。
When performing an ultrasonic flaw detection test in the vicinity of the welded portion using such an electromagnetic ultrasonic transducer 30, the electromagnetic ultrasonic transducer 30 is arranged as shown in FIG.
That is, the electromagnetic ultrasonic transducer 30 is arranged in the vicinity of the welded portion 35 of the inspected material 20, and the transmitting ultrasonic wave 17 is transmitted. If there is a defect 32, the transmitting ultrasonic wave 17 is reflected and returns to the electromagnetic ultrasonic transducer 30 as a receiving ultrasonic wave 22. At this time, when the electric waveforms at both ends 7, 8 of the conductor 3 of the electromagnetic ultrasonic transducer 30 are observed, the electric waveform shown in FIG. 11 is obtained. In FIG. 11, reference numeral 33 is a transmission pulse for transmitting ultrasonic waves using the electromagnetic ultrasonic transducer 30, and reference numeral 34 is a reflection pulse from the defect 32. In the ultrasonic flaw detection test, the reflection pulse 34 is detected to determine the presence or absence of a defect, and at the same time, the time T between the transmission pulse 33 and the reflection pulse 34 is measured to determine the position of the defect 32.

(発明が解決しようとする問題点) 上述したように、超音波探傷試験においては、第11図
の反射パルス34を検出して欠陥の有無を判断すると同時
に送信パルス33と反射パルス34の間の時間Tを測定して
いる。
(Problems to be Solved by the Invention) As described above, in the ultrasonic flaw detection test, the reflection pulse 34 of FIG. 11 is detected to determine the presence / absence of a defect, and at the same time, between the transmission pulse 33 and the reflection pulse 34. The time T is being measured.

一方、電磁超音波トランスジューサ30の送信パルス32
は、一般的にいって一定の持続時間T′を有している。
しかしながら、例えば薄板材等の探傷を行う場合には送
信パルス33と反射パルス34との時間Tが短くなり、第12
図に示すようにT<T′となって反射パルス34が送信パ
ルス33の中に隠れてしまうことがある。このように反射
パルス34が送信パルス33の中に隠れてしまうと、反射パ
ルス34が検出できず、精度よく超音波探傷試験を行うこ
とができないという問題がある。
Meanwhile, the transmission pulse 32 of the electromagnetic ultrasonic transducer 30
Generally have a constant duration T '.
However, for example, when flaw detection is performed on a thin plate material, the time T between the transmission pulse 33 and the reflection pulse 34 becomes short, and
As shown in the figure, the reflection pulse 34 may be hidden in the transmission pulse 33 because of T <T '. If the reflection pulse 34 is hidden in the transmission pulse 33 in this way, there is a problem that the reflection pulse 34 cannot be detected and the ultrasonic flaw detection test cannot be performed accurately.

本発明はこのような点を考慮してなされたものであ
り、精度よく探傷試験を行うことができる電磁超音波ト
ランスジューサを提供することを目的とする。
The present invention has been made in consideration of such points, and an object thereof is to provide an electromagnetic ultrasonic transducer capable of performing a flaw detection test with high accuracy.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明は、導電性帯片によりコ字形部分が互い違いに
連続するようジグザグ状に屈曲形成された2種の導電体
を設け、永久磁石の着磁方向と直交する一側面に電気絶
縁体を介して一方の導電体を積層し、この一方の導電体
に電気絶縁体を介して他方の導電体をその分岐導電体が
前記一方の分岐導電体の間隔部分に整合するよう積層
し、さらに前記2種の導電体を送信用導電体および受信
用導電体に分けたことを特徴とする電磁超音波トランス
ジューサである。
(Means for Solving the Problems) The present invention provides two kinds of conductors that are bent and formed in a zigzag shape so that the U-shaped portions are alternately continuous by the conductive strips, and One conductor is laminated on one side surface orthogonal to each other through an electric insulator, and the other conductor is connected to this one conductor via the electric insulator, and the branch conductor is a space between the one branch conductor. In the electromagnetic ultrasonic transducer, the two kinds of conductors are laminated so as to match with each other, and the two kinds of conductors are divided into a transmitting conductor and a receiving conductor.

(作 用) 本発明によれば、超音波の送信と受信とを別個の導電
体によって行うので、送信パルスと反射パルスの干渉が
防止される。また受信用導電体はその分岐導電体が送信
用導電体の分岐導電体の間隔部分に整合するよう配置さ
れているので、受信用導電体が送信用導電体に入力され
た高周波によって影響を受けることはない。
(Operation) According to the present invention, since transmission and reception of ultrasonic waves are performed by separate conductors, interference between the transmission pulse and the reflection pulse is prevented. Further, since the receiving conductor is arranged such that the branch conductor is aligned with the space between the branch conductors of the transmitting conductor, the receiving conductor is affected by the high frequency input to the transmitting conductor. There is no such thing.

(実施例) 以下、図面を参照して本発明の実施例について説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第6図は本発明による電磁超音波トランス
ジューサの一実施例を示す図である。第1図乃至第3図
に示すように、永久磁石1は厚み方向に磁化されてお
り、永久磁石1の着磁方向と直交する一側面に薄い電気
絶縁体2を介して送信用導電体3が積層固着されてい
る。この送信用導電体3は、導電性帯片によりコ字形部
分が互い違いに連続するようジグザグ状に屈曲形成さ
れ、その送信用分岐導電体3a,3b,3c,…が一定距離をお
いて配置されている。
1 to 6 are views showing an embodiment of an electromagnetic ultrasonic transducer according to the present invention. As shown in FIGS. 1 to 3, the permanent magnet 1 is magnetized in the thickness direction, and the transmission conductor 3 is provided on one side surface orthogonal to the magnetization direction of the permanent magnet 1 via a thin electric insulator 2. Are laminated and fixed. This transmission conductor 3 is formed by zigzag bending so that the U-shaped portions are alternately continuous by conductive strips, and the transmission branch conductors 3a, 3b, 3c, ... Are arranged at a constant distance. ing.

また、送信用導電体3に薄い電気絶縁体5を介して受
信用導電体6が積層固着されている。この受信用導電体
6は送信用導電体3と同様、導電性帯片によりコ字形部
分が互い違いに連続するようジグザグ状に屈曲形成さ
れ、その受信用分岐導電体6a,6b,6c,…が一定距離をお
いて配置されている。
Further, a receiving conductor 6 is laminated and fixed to the transmitting conductor 3 with a thin electric insulator 5 interposed therebetween. Similar to the transmission conductor 3, the reception conductor 6 is formed in a zigzag shape so that the U-shaped portions are alternately continuous by the conductive strips, and the reception branch conductors 6a, 6b, 6c ,. It is placed at a certain distance.

この受信用導電体6は、受信用分岐導電体6a,6b,6c,
…が送信用導電体3の分岐導電体3a,3b,3c,…の間隔部
分に整合するよう配置されている。すなわち、第3図に
示すように、受信用導電体6は送信用導電体3に対して
半ピッチずらしたものである。
The receiving conductor 6 is a receiving branch conductor 6a, 6b, 6c,
Are arranged so as to be aligned with the space between the branched conductors 3a, 3b, 3c, ... Of the conductor 3 for transmission. That is, as shown in FIG. 3, the receiving conductor 6 is displaced from the transmitting conductor 3 by a half pitch.

また、送信用導電体3の両端7,8は超音波送信器(図
示せず)に接続され、また受信用導電体6の両端9,10は
超音波受信器(図示せず)に接続されている。
Both ends 7 and 8 of the transmitting conductor 3 are connected to an ultrasonic transmitter (not shown), and both ends 9 and 10 of the receiving conductor 6 are connected to an ultrasonic receiver (not shown). ing.

次にこのような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment having such a configuration will be described.

第4図は電磁超音波トランスジューサ1を用いて超音
波を送信する場合の動作を示した図である。
FIG. 4 is a diagram showing an operation when ultrasonic waves are transmitted using the electromagnetic ultrasonic transducer 1.

電磁超音波トランスジューサ1を、その送信用導電体
3を被検査材20の表面に対向させてセットすると、第4
図に破線矢印で示すように、永久磁石4から出た磁力線
13が被検査材20の表面に直角に入射する。従って、被検
査材20の表面では、これと垂直なバイアス磁界15が印加
された状態となる。次に、送信用導電体3に高周波電流
を流すと、送信用導電体3の、互いに平行な送信用分岐
導電体3a,3b,3c,…には、交互に逆向きの電流12が流れ
る。そこで、この電流12により被検査材20の表面には、
電流12とは反対向きとなる。交互に逆向きの高周波の誘
導渦電流14が流れる。そしてこの誘導渦電流14とバイア
ス磁界15との相互作用によって、被検査材20内には、こ
の被検査材20の表面に平行となるローレンツ力16が発生
するが、このローレンツ力16も交互に逆位相となる。こ
の結果、被検査材20に生起される送信用超音波17は横波
で、かつ被検査材20の表面に直交する方向に対して斜め
の射角ビームとなって伝播することとなる。
When the electromagnetic ultrasonic transducer 1 is set with its transmission conductor 3 facing the surface of the material 20 to be inspected,
As shown by the broken line arrow in the figure, the magnetic field lines from the permanent magnet 4
13 is incident on the surface of the material 20 to be inspected at a right angle. Therefore, on the surface of the material 20 to be inspected, the bias magnetic field 15 perpendicular thereto is applied. Next, when a high-frequency current is passed through the transmission conductor 3, opposite currents 12 flow alternately in the transmission branch conductors 3a, 3b, 3c, ... Therefore, the surface of the material 20 to be inspected by the current 12 is
It is the opposite of the current 12. High-frequency induced eddy currents 14 of opposite directions flow alternately. Then, due to the interaction between the induced eddy current 14 and the bias magnetic field 15, a Lorentz force 16 that is parallel to the surface of the inspected material 20 is generated in the inspected material 20, and the Lorentz force 16 also alternates. The phases are opposite. As a result, the transmission ultrasonic wave 17 generated in the inspection material 20 is a transverse wave and propagates as an oblique angle beam with respect to the direction orthogonal to the surface of the inspection material 20.

次に、被検査材20内を伝播する送信用超音波17は被検
査材20内の欠陥に反射して受信用超音波22として戻って
くる。
Next, the transmitting ultrasonic wave 17 propagating in the inspection target material 20 is reflected by the defect in the inspection target material 20 and returns as the receiving ultrasonic wave 22.

第5図は超音波を受信する場合の動作を示した図であ
る。第5図に示すように、被検査材20の内部を伝搬して
きた受信用超音波22が被検査材20の表面に到達すると、
被検査材20の表面では第5図に示すように振動23が発生
する。続いてこの振動23とバイアス磁界15が相互作用
し、被検査材20の表面に誘導渦電流24が流れる。この渦
電流24により間隙18には高周波磁界25が発生する。この
高周波磁界25は、対応する受信用分岐導電体6a,6b,6c,
…毎に交互に逆向きとなる。
FIG. 5 is a diagram showing an operation when receiving an ultrasonic wave. As shown in FIG. 5, when the receiving ultrasonic waves 22 propagating inside the inspection target material 20 reach the surface of the inspection target material 20,
On the surface of the material 20 to be inspected, vibration 23 is generated as shown in FIG. Subsequently, the vibration 23 interacts with the bias magnetic field 15, and an induced eddy current 24 flows on the surface of the inspection target material 20. A high-frequency magnetic field 25 is generated in the gap 18 by this eddy current 24. This high-frequency magnetic field 25 corresponds to the corresponding receiving branch conductors 6a, 6b, 6c,
… Each time goes in the opposite direction.

高周波磁界25が受信用誘電体6の受磁部29(受信用分
岐導電体6の相互間の部分)を通過すると、受信用導電
体6の両端9,10に電圧が誘起され受信用超音波22が受信
される。
When the high-frequency magnetic field 25 passes through the magnetic receiving section 29 of the receiving dielectric 6 (the portion between the receiving branch conductors 6), a voltage is induced at both ends 9 and 10 of the receiving conductor 6 and ultrasonic waves for reception are received. 22 is received.

このように、超音波の送信は送信用導電体3に高周波
電流を流すことによって行なわれ、また超音波の受信は
受信用導電体6に電圧が誘起されることによって行なわ
れる。従って、超音波の送信と受信を別個の導電体3,6
によって行なうので、反射パルスが送信パルスと干渉し
て隠れてしまうということはない。
As described above, ultrasonic waves are transmitted by passing a high-frequency current through the transmitting conductor 3, and ultrasonic waves are received by inducing a voltage in the receiving conductor 6. Therefore, the transmission and reception of ultrasonic waves are separated by separate conductors 3,6.
The reflected pulse does not interfere with the transmitted pulse to be hidden.

また、超音波の受信は受信用導電体6の受磁部29によ
って行なわれるが、この受磁部29は送信用導電体3に入
力された高周波電流によっては影響を受けない構造とな
っている。
Further, the reception of the ultrasonic wave is performed by the magnetic field receiving portion 29 of the receiving conductor 6, but the magnetic receiving portion 29 is not affected by the high frequency current input to the transmitting conductor 3. .

すなわち、第6図に示すように、送信用導電体3に高
周波電流12を流すと、高周波磁束27が送信用分岐導電体
3a,3b,3c,…に対応してそれぞれ交互に逆向きに発生す
る。この場合、受信用導電体6は送信用導電体3と半ピ
ッチずれて配置されているため、高周波磁束27は受信用
導電体6の受磁部を通過しない。このため、受信用導電
体6の両端9,10には、高周波磁束27による電圧は発生せ
ず、送信用導電体3に入力された高周波電流12によって
は影響を受けないことになる。
That is, as shown in FIG. 6, when a high frequency current 12 is passed through the transmitting conductor 3, a high frequency magnetic flux 27 causes a transmitting branch conductor.
Corresponding to 3a, 3b, 3c, ..., they occur alternately in opposite directions. In this case, since the receiving conductor 6 is arranged so as to be displaced from the transmitting conductor 3 by a half pitch, the high frequency magnetic flux 27 does not pass through the magnetic receiving portion of the receiving conductor 6. Therefore, no voltage due to the high frequency magnetic flux 27 is generated at both ends 9 and 10 of the receiving conductor 6 and is not affected by the high frequency current 12 input to the transmitting conductor 3.

このように、本実施例によれば、超音波の送信と受信
を別個の導電体3,6によって行なうので、反射パルスが
送信パルスと干渉してしまうことはない。また、受信用
導電体6は送信用導電体3と半ピッチずれて配置されて
いるため、受信用導電体6の受磁部29は送信用導電体に
入力された高周波12によっては影響を受けることはな
い。
As described above, according to the present embodiment, the transmission and reception of ultrasonic waves are performed by the separate conductors 3 and 6, so that the reflected pulse does not interfere with the transmission pulse. Further, since the receiving conductor 6 is arranged so as to be displaced from the transmitting conductor 3 by a half pitch, the magnetic receiving portion 29 of the receiving conductor 6 is affected by the high frequency 12 input to the transmitting conductor 3. There is no such thing.

〔発明の効果〕〔The invention's effect〕

本発明によれば、超音波の送信と受信とを別個の導電
体によって行なうので、反射パルスが送信パルスと干渉
してかくれてしまうことはない。また、受信用導電体が
送信用導電体に入力された高周波によって影響を受ける
ことはない。このため被検査材の表面近傍の欠陥箇所で
あっても適確かつ正確に探傷することができる。
According to the present invention, since the transmission and reception of ultrasonic waves are performed by separate conductors, the reflected pulse does not interfere with the transmitted pulse and are hidden. Further, the receiving conductor is not affected by the high frequency input to the transmitting conductor. For this reason, it is possible to accurately and accurately detect flaws even in a defective portion near the surface of the inspected material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による電磁超音波トランスジューサの一
実施例を示す側面図、第2図は第1図II−II線矢視図、
第3図は送信用導電体と受信用導電体の配置関係を示す
図、第4図は超音波を送信する場合の動作を示す図、第
5図は超音波を受信する場合の動作を示す図、第6図は
受信用導電体が送信用導電体に入力された高周波電流に
よって影響を受けないことを示す図、第7図は従来の電
磁超音波トランスジューサの側面図、第8図は第7図の
VIII−VIII線矢視図、第9図は超音波を送信する場合の
動作を示す図、第10図は溶接部近傍の欠陥を探傷する場
合を示す図、第11図は導電体の両端を電気波形を示す
図、第12図は反射パルスが送信パルスに隠れてしまった
状態を示す図である。 1……電磁超音波トランスジューサ、2……電気絶縁
体、3……送信用導電体、4……永久磁石、5……電気
絶縁体、6……受信用導電体、12……高周波電流、14…
…誘導渦電流、15……バイアス磁界、16……ローレンツ
力、17……送信用超音波、20……被検査材、22……受信
用超音波、23……振動、24……誘導渦電流、25……高周
波磁界、29……受磁部。
FIG. 1 is a side view showing an embodiment of an electromagnetic ultrasonic transducer according to the present invention, FIG. 2 is a view taken along the line II-II in FIG.
FIG. 3 is a diagram showing an arrangement relationship between a transmission conductor and a reception conductor, FIG. 4 is a diagram showing an operation when transmitting an ultrasonic wave, and FIG. 5 is an operation when receiving an ultrasonic wave. 6 and 6 are views showing that the receiving conductor is not affected by a high frequency current inputted to the transmitting conductor, FIG. 7 is a side view of a conventional electromagnetic ultrasonic transducer, and FIG. Of Figure 7
VIII-VIII line arrow view, FIG. 9 is a diagram showing an operation when transmitting ultrasonic waves, FIG. 10 is a diagram showing a case of flaw detection in the vicinity of a welded portion, and FIG. 11 is a view showing both ends of a conductor. FIG. 12 is a diagram showing an electric waveform, and FIG. 12 is a diagram showing a state in which the reflected pulse is hidden by the transmitted pulse. 1 ... Electromagnetic ultrasonic transducer, 2 ... Electrical insulator, 3 ... Transmission conductor, 4 ... Permanent magnet, 5 ... Electrical insulator, 6 ... Reception conductor, 12 ... High-frequency current, 14…
… Induced eddy current, 15 …… Bias magnetic field, 16 …… Lorentz force, 17 …… Transmission ultrasonic wave, 20 …… Inspected material, 22 …… Reception ultrasonic wave, 23 …… Vibration, 24 …… Induction vortex Current, 25 …… High frequency magnetic field, 29 …… Magnetic receiving part.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性帯片によりコ字形部分が互い違いに
連続するようジグザグ状に屈曲形成された2種の導電体
を設け、永久磁石の着磁方向と直交する一側面に電気絶
縁体を介して一方の導電体を積層し、この一方の導電体
に電気絶縁体を介して他方の導電体をその分岐導電体が
前記一方の分岐導電体の間隔部分に整合するよう積層
し、さらに前記2種の導電体を送信用導電体および受信
用導電体に分けたことを特徴とする電磁超音波トランス
ジューサ。
1. A pair of conductors, which are bent and formed in a zigzag shape so that the U-shaped portions are alternately continuous by a conductive strip, are provided, and an electric insulator is provided on one side surface orthogonal to the magnetizing direction of the permanent magnet. One of the conductors is laminated via this, and the other conductor is laminated on this one conductor via an electrical insulator so that the branched conductor is aligned with the space between the one branched conductor, and An electromagnetic ultrasonic transducer characterized in that two kinds of conductors are divided into a transmitting conductor and a receiving conductor.
JP62138655A 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer Expired - Fee Related JP2538596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138655A JP2538596B2 (en) 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138655A JP2538596B2 (en) 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPS63302360A JPS63302360A (en) 1988-12-09
JP2538596B2 true JP2538596B2 (en) 1996-09-25

Family

ID=15227052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138655A Expired - Fee Related JP2538596B2 (en) 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP2538596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667016B2 (en) * 1989-08-29 1997-10-22 株式会社東芝 Electromagnetic ultrasonic transducer
JP5580651B2 (en) * 2010-04-14 2014-08-27 九州電力株式会社 Electromagnetic ultrasonic sensor

Also Published As

Publication number Publication date
JPS63302360A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
US4127035A (en) Electromagnetic transducer
US4678993A (en) Distance measuring device operating with torsional ultrasonic waves detected without mode conversion
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
US4727321A (en) Method and device for magnetic and ultrasonic testing of ferro-magnetic objects
AU2005321550B2 (en) Device for testing ferromagnetic component walls without destruction of the same
US6038925A (en) Focal type electromagnetic acoustic transducer and flaw detection system and method
EP0024707B1 (en) Electromagnetic ultrasonic apparatus
US4434663A (en) Electromagnetic acoustic transducer
US4523473A (en) Magneto-elastic material defect detector
EP0775433B1 (en) Electromagnetic acoustic transducers
KR20050102516A (en) Magnetostrictive transducer for generating and sensing elastic ultrasonic waves, and apparatus for structural diagnosis using it
JP2008190984A (en) Noncontact flaw detecting apparatus
US20240013767A1 (en) Multi-element electromagnetic acoustic transducer for guided wave generation and detection
JP2538596B2 (en) Electromagnetic ultrasonic transducer
JP2006511173A (en) Electromagnetic ultrasonic transducer
US7395715B2 (en) Electromagnetic ultrasound probe
US20200182720A1 (en) Device for inspecting clamping means by ultrasounds and method implementing the device
JP3886843B2 (en) Electromagnetic ultrasonic transducer
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
WO2004106913A1 (en) Guided wave electromagnetic acoustic transducer
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
IE45001B1 (en) Ultrasound
JP2001013118A (en) Electromagnetic ultrasonic probe
RU2584274C1 (en) Electromagnetic acoustic converter for control of ferromagnetic materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees