JPH11121328A - Scanning reduction projection exposure system - Google Patents

Scanning reduction projection exposure system

Info

Publication number
JPH11121328A
JPH11121328A JP9277526A JP27752697A JPH11121328A JP H11121328 A JPH11121328 A JP H11121328A JP 9277526 A JP9277526 A JP 9277526A JP 27752697 A JP27752697 A JP 27752697A JP H11121328 A JPH11121328 A JP H11121328A
Authority
JP
Japan
Prior art keywords
scanning
semiconductor substrate
exposure
reduction projection
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9277526A
Other languages
Japanese (ja)
Other versions
JP3097620B2 (en
Inventor
Takayuki Uchiyama
貴之 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP09277526A priority Critical patent/JP3097620B2/en
Publication of JPH11121328A publication Critical patent/JPH11121328A/en
Application granted granted Critical
Publication of JP3097620B2 publication Critical patent/JP3097620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a scanning reduction projection exposure system in throughput by a method wherein an exposure operation is carried out by changing a scanning maximum speed corresponding to a position on a semiconductor substrate, wherein the projection exposure system makes a semiconductor substrate undergo an exposure process by reciprocatingly and synchronously scanning both the semiconductor substrate and a mask. SOLUTION: A scanning reduction projection system carries out an exposure operation changing a scanning maximum speed corresponding to a position on a semiconductor substrate. At this exposure operation, it is proper that a scanning maximum speed is determined for each scanning exposure position on the semiconductor substrate. A synchronous control is carried out through a manner where the positions of the reticule stage 113 and the wafer stage 111 are detected by laser interferometers 115 and 117 each provided to a reticule stage 113 and a wafer stage 111, and a reticule stage moving mechanism 114 and a wafer stage moving mechanism 116 are controlled by a control 118. When a scanning maximum speed is determined for each in-wafer- scanning exposure position with the same synchronous control accuracy, a scanning reduction projection system is capable of carrying out an exposure operation keeping maximal throughput.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査型縮小投影露
光装置に関し、特に紫外線および遠紫外線を用いた走査
型縮小投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning reduction projection exposure apparatus, and more particularly to a scanning reduction projection exposure apparatus using ultraviolet rays and far ultraviolet rays.

【0002】[0002]

【従来の技術】半導体集積回路においては、半導体基板
(以下ウェハとする)上のパターン形成に露光装置が使
用される。
2. Description of the Related Art In a semiconductor integrated circuit, an exposure apparatus is used to form a pattern on a semiconductor substrate (hereinafter, referred to as a wafer).

【0003】近年、広面積を有する半導体集積回路で
は、ウェハ上のパターン形成において走査型縮小投影露
光装置が使用されている。
In recent years, in a semiconductor integrated circuit having a large area, a scanning reduction projection exposure apparatus has been used for forming a pattern on a wafer.

【0004】図1に走査型縮小投影露光装置の一例の概
略を示す。図において、露光光101は、光源102か
ら反射鏡103、フライアイレンズ104、アパーチャ
ー絞り105、レチクルブラインド106、反射鏡10
7、コンデンサレンズ108、レチクル109、投影レ
ンズ110を順次通って、ウェハステージ111上のウ
ェハ112に所望の露光量だけ照射される。このときの
露光視野は25×8mm程度のスリット形状であり、レ
チクルブラインド106、レチクルステージ113およ
びウェハステージ111を同期走査することで、最大2
5×30mm程度の領域のウェハ111上にレチクル1
09上のパターンを形成する。これをウェハステージ1
11を移動し、図2中、矢印で示すように、ウェハ20
1上を繰り返し走査させることにより、ウェハ112全
面にレチクル109上のパターンが繰り返し露光され
る。
FIG. 1 schematically shows an example of a scanning reduction projection exposure apparatus. In the figure, an exposure light 101 is transmitted from a light source 102 to a reflecting mirror 103, a fly-eye lens 104, an aperture stop 105, a reticle blind 106, and a reflecting mirror 10.
7. The wafer 112 on the wafer stage 111 is irradiated with a desired exposure amount through the condenser lens 108, the reticle 109, and the projection lens 110 in this order. At this time, the exposure visual field has a slit shape of about 25 × 8 mm, and a maximum of 2 is obtained by synchronously scanning the reticle blind 106, the reticle stage 113 and the wafer stage 111.
The reticle 1 is placed on the wafer 111 in an area of about 5 × 30 mm.
09 is formed. This is the wafer stage 1
11 to move the wafer 20 as shown by the arrow in FIG.
By repeatedly scanning over the wafer 1, the pattern on the reticle 109 is repeatedly exposed on the entire surface of the wafer 112.

【0005】以上のように同期走査露光を行う際の同期
制御精度は、結像性能に大きな影響を与える。同期制御
はレチクルステージ113、ウェハステージ111にそ
れぞれ設けられているレーザー干渉計115、117に
よりレチクルステージ113、ウェハステージ111の
位置を検出し、制御部118によりレチクルステージ移
動機構114およびウェハステージ移動機構116を制
御することにより行っている。
As described above, the accuracy of the synchronous control when performing the synchronous scanning exposure has a great influence on the imaging performance. Synchronous control detects the positions of the reticle stage 113 and the wafer stage 111 using laser interferometers 115 and 117 provided on the reticle stage 113 and the wafer stage 111, respectively, and the control unit 118 controls the reticle stage moving mechanism 114 and the wafer stage moving mechanism. 116 is controlled.

【0006】例えば、ウェハステージの走査速度が80
mm/sec、レチクルステージ113の走査速度が3
20mm/secの場合、8mmのスリットがウェハ1
12上の1点を通過する時間は0.1secである。こ
の0.1secの間、各々のステージに設置されたレー
ザー干渉計115、117により計測されるレチクルス
テージ113、ウェハステージ111の位置から算出さ
れる差分がウェハステージ111とレチクルステージ1
13の同期制御精度である。0.1secの間の差分の
内、平均値はパターンの結像位置を決定する。また、差
分の振幅は、パターンの結像のぼけ、つまり解像力の低
下や焦点深度の低下につながる。この差分、つまり同期
制御精度は、走査速度にほぼ比例する。図4にウェハス
テージ走査速度と差分の最大振幅の関係を示す。最大振
幅の許容値は、露光波長、投影レンズのNA、パターン
の種類や線幅により異なる。例えば、KrFエキシマ露
光により、NA=0.6の投影レンズを用い、0.20
μmL/Sを形成する場合の最大振幅の許容値は30n
m程度である。ウェハステージ111の走査最大速度
は、最大振幅が最大許容振幅を上回らないように決定さ
れる。露光装置の機械的特性等により最大振幅は、ウェ
ハステージ111の走査位置により異なるが、従来はウ
ェハ全面にわたって同一の走査速度で露光する機能しか
有していないため、最大振幅が許容値以下であることを
満たすように走査最大速度が決定されている。図5のよ
うなチップをウェハ面内に形成するような場合において
は、ウェハ内領域A、B、C、D、Eのチッブで最大振
幅が30nm以下にできるようなウェハステージ走査最
大速度は、それぞれ60、40、100、120、80
nm/secであるため、ウェハ全面にわたり、ウェハ
ステージの走査最大速度は40mm/secに設定され
る。
For example, when the scanning speed of the wafer stage is 80
mm / sec, the scanning speed of the reticle stage 113 is 3
In the case of 20 mm / sec, the 8 mm slit
The time for passing through one point on 12 is 0.1 sec. During this 0.1 second, the difference calculated from the positions of the reticle stage 113 and the wafer stage 111 measured by the laser interferometers 115 and 117 installed on each stage is the difference between the wafer stage 111 and the reticle stage 1.
13 is the synchronization control accuracy. The average value of the differences between 0.1 sec determines the imaging position of the pattern. Further, the amplitude of the difference leads to blurring of image formation of the pattern, that is, a reduction in resolution and a reduction in the depth of focus. This difference, that is, the synchronization control accuracy is almost proportional to the scanning speed. FIG. 4 shows the relationship between the wafer stage scanning speed and the maximum amplitude of the difference. The allowable value of the maximum amplitude differs depending on the exposure wavelength, the NA of the projection lens, the type of pattern, and the line width. For example, by KrF excimer exposure, using a projection lens with NA = 0.6, 0.20
The maximum allowable amplitude for forming μmL / S is 30n
m. The maximum scanning speed of the wafer stage 111 is determined so that the maximum amplitude does not exceed the maximum allowable amplitude. Although the maximum amplitude varies depending on the scanning position of the wafer stage 111 due to the mechanical characteristics of the exposure apparatus, the maximum amplitude is less than an allowable value because conventionally, only the function of exposing the entire wafer at the same scanning speed is provided. The maximum scanning speed is determined so as to satisfy the above. In the case where a chip as shown in FIG. 5 is formed on the wafer surface, the wafer stage scanning maximum speed at which the maximum amplitude can be reduced to 30 nm or less in the in-wafer regions A, B, C, D, and E is as follows: 60, 40, 100, 120, 80 respectively
nm / sec, the maximum scanning speed of the wafer stage is set to 40 mm / sec over the entire surface of the wafer.

【0007】[0007]

【発明が解決しようとする課題】ところが、このような
従来の走査型縮小投影露光装置によるときには、処理能
力が低いという問題点があった。
However, such a conventional scanning-type reduction projection exposure apparatus has a problem in that the processing capability is low.

【0008】その理由は、走査最大速度は、ウェハ全面
にわたり同期制御精度の最大振幅が許容値を越えない値
に設定されているからである。
The reason is that the maximum scanning speed is set to a value such that the maximum amplitude of the synchronization control accuracy does not exceed an allowable value over the entire surface of the wafer.

【0009】本発明の目的は、上記課題に鑑み、処理能
力が高い走査型縮小投影露光装置を提供することにあ
る。
An object of the present invention is to provide a scanning reduction projection exposure apparatus having a high processing capability in view of the above-mentioned problems.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明による走査型縮小投影露光装置においては、
半導体基板およびマスクを往復同期走査することにより
半導体基板に露光を行う走査型縮小投影露光装置であっ
て、半導体基板内の位置に応じ、走査最大速度を変化さ
せて露光を行うものである。
In order to achieve the above object, a scanning reduction projection exposure apparatus according to the present invention comprises:
A scanning type reduced projection exposure apparatus for exposing a semiconductor substrate by reciprocating synchronous scanning of a semiconductor substrate and a mask, wherein the exposure is performed by changing a maximum scanning speed according to a position in the semiconductor substrate.

【0011】また、半導体基板およびマスクを往復同期
走査することにより半導体基板に露光を行う走査型縮小
投影露光装置であって、半導体基板内の走査露光位置毎
に走査最大速度を決定するものである。
A scanning reduction projection exposure apparatus for exposing a semiconductor substrate by reciprocating synchronous scanning of a semiconductor substrate and a mask, wherein a maximum scanning speed is determined for each scanning exposure position in the semiconductor substrate. .

【0012】また、半導体基板の位置に応じ、走査最大
速度を変化させて露光を行う際に、自動的に同期制御精
度を検知し、同期制御精度を確保できる走査最大速度に
設定して露光を行うものである。
Further, when performing the exposure by changing the maximum scanning speed according to the position of the semiconductor substrate, the synchronization control accuracy is automatically detected, and the exposure is set by setting the maximum scanning speed at which the synchronization control accuracy can be ensured. Is what you do.

【0013】また、半導体基板およびマスクを往復同期
走査することにより半導体基板に露光を行う走査型縮小
投影露光装置であって、半導体基板の面内での同期制御
精度を設定し、半導体基板の面内のチップ毎の走査最大
速度を設定するものである。
Further, the present invention is a scanning reduction projection exposure apparatus for exposing a semiconductor substrate by reciprocating synchronous scanning of a semiconductor substrate and a mask, wherein synchronization control accuracy within the surface of the semiconductor substrate is set, and The maximum scanning speed is set for each of the chips.

【0014】また、半導体基板の各位置のチップ露光時
に、第nチップ(但し、n=1,2,…)で同期制御精
度が許容値をはずれたときには、次の第n+1チップ露
光時に走査最大速度を下げて露光を行うものである。
When the synchronization control precision of the n-th chip (where n = 1, 2,...) Deviates from the allowable value during the chip exposure at each position of the semiconductor substrate, the maximum scanning is performed at the next (n + 1) -th chip exposure. Exposure is performed at a reduced speed.

【0015】本発明においては、ウェハ内走査露光位置
毎に同期制御精度により走査最大速度を決定するため、
同期制御精度を確保した状態でかつ最大のスループット
でのウェハ露光処理が可能となる。
In the present invention, the maximum scanning speed is determined by the synchronization control accuracy for each scanning exposure position in the wafer.
The wafer exposure process can be performed with the maximum throughput while the synchronization control accuracy is secured.

【0016】[0016]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0017】図1に示す走査型縮小投影露光装置におい
て、露光光101は、光源102から反射鏡103、フ
ライアイレンズ104、アパーチャー絞り105、レチ
クルブラインド106、反射鏡107、コンデンサレン
ズ108、レチクル109、投影レンズ110を順に通
ってウェハステージ111上のウェハ112に所望の露
光量だけ照射される。このとき、露光視野としては25
×8mm程度のスリット形状であり、レチクルブライン
ド106、レチクルステージ113およびウェハステー
ジ111を同期走査することで、最大25×30mm程
度の領域のウェハ112上にレチクル109上のパター
ンを形成する。これをウェハステージ111を移動し、
図2のように繰り返し走査させることにより、ウェハ1
12全面にレチクル109上のパターンが繰り返し露光
される点は従来と同じである。
In the scanning type reduction projection exposure apparatus shown in FIG. 1, exposure light 101 is transmitted from a light source 102 to a reflecting mirror 103, a fly-eye lens 104, an aperture stop 105, a reticle blind 106, a reflecting mirror 107, a condenser lens 108, and a reticle 109. The wafer 112 on the wafer stage 111 is irradiated with a desired exposure amount through the projection lens 110 in order. At this time, the exposure field of view is 25
The slit has a shape of about 8 mm, and a pattern on the reticle 109 is formed on the wafer 112 in a region of up to about 25 × 30 mm by synchronously scanning the reticle blind 106, the reticle stage 113, and the wafer stage 111. This is moved to the wafer stage 111,
By repeatedly scanning the wafer 1 as shown in FIG.
The point that the pattern on the reticle 109 is repeatedly exposed on the entire surface 12 is the same as the conventional case.

【0018】また、同期制御は従来と同様にレチクルス
テージ113、ウェハステージ111にそれぞれ設けら
れているレーザー干渉計115、117によりレチクル
ステージ113、ウェハステージ111の位置を検出
し、制御部118によりレチクルステージ移動機構11
4およびウェハステージ移動機構116を制御すること
により行っている。
In the synchronous control, the positions of the reticle stage 113 and the wafer stage 111 are detected by the laser interferometers 115 and 117 provided on the reticle stage 113 and the wafer stage 111, respectively. Stage moving mechanism 11
4 and the wafer stage moving mechanism 116 are controlled.

【0019】本発明においては、ウェハ内走査位置毎の
同期制御精度から走査最大速度を決定する。あらかじ
め、図3に示すような手順でウェハ面内での同期制御精
度を測定し、ウェハ面内の各チップ毎の走査最大速度を
決めておく。すなわち、本発明においては、図3に示す
ように、(1)ウェハ内の露光条件設定入力を行う、
(2)ウェハを露光装置のウェハステージにセットす
る。(3)ウェハ全面にわたり露光動作を行い、同時に
同期制御精度の測定を行う。(4)各工程毎に所望の同
期精度からウェハ内の各チップでの走査最大速度を決定
する。(5)露光装置へ各チップの最大走査速度を保存
する。(6)ウェハ露光のステップの順でウェハの露光
を行うものである。
In the present invention, the maximum scanning speed is determined from the synchronization control accuracy for each scanning position in the wafer. The synchronization control accuracy in the wafer plane is measured in advance by the procedure shown in FIG. 3, and the maximum scanning speed for each chip in the wafer plane is determined. That is, in the present invention, as shown in FIG. 3, (1) exposure condition setting input in the wafer is performed.
(2) Set the wafer on the wafer stage of the exposure apparatus. (3) The exposure operation is performed over the entire surface of the wafer, and simultaneously the synchronization control accuracy is measured. (4) For each step, the maximum scanning speed of each chip in the wafer is determined from the desired synchronization accuracy. (5) Store the maximum scanning speed of each chip in the exposure apparatus. (6) The wafer is exposed in the order of the wafer exposure steps.

【0020】なお、ウェハステージ走査速度とウェハス
テージとレチクルステージ間の位置の差分の最大振幅と
の関係を示す図4において、ウェハ内領域は図5に示し
てある。ウェハ内領域A、B、C、D、Eのチッブで最
大振幅を30nm以下にできるようなウェハステージ走
査最大速度は、それぞれ60、40、100、120、
80nm/secであるため、各チップに対しては、図
6に示すようなそれぞれの走査最大速度で走査露光を行
う。
FIG. 4 shows the relationship between the scanning speed of the wafer stage and the maximum amplitude of the difference between the position of the wafer stage and the position of the reticle stage. The maximum wafer stage scanning speed at which the maximum amplitude can be reduced to 30 nm or less in the chips of the in-wafer regions A, B, C, D, and E is 60, 40, 100, 120,
Since it is 80 nm / sec, scanning exposure is performed on each chip at the maximum scanning speed as shown in FIG.

【0021】本発明によれば、従来技術に比べ、走査露
光時間が約50%短縮できる。これをアライメントやウ
ェハ交換時間をも含めて考えれば、1枚のウェハでは約
30%の処理能力の向上が可能である。
According to the present invention, the scanning exposure time can be reduced by about 50% as compared with the prior art. Considering this, including the alignment and the wafer exchange time, it is possible to improve the processing capacity by about 30% with one wafer.

【0022】もっとも、走査型縮小投影露光装置の設置
環境、特に振動環境が変化した場合、同期制御精度も変
化する場合がある。そのような場合に備え、常に制御部
118において同期制御精度の変化を認識し、同期制御
精度が許容値にはいるように走査最大速度を走査露光位
置(チップ)毎に自動的に調整する。その動作を図7に
示す。位置の各チップ露光時には同期制御精度も監視し
ている。図7において、第nチップ(但しn=1,2,
…)で同期制御精度が許容値をはずれた場合には、次の
第(n+1)チップ露光時に最大走査速度を例えば10
%下げて露光を行う。このことにより、次のチップでは
同期制御精度の低下を防ぐことができる。従って、本実
施例の場合、装置の設置環境が変化した場合にも対応可
能であるという利点がある。
However, when the installation environment of the scanning reduction projection exposure apparatus, particularly the vibration environment, changes, the synchronization control accuracy may change. In preparation for such a case, the control unit 118 always recognizes a change in the synchronization control accuracy, and automatically adjusts the maximum scanning speed for each scanning exposure position (chip) so that the synchronization control accuracy falls within an allowable value. The operation is shown in FIG. At the time of each chip exposure at the position, the synchronization control accuracy is also monitored. In FIG. 7, the n-th chip (where n = 1, 2, 2)
..), The synchronization control accuracy deviates from the allowable value, the maximum scanning speed is set to, for example, 10 at the next (n + 1) th chip exposure.
Exposure is performed with the percentage lowered. As a result, it is possible to prevent the synchronization control accuracy from being reduced in the next chip. Therefore, in the case of the present embodiment, there is an advantage that it is possible to cope with a change in the installation environment of the apparatus.

【0023】[0023]

【発明の効果】以上説明したように、本発明の走査型縮
小投影露光装置においては、走査露光位置毎に走査最大
速度を変化させることにより、スループットの向上が可
能である。
As described above, in the scanning type reduced projection exposure apparatus of the present invention, the throughput can be improved by changing the maximum scanning speed for each scanning exposure position.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明および従来技術の走査型縮小投影露光装
置の概略図である。
FIG. 1 is a schematic view of a scanning type reduction projection exposure apparatus of the present invention and a conventional technique.

【図2】ウェハの走査露光例である。FIG. 2 is an example of scanning exposure of a wafer.

【図3】本発明の一実施形態の動作図である。FIG. 3 is an operation diagram of one embodiment of the present invention.

【図4】本発明のウェハステージ走査速度と最大振幅の
関係図である。
FIG. 4 is a relationship diagram between a wafer stage scanning speed and a maximum amplitude according to the present invention.

【図5】本発明のウェハ内領域を示す図である。FIG. 5 is a diagram showing an area in a wafer according to the present invention.

【図6】本発明のウェハ内領域と最大走査速度を示す図
である。
FIG. 6 is a diagram showing an in-wafer area and a maximum scanning speed according to the present invention.

【図7】本発明の他の実施の形態の動作図である。FIG. 7 is an operation diagram of another embodiment of the present invention.

【符号の説明】 101 露光光 102 光源 103、107 反射鏡 104 フライアレイレンズ 105 アパーチャ絞り 106 レチクルブラインド 108 コンダンサーレンズ 109 レチクル 110 縮小投影レンズ 111 ウェハステージ 112 ウェハ 113 レチクルステージ 114 レチクルステージ移動機構 115 レーザー干渉計 116 ウェハステージ移動機構 117 レーザー干渉計 118 制御部 201 ウェハDESCRIPTION OF SYMBOLS 101 Exposure light 102 Light source 103, 107 Reflector 104 Fly array lens 105 Aperture stop 106 Reticle blind 108 Conductor lens 109 Reticle 110 Reduction projection lens 111 Wafer stage 112 Wafer 113 Reticle stage 114 Reticle stage moving mechanism 115 Laser Interferometer 116 Wafer stage moving mechanism 117 Laser interferometer 118 Control unit 201 Wafer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板およびマスクを往復同期走査
することにより半導体基板に露光を行う走査型縮小投影
露光装置であって、 半導体基板内の位置に応じ、走査最大速度を変化させて
露光を行うものであることを特徴とする走査型縮小投影
露光装置。
1. A scanning reduction projection exposure apparatus for exposing a semiconductor substrate by reciprocating synchronous scanning of a semiconductor substrate and a mask, wherein the exposure is performed by changing a maximum scanning speed according to a position in the semiconductor substrate. A scanning type reduction projection exposure apparatus characterized in that:
【請求項2】 半導体基板およびマスクを往復同期走査
することにより半導体基板に露光を行う走査型縮小投影
露光装置であって、 半導体基板内の走査露光位置毎に走査最大速度を決定す
るものであることを特徴とする走査型縮小投影露光装
置。
2. A scanning reduction projection exposure apparatus for exposing a semiconductor substrate by reciprocating synchronous scanning of a semiconductor substrate and a mask, wherein a maximum scanning speed is determined for each scanning exposure position in the semiconductor substrate. A scanning-type reduction projection exposure apparatus, characterized in that:
【請求項3】 半導体基板の位置に応じ、走査最大速度
を変化させて露光を行う際に、自動的に同期制御精度を
検知し、同期制御精度を確保できる走査最大速度に設定
して露光を行うものであることを特徴とする請求項1又
は2に記載の走査型縮小投影露光装置。
3. When exposure is performed by changing the maximum scanning speed in accordance with the position of the semiconductor substrate, the synchronization control accuracy is automatically detected, and the exposure is set by setting the maximum scanning speed to ensure the synchronization control accuracy. 3. The scanning-type reduction projection exposure apparatus according to claim 1, wherein the scanning-type reduction projection exposure apparatus is used.
【請求項4】 半導体基板およびマスクを往復同期走査
することにより半導体基板に露光を行う走査型縮小投影
露光装置であって、 半導体基板の面内での同期制御精度を設定し、半導体基
板の面内のチップ毎の走査最大速度を設定することを特
徴とする走査型縮小投影露光装置。
4. A scanning reduction projection exposure apparatus for exposing a semiconductor substrate by reciprocating synchronous scanning of a semiconductor substrate and a mask, wherein a synchronization control precision within a surface of the semiconductor substrate is set, and the surface of the semiconductor substrate is set. A scanning-type reduction projection exposure apparatus, wherein a maximum scanning speed is set for each chip in the apparatus.
【請求項5】 半導体基板の各位置のチップ露光時に、
第nチップ(但し、n=1,2,…)で同期制御精度が
許容値をはずれたときには、次の第n+1チップ露光時
に走査最大速度を下げて露光を行うものであることを特
徴とする請求項3又は4に記載の走査型縮小投影露光装
置。
5. When exposing a chip at each position of a semiconductor substrate,
When the synchronization control accuracy deviates from the allowable value in the n-th chip (where n = 1, 2,...), The exposure is performed at a lower scanning maximum speed during the next (n + 1) -th chip exposure. A scanning reduction projection exposure apparatus according to claim 3.
JP09277526A 1997-10-09 1997-10-09 Scanning reduction projection exposure equipment Expired - Fee Related JP3097620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09277526A JP3097620B2 (en) 1997-10-09 1997-10-09 Scanning reduction projection exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09277526A JP3097620B2 (en) 1997-10-09 1997-10-09 Scanning reduction projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH11121328A true JPH11121328A (en) 1999-04-30
JP3097620B2 JP3097620B2 (en) 2000-10-10

Family

ID=17584815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09277526A Expired - Fee Related JP3097620B2 (en) 1997-10-09 1997-10-09 Scanning reduction projection exposure equipment

Country Status (1)

Country Link
JP (1) JP3097620B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020299A1 (en) * 2003-08-21 2005-03-03 Nikon Corporation Exposure apparatus, exposure method, and device producing method
NL2000644C2 (en) * 2007-02-21 2008-08-25 Taiwan Semiconductor Mfg Improved lithography scanner throughput.
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US10209622B2 (en) 2003-08-21 2019-02-19 Nikon Corporation Exposure method and device manufacturing method having lower scanning speed to expose peripheral shot area
US10203608B2 (en) 2003-08-21 2019-02-12 Nikon Corporation Exposure apparatus and device manufacturing method having lower scanning speed to expose peripheral shot area
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
KR101259095B1 (en) * 2003-08-21 2013-04-30 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
WO2005020299A1 (en) * 2003-08-21 2005-03-03 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP2011109147A (en) * 2003-08-21 2011-06-02 Nikon Corp Exposure method and device manufacturing method
JP2009081479A (en) * 2003-08-21 2009-04-16 Nikon Corp Exposure method and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
NL2000644C2 (en) * 2007-02-21 2008-08-25 Taiwan Semiconductor Mfg Improved lithography scanner throughput.
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP3097620B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
KR0139309B1 (en) Exposure apparatus and manufacuring method for device using the same
US6383940B1 (en) Exposure method and apparatus
EP1039511A1 (en) Projection exposure method and projection aligner
JP3451604B2 (en) Scanning exposure equipment
JP4004461B2 (en) Device manufacturing method, computer program, and lithographic projection apparatus
US5793471A (en) Projection exposure method and apparatus in which scanning exposure is performed in accordance with a shot layout of mask patterns
JP5015187B2 (en) Lithographic apparatus and device manufacturing method
JP3391404B2 (en) Projection exposure method and circuit element manufacturing method
JP3097620B2 (en) Scanning reduction projection exposure equipment
JP3531297B2 (en) Projection exposure apparatus and projection exposure method
US5883700A (en) Method for projection exposure to light
JPH0992593A (en) Projection exposure system
JP2002043214A (en) Method for scanning exposure
JPH0917718A (en) Aligner and device, and manufacturing method using it
US6195155B1 (en) Scanning type exposure method
US20050268804A1 (en) Lithographic method for small line printing
US6172739B1 (en) Exposure apparatus and method
JP3371406B2 (en) Scanning exposure method
JP2000031028A (en) Exposure method and exposure apparatus
JPH06232031A (en) Aligner
JPH0982633A (en) Projection exposure device
JP2962257B2 (en) Scanning projection exposure method and apparatus
JP3031319B2 (en) Scanning reduction projection exposure equipment
JP2000133563A (en) Exposure method and aligner
JPH09306826A (en) Aligner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees