JPH0992593A - Projection exposure system - Google Patents

Projection exposure system

Info

Publication number
JPH0992593A
JPH0992593A JP7243132A JP24313295A JPH0992593A JP H0992593 A JPH0992593 A JP H0992593A JP 7243132 A JP7243132 A JP 7243132A JP 24313295 A JP24313295 A JP 24313295A JP H0992593 A JPH0992593 A JP H0992593A
Authority
JP
Japan
Prior art keywords
exposure
substrate
optical system
alignment
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7243132A
Other languages
Japanese (ja)
Inventor
Shinji Wakamoto
信二 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7243132A priority Critical patent/JPH0992593A/en
Priority to KR1019960039215A priority patent/KR970016824A/en
Publication of JPH0992593A publication Critical patent/JPH0992593A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a projection exposure system, wherein a focal point is accurately detected or aligned in a scanning direction, and various sensors to provide are lessened in number. SOLUTION: Either of illumination fields 21a and 21b is selectively formed at a prescribed interval in a scanning direction in an effective exposure field of a projection optical system by a reticule blind provided between a light source system and a reticule. An AF beam of a focal point detecting system is so set as to irradiate a pre-read region 22 located nearly at a middle point between the illuminating fields 21a and 21b as a slit light. The alignment illuminating lights of two alignment sensors are so set as to irradiate alignment regions 23a and 23b located at the ends of the pre-read region 22. When a shot region 25a is scanned in a -X direction, the illuminating field 21a located on a -X direction side is used, and when a shot region 25b is scanned in a +X direction, the illuminating field 21b located on a +X direction side is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素
子、液晶表示素子、撮像素子(CCD等)、又は薄膜磁
気ヘッド等をフォトリソグラフィ工程で製造する際に使
用される投影露光装置に関し、特に矩形又は円弧状等の
照明領域に対してマスク及び感光性の基板を同期して走
査することにより、マスク上のパターンを投影光学系を
介して逐次その基板上に露光する所謂スリットスキャン
方式、又はステップ・アンド・スキャン方式等の走査露
光型の投影露光装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used for manufacturing a semiconductor element, a liquid crystal display element, an image pickup element (CCD or the like), a thin film magnetic head or the like in a photolithography process, and more particularly to a rectangular exposure apparatus. Or a so-called slit scan method or step of sequentially exposing the pattern on the mask onto the substrate through the projection optical system by scanning the mask and the photosensitive substrate synchronously with respect to an illumination area having an arc shape or the like. It is suitable for application to a scanning exposure type projection exposure apparatus such as an AND scan method.

【0002】[0002]

【従来の技術】従来、半導体素子等を製造する際に使用
されていた露光装置は、主にレチクル(又はフォトマス
ク等)のパターンを投影光学系を介してステップ・アン
ド・リピート方式でフォトレジストが塗布されたウエハ
(又はガラスプレート等)上の各ショット領域に露光す
る一括露光方式の投影露光装置(ステッパー等)であっ
た。これに対して最近、半導体素子等の1個のチップパ
ターンが大型化する傾向にあり、投影露光装置において
は、より大きな面積のパターンを効率的にウエハ上の各
ショット領域に露光する大面積化が求められている。こ
のような大面積化を行う場合でも、特に投影像のディス
トーションを各ショット領域の全面で所定量以下に収め
る必要がある。そこで、ディストーションを各ショット
領域の全面で小さくし、且つ大面積化に応えるために、
ウエハ上の各ショット領域を走査開始位置にステッピン
グした後、例えば矩形、円弧状又は複数の台形等からな
る照明領域(これを「スリット状の照明領域」という)
に対してレチクル及びウエハを同期して走査することに
より、レチクル上のパターンを各ショット領域に逐次露
光する所謂ステップ・アンド・スキャン方式等の走査露
光型の露光装置が注目されている。
2. Description of the Related Art Conventionally, an exposure apparatus used for manufacturing a semiconductor device or the like mainly uses a reticle (or photomask, etc.) pattern through a projection optical system to form a photoresist by a step-and-repeat method. It was a projection exposure apparatus (stepper etc.) of a batch exposure system which exposes each shot area on a wafer (or glass plate etc.) coated with. On the other hand, recently, one chip pattern such as a semiconductor element tends to be large, and in a projection exposure apparatus, a pattern having a larger area can be efficiently exposed to each shot area on a wafer. Is required. Even when such an increase in area is performed, it is necessary to keep the distortion of the projected image within a predetermined amount over the entire area of each shot area. Therefore, in order to reduce the distortion over the entire area of each shot area and to increase the area,
After stepping each shot area on the wafer to the scanning start position, for example, an illumination area having a rectangular shape, an arc shape, or a plurality of trapezoids (this is called a "slit-shaped illumination area")
On the other hand, attention is focused on a scanning exposure type exposure apparatus such as a so-called step-and-scan method that sequentially exposes a pattern on a reticle to each shot area by scanning a reticle and a wafer in synchronization.

【0003】このような走査露光型の露光装置でも、通
常、ウエハの焦点位置(投影光学系の光軸方向の位置)
を検出するための焦点位置検出系、及びレチクルとウエ
ハとの各ショット領域の位置合わせに使用されるアライ
メントセンサが備えられている。そして、焦点位置検出
系及びアライメントセンサから、それぞれ焦点位置検出
用光ビーム(以下、「AFビーム」という)及びアライ
メント照明光をウエハ上に照射して、ウエハの各ショッ
ト領域のオートフォーカス及び位置合わせを行ってい
た。
Even in such a scanning exposure type exposure apparatus, normally, the focal position of the wafer (the position in the optical axis direction of the projection optical system).
There is provided a focus position detection system for detecting, and an alignment sensor used for aligning each shot area between the reticle and the wafer. Then, the focus position detection system and the alignment sensor irradiate the wafer with a focus position detection light beam (hereinafter referred to as “AF beam”) and alignment illumination light, respectively, to perform autofocus and position adjustment of each shot area of the wafer. Was going on.

【0004】図4は、従来の走査露光型の露光装置にお
けるウエハ上のAFビーム及びアライメント照明光の照
射領域を示している。この場合、アライメントセンサと
しては、例えばレーザ光をウエハ上のドット列状のウエ
ハマークに照射し、そのマークにより回折又は散乱され
た光を用いてそのマークの位置を検出するLSA(Lase
r Step Alignment)方式等のアライメントセンサが使用
される。この図4において、ウエハ上の走査方向(X方
向)に所定幅で形成されたスリット状の照野フィールド
31の走査方向の手前側の先読み領域32a及び32b
に、2個の焦点位置検出系からのAFビームがそれぞれ
複数のスリット光(不図示)として照射されている。ま
た、照野フィールド31の−X方向の先読み領域32a
の非走査方向(±Y方向)の近傍のアライメント領域3
3a,34aにアライメントセンサからのアライメント
照明光がそれぞれ照射されるように設定され、同様に照
野フィールド31の+X方向の先読み領域32bの非走
査方向の近傍のアライメント領域33b,34bに1対
のアライメントセンサからのアライメント照明光が照射
されるように設定されている。
FIG. 4 shows an irradiation area of an AF beam and alignment illumination light on a wafer in a conventional scanning exposure type exposure apparatus. In this case, the alignment sensor may be, for example, an LSA (Lase (Lase) that irradiates a laser beam on a wafer mark in a dot array on the wafer and detects the position of the mark using the light diffracted or scattered by the mark.
r Step Alignment) type alignment sensor is used. In FIG. 4, pre-reading areas 32a and 32b on the front side in the scanning direction of the slit-shaped illumination field field 31 formed with a predetermined width in the scanning direction (X direction) on the wafer.
Further, the AF beams from the two focus position detection systems are respectively irradiated as a plurality of slit lights (not shown). In addition, the pre-reading area 32a of the Teruno field 31 in the -X direction
Alignment region 3 near the non-scanning direction (± Y direction) of
3a and 34a are set so as to be irradiated with the alignment illumination light from the alignment sensor, respectively. Similarly, a pair of alignment regions 33b and 34b in the non-scanning direction of the + X direction prefetch region 32b of the illumination field 31 are similarly provided. The alignment illumination light from the alignment sensor is set to be emitted.

【0005】そして、例えばショット領域30aを照野
フィールド31に対して矢印Bで示す+X方向に走査し
て露光を行う際には、−X方向側の先読み領域32aで
検出されるウエハの焦点位置に基づいてオートフォーカ
スが行われると共に、アライメント領域33a及び34
aで検出されるウエハマークの位置情報に基づいてアラ
イメントが行われていた。一方、ショット領域30bを
照野フィールド31に対して矢印Aで示す−X方向に走
査して露光を行う際には、+X方向側の先読み領域32
b及びアライメント領域33b,34bで検出される情
報に基づいてオートフォーカス及びアライメントが行わ
れていた。
Then, for example, when the shot area 30a is exposed by scanning the shot field 30a in the + X direction shown by the arrow B with respect to the illumination field 31, the focus position of the wafer detected in the preread area 32a on the −X direction side. Autofocus is performed on the basis of the
The alignment is performed based on the position information of the wafer mark detected in a. On the other hand, when the shot area 30b is scanned with respect to the illumination field 31 in the −X direction indicated by the arrow A to perform exposure, the preread area 32 on the + X direction side.
The autofocus and the alignment are performed based on the information detected in the b and the alignment areas 33b and 34b.

【0006】[0006]

【発明が解決しようとする課題】上記の如き従来の技術
においては、走査方向の切り換えに対応するために、2
つの焦点位置検出系及び2対のアライメントセンサを用
いていたため、焦点位置検出系同士及びアライメントセ
ンサ同士の検出結果の間にオフセットが発生している
と、走査方向によりデフォーカス及びアライメント誤差
が発生する不都合があった。また、照野フィールド31
の走査方向の両側に2つの焦点位置検出系及び2対のア
ライメントセンサを必要とするため、焦点位置検出系及
びアライメントセンサを含む機構が大型化し、且つ複雑
化するという不都合もあった。
In the prior art as described above, in order to cope with the switching of the scanning direction, 2
Since one focus position detection system and two pairs of alignment sensors are used, if an offset occurs between the detection results of the focus position detection systems and between the alignment sensors, defocus and alignment errors occur depending on the scanning direction. There was an inconvenience. Also, Teruno Field 31
Since two focus position detection systems and two pairs of alignment sensors are required on both sides in the scanning direction, there is a disadvantage that the mechanism including the focus position detection system and the alignment sensor becomes large and complicated.

【0007】本発明は斯かる点に鑑み、走査方向による
焦点位置の検出誤差又はアライメント誤差が発生せず、
走査方向に依らずに正確にオートフォーカス又はアライ
メントを行うことができると共に、焦点位置検出系又は
アライメントセンサ等のセンサの設置数の少ない投影露
光装置を提供することを目的とする。
In view of the above point, the present invention does not cause a focus position detection error or an alignment error in the scanning direction,
An object of the present invention is to provide a projection exposure apparatus which can perform autofocus or alignment accurately regardless of the scanning direction and has a small number of sensors such as a focus position detection system or an alignment sensor.

【0008】[0008]

【課題を解決するための手段】本発明による投影露光装
置は、マスク(1)上の転写用のパターンの一部を投影
光学系(3)を介して基板(2)上に投影した状態で、
そのマスク(1)をその投影光学系に対して所定方向
(+X方向又は−X方向)に走査するのと同期して、そ
の基板(2)をその投影光学系(3)に対してその所定
方向に対応する方向(−X方向又は+X方向)に走査す
ることにより、そのマスク(1)の転写用のパターンの
像を逐次その基板(2)上に転写する投影露光装置にお
いて、その投影光学系(3)の有効露光フィールド(2
0)内でその基板(2)の走査方向に離れた位置又は連
続した位置に切り換え自在に複数個の露光領域(21
a,21b)を設定する露光領域切り換え手段(10,
11)と、それら複数個の露光領域(21a,21b)
の間のその基板(2)のその投影光学系(3)の光軸
(AX)方向の位置を検出し、この検出結果に基づいて
その基板(2)の高さ又は傾斜角を制御する面位置制御
手段(8a,8b,5,7,17)と、その基板(2)
のその投影光学系(3)に対する走査方向に応じてその
露光領域切り換え手段(10,11)を介してその投影
光学系(3)による露光領域を切り換える制御手段(1
7)と、を有するものである。
In a projection exposure apparatus according to the present invention, a part of a transfer pattern on a mask (1) is projected onto a substrate (2) via a projection optical system (3). ,
In synchronization with scanning the mask (1) with respect to the projection optical system in a predetermined direction (+ X direction or −X direction), the substrate (2) is moved with respect to the projection optical system (3) in the predetermined direction. In the projection exposure apparatus that sequentially transfers the image of the transfer pattern of the mask (1) onto the substrate (2) by scanning in the direction corresponding to the direction (-X direction or + X direction), Effective exposure field of system (3) (2
0) in the scanning direction of the substrate (2) or a plurality of exposure areas (21
a, 21b) for setting the exposure area switching means (10,
11) and a plurality of exposure areas (21a, 21b)
A surface for detecting the position of the substrate (2) in the direction of the optical axis (AX) of the projection optical system (3) and controlling the height or inclination angle of the substrate (2) based on the detection result. Position control means (8a, 8b, 5, 7, 17) and its substrate (2)
Control means (1) for switching the exposure area of the projection optical system (3) via the exposure area switching means (10, 11) according to the scanning direction of the projection optical system (3).
7) and.

【0009】斯かる本発明の投影露光装置によれば、例
えば図3に示すように、ショット領域(25a)を矢印
Aの方向に走査するときには、一方の露光領域(21
a)を使用し、ショット領域(25b)を矢印Bの方向
に走査するときには、他方の露光領域(21b)を使用
する。また、走査方向に依らずに、共通にその面位置制
御手段を用いてオートフォーカス又はオートレベリング
が行われる。従って、走査方向に依らずに共通の検出位
置での検出値を使用するため、走査方向に依る検出値の
誤差が発生することもなく、常に面位置の検出が高精度
に行える。また、焦点位置検出系等のセンサを露光領域
の両側に備える必要がなく、センサの設置数を少なくで
きる。
According to the projection exposure apparatus of the present invention, for example, as shown in FIG. 3, when the shot area (25a) is scanned in the direction of arrow A, one of the exposure areas (21
When the shot area (25b) is scanned in the direction of the arrow B using a), the other exposure area (21b) is used. In addition, regardless of the scanning direction, autofocusing or autoleveling is commonly performed using the surface position control means. Therefore, since the detection value at the common detection position is used regardless of the scanning direction, an error of the detection value depending on the scanning direction does not occur, and the surface position can always be detected with high accuracy. Further, it is not necessary to provide sensors such as a focus position detection system on both sides of the exposure area, and the number of sensors installed can be reduced.

【0010】この場合、それら複数個の露光領域(21
a,21b)の間の近傍の領域でその基板(2)上の位
置合わせ用マークの位置を検出するアライメントセンサ
(9a)を設け、このアライメントセンサの検出結果よ
りその基板(2)とそのマスク(4)との位置合わせを
行うことが好ましい。これにより、走査方向に依らずに
共通のアライメントセンサ(9a)により基板(2)上
の位置合わせマークの位置を検出して、位置合わせを行
う。
In this case, the plurality of exposure areas (21
a, 21b), an alignment sensor (9a) for detecting the position of the alignment mark on the substrate (2) is provided in a region near the substrate (2) and the mask thereof. It is preferable to perform the alignment with (4). Accordingly, the position of the alignment mark on the substrate (2) is detected by the common alignment sensor (9a) regardless of the scanning direction, and the alignment is performed.

【0011】また、その露光領域切り換え手段(10,
11)は、その投影光学系(3)の有効露光フィールド
内でそれら複数個の露光領域(21a,21b)の全部
を含む一括露光領域(21e)を選択的に設定し、この
一括露光領域(21e)が設定されたときにそのマスク
(1)とその基板(2)とを静止させた状態で露光を行
ってもよい。
Further, the exposure area switching means (10,
11) selectively sets a collective exposure area (21e) including all of the plurality of exposure areas (21a, 21b) in the effective exposure field of the projection optical system (3), and the collective exposure area (21e) is set. 21e), the exposure may be performed with the mask (1) and the substrate (2) kept stationary.

【0012】これにより、本発明の投影露光装置は走査
露光型としてのみならず、ステッパーのような一括露光
型としても兼用できることになる。
As a result, the projection exposure apparatus of the present invention can be used not only as a scanning exposure type but also as a batch exposure type such as a stepper.

【0013】[0013]

【発明の実施の形態】以下、本発明による投影露光装置
の実施の形態の一例につき図1〜図3を参照して説明す
る。本例は、ステップ・アンド・スキャン方式の投影露
光装置に本発明を適用したものである。図1は、本例の
投影露光装置の概略構成を示し、この図1において、露
光用の水銀ランプ及びオプティカル・インテグレータ等
を含む光源系13から射出された照明光ILは、第1リ
レーレンズ12aを透過した後、後述のレチクル1とほ
ぼ共役な面に配置されたレチクルブラインド(可変視野
絞り)10に入射する。レチクルブラインド10は、照
明光ILの通過領域の位置及び形状を所望の状態に設定
するための4枚の可動ブレードから構成されており、ブ
ラインド駆動装置11によりそれらの4枚の可動ブレー
ドの位置が制御できるようになっている。レチクルブラ
インド10は、ブラインド駆動装置11を介して、主制
御系17により制御される。なお、露光用の照明光とし
ては、水銀ランプのi線(波長:365nm)等の他、
エキシマレーザ光(波長:248nm,193nm等)
等も使用できる。また、光源系13内にはシャッターが
設置され、このシャッターによって所望の期間だけ照明
光ILを照射できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an embodiment of a projection exposure apparatus according to the present invention will be described below with reference to FIGS. In this example, the present invention is applied to a step-and-scan type projection exposure apparatus. FIG. 1 shows a schematic configuration of the projection exposure apparatus of this example. In FIG. 1, the illumination light IL emitted from a light source system 13 including a mercury lamp for exposure, an optical integrator, and the like is the first relay lens 12a. After passing through, the light enters a reticle blind (variable field stop) 10 arranged on a surface substantially conjugate with the reticle 1 described later. The reticle blind 10 is composed of four movable blades for setting the position and shape of the passage area of the illumination light IL to a desired state, and the blind drive device 11 changes the positions of these four movable blades. It can be controlled. The reticle blind 10 is controlled by a main control system 17 via a blind drive device 11. As the illumination light for exposure, other than the i-line (wavelength: 365 nm) of a mercury lamp,
Excimer laser light (wavelength: 248 nm, 193 nm, etc.)
Etc. can also be used. Further, a shutter is installed in the light source system 13, and the illumination light IL can be emitted only for a desired period by the shutter.

【0014】レチクルブラインド10で成形された照明
光ILは、第2リレーレンズ12bを通過して、ダイク
ロイックミラー14に入射する。ダイクロイックミラー
14で下方に折り曲げられた照明光ILは、コンデンサ
ーレンズ15を介してレチクル1上に照射され、レチク
ル1上の照明領域内のパターンの像が、投影光学系3を
介して投影倍率β(βは例えば1/4、又は1/5等)
でウエハ2上の照野フィールドに投影される。ここで、
投影光学系PLの光軸に平行にZ軸を取り、Z軸に垂直
な平面内で走査露光時のレチクル1及びウエハ2の走査
方向に平行(図1の紙面に平行な方向)にX軸を取り、
Z軸に垂直な平面内でX軸に垂直な方向(非走査方向)
にY軸を取る。本例では、レチクル1は、不図示のレチ
クルベース上でX方向に摺動自在なレチクルステージ1
6上に載置され、ウエハ2は、ウエハホルダ4を介して
ウエハホルダ4を投影光学系3の光軸AX方向に駆動す
るためのZステージ5上に載置され、Zステージ5は、
ウエハ2をX方向に走査すると共にY方向に位置決めす
るXYステージ18上に保持されている。また、Zステ
ージ5及びXYステージ18は、それぞれZステージ駆
動系7及びウエハステージ駆動系19を介して主制御系
17により制御されている。
The illumination light IL formed by the reticle blind 10 passes through the second relay lens 12b and enters the dichroic mirror 14. The illumination light IL bent downward by the dichroic mirror 14 is irradiated onto the reticle 1 via the condenser lens 15, and the image of the pattern in the illumination area on the reticle 1 is projected through the projection optical system 3 to the projection magnification β. (Β is 1/4, 1/5, etc.)
Is projected onto the illumination field on the wafer 2. here,
The Z axis is taken parallel to the optical axis of the projection optical system PL, and the X axis is parallel to the scanning direction of the reticle 1 and the wafer 2 during scanning exposure in the plane perpendicular to the Z axis (direction parallel to the paper surface of FIG. 1). Take
Direction perpendicular to the X-axis in the plane perpendicular to the Z-axis (non-scanning direction)
Take the Y axis to. In this example, the reticle 1 is a reticle stage 1 that is slidable in the X direction on a reticle base (not shown).
6, the wafer 2 is placed on the Z stage 5 for driving the wafer holder 4 in the optical axis AX direction of the projection optical system 3 via the wafer holder 4, and the Z stage 5 is
The wafer 2 is held on an XY stage 18 which scans the wafer 2 in the X direction and positions it in the Y direction. The Z stage 5 and the XY stage 18 are controlled by the main control system 17 via the Z stage drive system 7 and the wafer stage drive system 19, respectively.

【0015】レチクルステージ16及びXYステージ1
8よりステージ駆動機構が構成され、走査露光時には主
制御系17は、レチクルステージ16を介して+X方向
(又は−X方向)に所定速度VR でレチクルRを走査す
るのと同期して、XYステージ18を介してウエハ2上
の所定のショット領域を照野フィールドに対して−X方
向(又は+X方向)に速度VW (=β・VR )で走査す
る。これにより、そのショット領域上にレチクル1のパ
ターンが逐次転写露光される。
Reticle stage 16 and XY stage 1
8 stage driving mechanism is composed of the main control system 17 during scanning exposure, in synchronism with scanning the reticle R via the reticle stage 16 + X direction (or -X direction) at a predetermined speed V R, XY through the stage 18 is scanned in the -X direction a predetermined shot area on the wafer 2 with respect to the illumination field field (or + X direction) velocity V W (= β · V R ). As a result, the pattern of the reticle 1 is successively transferred and exposed onto the shot area.

【0016】また、図1の装置には、ウエハ2の露光面
に向けて斜めにスリット像24a〜24c(図2(a)
参照)を形成するための複数の計測ビーム(以下、「A
Fビーム」という)LFを照射する照射光学系8aと、
そのフォーカスビームLFのウエハ2の露光面での反射
光束を受光して各スリット像を再結像する受光光学系8
bとからなる斜入射方式の焦点位置検出系(以下、「焦
点位置検出系8a,8b」という)が備えられている。
Further, in the apparatus of FIG. 1, slit images 24a to 24c are slanted toward the exposure surface of the wafer 2 (FIG. 2 (a)).
Measurement beams (hereinafter, referred to as “A”) for forming
An irradiation optical system 8a for irradiating LF (referred to as “F beam”);
A light receiving optical system 8 which receives the reflected light beam of the focus beam LF on the exposed surface of the wafer 2 and re-images each slit image.
and an oblique incidence type focus position detection system (hereinafter referred to as "focus position detection systems 8a and 8b").

【0017】図2(a)〜(e)はそれぞれ本例の投影
光学系3の有効露光フィールド20を示し、それらの内
の図2(a)に示すように、有効露光フィールド20の
中央部をY方向(非走査方向)に横切るように設定され
たスリット状の先読み領域22内に、Y方向に等間隔に
図1の焦点位置検出系8a,8bからのAFビームLF
がスリット像24a〜24cとして照射されている。そ
して、図1の受光光学系8bからはスリット像24a〜
24cの再結像された像の横ずれ量に対応する3個のフ
ォーカス信号が主制御系17に供給され、主制御系17
では供給されたフォーカス信号よりウエハ2の先読み領
域22内の平均的な焦点位置を求める。そして、主制御
系17はこの焦点位置が投影光学系3の結像面の焦点位
置に常に合致するように、Zステージ駆動系7を介して
ウエハの先読みオートフォーカス制御を行う。更に、先
読み領域22の非走査方向(Y方向)の両端部の近傍に
は、それぞれ後述のアライメントセンサからのアライメ
ント照明光が照射されるアライメント領域23a,23
bが設定されている。
2 (a) to 2 (e) respectively show the effective exposure field 20 of the projection optical system 3 of the present example, and among them, as shown in FIG. 2 (a), the central portion of the effective exposure field 20. The AF beam LF from the focus position detection systems 8a and 8b of FIG. 1 is evenly spaced in the Y direction within the slit-shaped preread area 22 set to cross the Y direction (non-scanning direction).
Are emitted as slit images 24a to 24c. Then, from the light receiving optical system 8b of FIG.
The three focus signals corresponding to the lateral shift amount of the re-formed image of 24c are supplied to the main control system 17,
Then, the average focus position in the prefetch area 22 of the wafer 2 is obtained from the supplied focus signal. Then, the main control system 17 performs pre-reading autofocus control of the wafer via the Z stage drive system 7 so that the focus position always matches the focus position of the image plane of the projection optical system 3. Further, in the vicinity of both end portions of the prefetch area 22 in the non-scanning direction (Y direction), alignment areas 23a and 23 are respectively irradiated with alignment illumination light from an alignment sensor described later.
b is set.

【0018】ここで、図1のレチクルブラインド10の
制御によって所望の状態に設定できる本例の照野フィー
ルドの例につき、図2(a)〜(e)を参照して説明す
る。先ず、照野フィールドとは、図1のレチクルブライ
ンド10によってレチクル1のパターン形成面に設定さ
れる照明領域と、投影光学系3に関して共役なウエハ2
上の露光領域、即ち、或る時点でのウエハ2上へのレチ
クル1のパターンの投影領域を指す。
Here, an example of the illumination field of this example that can be set to a desired state by controlling the reticle blind 10 in FIG. 1 will be described with reference to FIGS. 2 (a) to 2 (e). First, the illumination field is the illumination area set on the pattern formation surface of the reticle 1 by the reticle blind 10 of FIG. 1 and the wafer 2 that is conjugate with respect to the projection optical system 3.
The upper exposure area, that is, the projection area of the pattern of the reticle 1 onto the wafer 2 at a certain point of time.

【0019】そして、本例ではレチクルブラインド10
の制御によって、図2(a)に示すように、有効露光フ
ィールド20内で先読み領域22に対して−X方向(走
査方向)に所定間隔離してスリット状の照野フィールド
21aを設定できる。また、図2(b)に示すように、
先読み領域22に対して+X方向に所定間隔離して、照
野フィールド21aと対称にスリット状の照野フィール
ド21bを設定することもできる。更に、レチクルブラ
インド10の制御によって、図2(c)及び(d)に示
すように、先読み領域22を含むように照野フィールド
21c及び21dを設定することもでき、図2(e)に
示すように、図2(a)及び(b)の照野フィールド2
1a,21bを覆う大きさの照野フィールド21eを設
定することもできる。最後の大面積の照野フィールド2
1eを用いれば、通常の静止状態での一括露光方式での
露光を行うことができる。
In this example, the reticle blind 10
2A, a slit-shaped illumination field field 21a can be set in the effective exposure field 20 in the −X direction (scanning direction) with a predetermined separation from the prefetch area 22 as shown in FIG. 2A. In addition, as shown in FIG.
It is also possible to set a slit-shaped illumination field field 21b symmetrical to the illumination field field 21a by separating the prefetch area 22 for a predetermined distance in the + X direction. Further, by controlling the reticle blind 10, the illumination field fields 21c and 21d can be set so as to include the prefetch area 22 as shown in FIGS. 2C and 2D, and are shown in FIG. As shown in FIG. 2A and FIG.
It is also possible to set an illumination field 21e having a size that covers 1a and 21b. Teruno field 2 of the last large area
If 1e is used, it is possible to perform the exposure by the normal batch exposure method in a stationary state.

【0020】また、投影光学系6の上部側面付近で且つ
レチクルステージ16の下方には、一例としてTTL
(スルー・ザ・レンズ)方式で且つLSA(Laser Step
Alignment)方式のアライメントセンサ9aが設置され
ている。このアライメントセンサ9aは、レチクル1と
ウエハ2の各ショット領域との最終的な位置合わせ(ア
ライメント)に使用される。このため、図3(a)に示
すように、ウエハ2上のショット領域25aの側面には
ドット列状のウエハマーク27a,27bよりなるウエ
ハマーク28a〜28dが所定間隔で配列されている。
また、ショット領域25aの反対側の側面にも対称にウ
エハマーク29a〜29dが配列されている。
In the vicinity of the upper side surface of the projection optical system 6 and below the reticle stage 16, as an example, TTL is used.
(Through the lens) method and LSA (Laser Step)
An alignment sensor 9a of the Alignment type is installed. The alignment sensor 9a is used for final alignment (alignment) between the reticle 1 and each shot area of the wafer 2. Therefore, as shown in FIG. 3A, on the side surface of the shot area 25a on the wafer 2, wafer marks 28a to 28d composed of dot-row-shaped wafer marks 27a and 27b are arranged at predetermined intervals.
Wafer marks 29a to 29d are also symmetrically arranged on the side surface opposite to the shot area 25a.

【0021】ウエハのアライメントに際して、アライメ
ントセンサ9aからウエハ2上のフォトレジスト層に対
して感光性の弱い波長域のアライメント照明光Laが射
出される。アライメントセンサ9aから射出されたアラ
イメント照明光Laは、投影光学系3を介してウエハ2
上のアライメント領域23a(図3(a)参照)に十字
型のスリット光26a,26bとして照射される。その
状態でXYステージ18を駆動して、例えば図3(a)
のドット列状のウエハマーク28aがスリット光26
a,26bをX方向に横切るようにすると、ウエハマー
ク28aがスリット光26a,26bにかかるときにウ
エハマーク28aからの回折光が発生する。ウエハマー
ク28aからの回折光は、入射した光路を逆戻りして、
再び投影光学系3を介して、アライメントセンサ9aに
戻り、内部の受光センサに入射する。アライメントセン
サ9aからは、その受光センサに入射する光量を光電変
換した検出信号が発生する。その検出信号はアライメン
ト処理系(不図示)に供給され、アライメント処理系に
おいて、光量が最も大きくなるときのXYステージ18
のX座標よりそのウエハマーク28aの2次元的な位置
が検出される。なお、本例の投影露光装置にはアライメ
ントセンサ9aと対称に2軸のLSA方式のアライメン
トセンサ(不図示)が配置されており、このアライメン
トセンサにより例えば図3(a)のショット領域25a
のウエハマーク29a〜29dの2次元的な位置が検出
され、これらの検出結果に基づいてウエハ2の走査位置
及び回転角が微調整される。
When the wafer is aligned, the alignment sensor 9a emits the alignment illumination light La in the wavelength region having a weak sensitivity to the photoresist layer on the wafer 2. The alignment illumination light La emitted from the alignment sensor 9 a passes through the projection optical system 3 and the wafer 2
The upper alignment region 23a (see FIG. 3A) is irradiated with cross-shaped slit lights 26a and 26b. In that state, the XY stage 18 is driven to drive the XY stage 18, for example, as shown in FIG.
The wafer mark 28a in the dot row of
When a and 26b are crossed in the X direction, diffracted light from the wafer mark 28a is generated when the wafer mark 28a hits the slit lights 26a and 26b. The diffracted light from the wafer mark 28a reverses the incident optical path,
It again returns to the alignment sensor 9a via the projection optical system 3 and enters the internal light receiving sensor. The alignment sensor 9a generates a detection signal obtained by photoelectrically converting the amount of light incident on the light receiving sensor. The detection signal is supplied to an alignment processing system (not shown), and in the alignment processing system, the XY stage 18 when the light amount becomes the maximum.
The two-dimensional position of the wafer mark 28a is detected from the X coordinate of. In the projection exposure apparatus of this example, a biaxial LSA type alignment sensor (not shown) is arranged symmetrically with the alignment sensor 9a, and this alignment sensor allows, for example, the shot area 25a of FIG.
The two-dimensional positions of the wafer marks 29a to 29d are detected, and the scanning position and the rotation angle of the wafer 2 are finely adjusted based on the detection results.

【0022】以上のように構成された本例の投影露光装
置の動作について、主に図3を参照して説明する。走査
型露光装置は、通常両方向(±X方向)の走査が可能な
構成となっており、本例では走査方向に応じて例えば図
2(a)の照野フィールド21aと図2(b)の照野フ
ィールド21bとを切り換えて使用する。そのように照
野フィールド21a又は21bが設定された後、図1の
主制御系17はウエハステージ駆動系19を介してXY
ステージ18を駆動することによりウエハ2の露光対象
のショット領域を走査開始位置に位置決めした後、露光
用の照明光ILの照射を開始して、レチクルステージ1
6及びXYステージ18を相対的に走査してレチクル1
のパターン像をそのショット領域に逐次転写する。
The operation of the projection exposure apparatus of this example constructed as described above will be described mainly with reference to FIG. The scanning type exposure apparatus is usually configured to be capable of scanning in both directions (± X directions). In this example, for example, the illumination field 21a of FIG. 2A and the illumination field 21a of FIG. The Teruno field 21b is switched and used. After the illumination field 21a or 21b is set as described above, the main control system 17 of FIG.
By driving the stage 18 to position the shot area of the wafer 2 to be exposed at the scanning start position, irradiation of the illumination light IL for exposure is started, and the reticle stage 1
6 and the XY stage 18 relative to each other to scan the reticle 1
Pattern images are sequentially transferred to the shot area.

【0023】この場合、先ず図3(a)に示すように、
ウエハ2上のショット領域25aを矢印Aで示す−X方
向に走査して露光を行うときには、先読み領域22に対
して−X方向側の照野フィールド21aが使用される。
そして、先読み領域22で検出されるショット領域25
aの焦点位置に基づいてウエハのオートフォーカスが行
われ、アライメント領域23a,23bで検出されるウ
エハマーク28a〜28d,29a〜29dの位置に基
づいて、レチクル1とショット領域25aとのアライメ
ントが行われる。
In this case, first, as shown in FIG.
When the shot area 25a on the wafer 2 is scanned and exposed in the −X direction indicated by the arrow A, the illumination field 21a on the −X direction side of the preread area 22 is used.
Then, the shot area 25 detected in the prefetch area 22
The wafer is automatically focused on the basis of the focal position of a, and the reticle 1 and the shot area 25a are aligned on the basis of the positions of the wafer marks 28a to 28d and 29a to 29d detected in the alignment areas 23a and 23b. Be seen.

【0024】一方、図3(b)に示すように、ウエハ2
上の別のショット領域25bを矢印Bで示す+X方向に
走査して露光を行うときには、先読み領域22に対して
+X方向側の照野フィールド21bが使用される。この
際にも、先読み領域22で検出されるショット領域25
bの焦点位置に基づいてウエハのオートフォーカスが行
われ、アライメント領域23a,23bで検出されるウ
エハマークの位置に基づいて、レチクル1とショット領
域25bとのアライメントが行われる。
On the other hand, as shown in FIG.
When scanning another upper shot area 25b in the + X direction indicated by arrow B to perform exposure, the illumination field field 21b on the + X direction side of the prefetch area 22 is used. Also in this case, the shot area 25 detected in the prefetch area 22
The wafer is automatically focused on the basis of the focal position of b, and the reticle 1 and the shot area 25b are aligned on the basis of the positions of the wafer marks detected in the alignment areas 23a and 23b.

【0025】以上、本例によれば、走査方向に応じてレ
チクルブラインド10により2つの照野フィールド21
a,21bの一方を切り換えて形成し、これら2つの照
野フィールドの中間位置におけるショット領域の焦点位
置及びウエハマークの位置情報に基づき、オートフォー
カス及びアライメントを行いつつそのショット領域を走
査露光するので、走査方向により焦点位置検出系及びア
ライメントセンサの検出結果のオフセットが生ずること
がない。また、従来例に比較して半分の数の焦点位置検
出系及びアライメントセンサを設置するだけでよい。
As described above, according to this embodiment, the two reticle fields 21 are formed by the reticle blind 10 according to the scanning direction.
Since one of a and 21b is formed by switching, the shot area is scanned and exposed while performing autofocus and alignment based on the focal position of the shot area and the position information of the wafer mark at the intermediate position of these two illumination field. The detection results of the focus position detection system and the alignment sensor are not offset depending on the scanning direction. Further, it is sufficient to install half the number of focus position detection systems and alignment sensors as compared with the conventional example.

【0026】なお、本例では、2つの照野フィールド2
1a,21bは走査方向に互いに離れた構成となってい
るが、図2(c)及び(d)に示すように一部の領域で
重なるような2つの照野フィールド21c,21dを切
り換えて使用してもよい。また、レチクルブラインド1
0は、本例では第2リレーレンズ12bの前に設けられ
ているが、レチクルブラインド10はレチクル面とほぼ
共役な面にあればよいので、例えばレチクル1の下方に
配置してもよい。
In this example, two Teruno fields 2
1a and 21b are separated from each other in the scanning direction, but as shown in FIGS. 2 (c) and 2 (d), two illumination field fields 21c and 21d which are overlapped with each other are used by switching. You may. Also, reticle blind 1
Although 0 is provided in front of the second relay lens 12b in this example, the reticle blind 10 may be located below the reticle 1, for example, as long as the reticle blind 10 is located on a surface substantially conjugate with the reticle surface.

【0027】また、本例ではアライメントセンサとし
て、投影光学系3を介したTTL方式且つLSA方式の
ものを使用しているが、例えば、投影光学系3を介さな
いオフ・アクシス方式のアライメントセンサ、又は、レ
チクル1及び投影光学系3を介したTTR方式のアライ
メントセンサを使用してもよい。また、2光束干渉方式
(LIA方式)や撮像方式のアライメントセンサを使用
してもよい。
Further, in this example, as the alignment sensor, a TTL system and an LSA system using the projection optical system 3 are used, but, for example, an off-axis alignment sensor not using the projection optical system 3, Alternatively, a TTR type alignment sensor via the reticle 1 and the projection optical system 3 may be used. Alternatively, a two-beam interference type (LIA type) or an image pickup type alignment sensor may be used.

【0028】更に、図2(e)に示すように2つの照野
フィールド21a,21bを覆う広い照野フィールド2
1eを設定し、レチクル1とウエハ2とを静止した状態
で、レチクル1上のパターンをウエハ2上の各ショット
領域に一括露光してもよい。従って、本例の投影露光装
置は、走査露光型に限らず、レチクルのパターンをウエ
ハのショット領域に一括して露光するステッパー等の一
括露光型の投影露光装置としても兼用できる。
Further, as shown in FIG. 2 (e), a wide illumination field 2 covering the two illumination fields 21a and 21b.
1e may be set, and the pattern on the reticle 1 may be collectively exposed to each shot area on the wafer 2 with the reticle 1 and the wafer 2 stationary. Therefore, the projection exposure apparatus of this example is not limited to the scanning exposure type, but can be used also as a batch exposure type projection exposure apparatus such as a stepper that collectively exposes the reticle pattern onto the shot area of the wafer.

【0029】なお、本発明は上述の実施の形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々の構成を取
り得ることは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that various configurations can be adopted without departing from the gist of the present invention.

【0030】[0030]

【発明の効果】本発明の投影露光装置によれば、走査方
向に応じて露光領域を切り換えるようにして、共通の面
位置制御手段を使用しているため、面位置制御手段用の
焦点位置検出系等のセンサの設置数が少なくて済む他、
走査方向によって焦点位置(高さ)等の検出誤差が生ず
ることがない利点がある。従って、面位置制御手段に使
用される例えば焦点位置検出系のオフセット補正等を行
う必要もなくなり、シンプルな装置構成にできる利点が
ある。
According to the projection exposure apparatus of the present invention, since the exposure area is switched according to the scanning direction and the common surface position control means is used, the focus position detection for the surface position control means is performed. In addition to the need to install a small number of sensors for the system,
There is an advantage that a detection error such as a focus position (height) does not occur depending on the scanning direction. Therefore, there is no need to perform offset correction of the focus position detection system used in the surface position control means, and there is an advantage that a simple device configuration can be achieved.

【0031】また、複数個の露光領域の間の近傍の領域
で基板上の位置合わせ用マークの位置を検出するアライ
メントセンサを設け、このアライメントセンサの検出結
果より基板とマスクとの位置合わせを行う場合には、ア
ライメントセンサの設置数を少なくできる。また、面位
置制御手段の場合と同様に、走査方向によってアライメ
ントセンサの検出誤差(アライメント誤差)の発生もな
く、マスクと基板とを高精度に位置合わせできる利点が
ある。
Further, an alignment sensor for detecting the position of the alignment mark on the substrate is provided in a region near the plurality of exposure regions, and the alignment between the substrate and the mask is performed based on the detection result of this alignment sensor. In this case, the number of alignment sensors installed can be reduced. Further, similar to the case of the surface position control means, there is an advantage that the detection error (alignment error) of the alignment sensor does not occur depending on the scanning direction and the mask and the substrate can be aligned with high accuracy.

【0032】また、露光領域切り換え手段が、投影光学
系の有効露光フィールド内で複数個の露光領域の全部を
含む一括露光領域を選択的に設定し、この一括露光領域
が設定されたときにマスクと基板とを静止させた状態で
露光を行う場合には、本発明の投影露光装置を一括露光
方式の投影露光装置としても兼用できる利点がある。
Further, the exposure area switching means selectively sets a collective exposure area including all of the plurality of exposure areas in the effective exposure field of the projection optical system, and when the collective exposure area is set, the mask is set. When the exposure is performed with the substrate and the substrate kept stationary, there is an advantage that the projection exposure apparatus of the present invention can also be used as a projection exposure apparatus of a batch exposure system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による投影露光装置の実施の形態の一例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a projection exposure apparatus according to the present invention.

【図2】図1のレチクルブラインド10の制御によって
設定できる照野フィールドの種々の例を示す図である。
FIG. 2 is a diagram showing various examples of an illumination field that can be set by controlling a reticle blind 10 in FIG.

【図3】(a)はショット領域を−X方向に走査する場
合に使用される照野フィールドを示す平面図、(b)は
ショット領域を+X方向に走査する場合に使用される照
野フィールドを示す平面図である。
FIG. 3A is a plan view showing an illumination field field used when scanning a shot area in the −X direction, and FIG. 3B is an illumination field field used when scanning a shot area in the + X direction. FIG.

【図4】従来の投影露光装置における照野フィールド及
び焦点位置の先読み領域等の配置を示す平面図である。
FIG. 4 is a plan view showing an arrangement of an illumination field field and a look-ahead area of a focus position in a conventional projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1 レチクル 2 ウエハ 3 投影光学系 5 Zステージ 8a 照射光学系(焦点位置検出系) 8b 受光光学系(焦点位置検出系) 9a アライメントセンサ 10 レチクルブラインド 11 ブラインド駆動装置 16 レチクルステージ 17 主制御系 18 XYステージ 21a〜21e 照野フィールド 22 先読み領域 23a,23b アライメント領域 25a,25b ショット領域 1 reticle 2 wafer 3 projection optical system 5 Z stage 8a irradiation optical system (focus position detection system) 8b light receiving optical system (focus position detection system) 9a alignment sensor 10 reticle blind 11 blind drive device 16 reticle stage 17 main control system 18 XY Stages 21a to 21e Teruno field 22 Look-ahead area 23a, 23b Alignment area 25a, 25b Shot area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マスク上の転写用のパターンの一部を投
影光学系を介して基板上に投影した状態で、前記マスク
を前記投影光学系に対して所定方向に走査するのと同期
して、前記基板を前記投影光学系に対して前記所定方向
に対応する方向に走査することにより、前記マスクの転
写用のパターンの像を逐次前記基板上に転写する投影露
光装置において、 前記投影光学系の有効露光フィールド内で前記基板の走
査方向に離れた位置に切り換え自在に複数個の露光領域
を設定する露光領域切り換え手段と、 前記複数個の露光領域の間の前記基板の前記投影光学系
の光軸方向の位置を検出し、該検出結果に基づいて前記
基板の高さ又は傾斜角を制御する面位置制御手段と、 前記基板の前記投影光学系に対する走査方向に応じて前
記露光領域切り換え手段を介して前記投影光学系による
露光領域を切り換える制御手段と、を有することを特徴
とする投影露光装置。
1. In a state where a part of a transfer pattern on a mask is projected onto a substrate through a projection optical system, the mask is scanned in a predetermined direction in synchronization with the projection optical system. A projection exposure apparatus that sequentially transfers an image of a transfer pattern of the mask onto the substrate by scanning the substrate in a direction corresponding to the predetermined direction with respect to the projection optical system, Exposure area switching means for setting a plurality of exposure areas so as to be switchable to positions apart from each other in the scanning direction of the substrate within the effective exposure field, and the projection optical system of the substrate for the substrate between the plurality of exposure areas. Surface position control means for detecting a position in the optical axis direction and controlling the height or inclination angle of the substrate based on the detection result; and the exposure area switching according to the scanning direction of the substrate with respect to the projection optical system. And a control unit for switching the exposure region by the projection optical system via a means.
【請求項2】 請求項1記載の投影露光装置であって、 前記複数個の露光領域の間の近傍の領域で前記基板上の
位置合わせ用マークの位置を検出するアライメントセン
サを設け、 該アライメントセンサの検出結果より前記基板と前記マ
スクとの位置合わせを行うことを特徴とする投影露光装
置。
2. The projection exposure apparatus according to claim 1, further comprising an alignment sensor that detects a position of an alignment mark on the substrate in a region in the vicinity of the plurality of exposure regions, A projection exposure apparatus, which aligns the substrate and the mask based on a detection result of a sensor.
【請求項3】 請求項1又は2記載の投影露光装置であ
って、 前記露光領域切り換え手段は、前記投影光学系の有効露
光フィールド内で前記複数個の露光領域の全部を含む一
括露光領域を選択的に設定し、 該一括露光領域が設定されたときに前記マスクと前記基
板とを静止させた状態で露光を行うことを特徴とする投
影露光装置。
3. The projection exposure apparatus according to claim 1, wherein the exposure area switching means sets a collective exposure area including all of the plurality of exposure areas within an effective exposure field of the projection optical system. A projection exposure apparatus, which is selectively set, and performs exposure while the mask and the substrate are stationary when the collective exposure region is set.
JP7243132A 1995-09-21 1995-09-21 Projection exposure system Withdrawn JPH0992593A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7243132A JPH0992593A (en) 1995-09-21 1995-09-21 Projection exposure system
KR1019960039215A KR970016824A (en) 1995-09-21 1996-09-11 Projection Exposure System and Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7243132A JPH0992593A (en) 1995-09-21 1995-09-21 Projection exposure system

Publications (1)

Publication Number Publication Date
JPH0992593A true JPH0992593A (en) 1997-04-04

Family

ID=17099282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7243132A Withdrawn JPH0992593A (en) 1995-09-21 1995-09-21 Projection exposure system

Country Status (2)

Country Link
JP (1) JPH0992593A (en)
KR (1) KR970016824A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195353A (en) * 2005-01-17 2006-07-27 Nikon Corp Exposure unit and manufacturing method of display device
WO2007077925A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Pattern formation method, pattern formation device, and device fabrication method
WO2007097379A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2006195353A (en) * 2005-01-17 2006-07-27 Nikon Corp Exposure unit and manufacturing method of display device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
JP2012099850A (en) * 2005-12-28 2012-05-24 Nikon Corp Patterning method and patterning device, and method of manufacturing device
WO2007077925A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Pattern formation method, pattern formation device, and device fabrication method
KR101356270B1 (en) * 2006-02-21 2014-01-28 가부시키가이샤 니콘 Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
KR101495471B1 (en) * 2006-02-21 2015-02-23 가부시키가이샤 니콘 Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP5195417B2 (en) * 2006-02-21 2013-05-08 株式会社ニコン Pattern forming apparatus, exposure apparatus, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
CN101980085A (en) * 2006-02-21 2011-02-23 株式会社尼康 Exposure apparatus, exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
WO2007097379A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
KR970016824A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JPH04277612A (en) Projection aligner and projection exposure method
JPH06260391A (en) Exposure method
JPH0992593A (en) Projection exposure system
JPH0922863A (en) Method and device for scanning exposure and device manufacturing method using it
JPH08316123A (en) Projection aligner
JP2926325B2 (en) Scanning exposure method
JP3371406B2 (en) Scanning exposure method
JP3564833B2 (en) Exposure method
US6195155B1 (en) Scanning type exposure method
JPH08288192A (en) Projection aligner
JP3531227B2 (en) Exposure method and exposure apparatus
JP2000133563A (en) Exposure method and aligner
JP2830868B2 (en) Projection exposure apparatus and scanning exposure method
JPH05343292A (en) Exposure apparatus
JP2001250768A (en) Projection aligner
JP3161430B2 (en) Scanning exposure method, scanning exposure apparatus, and element manufacturing method
JP3230675B2 (en) Scanning exposure method, scanning exposure apparatus, and device manufacturing method using the method
JP2004259815A (en) Exposure method
JPH11233433A (en) Scanning aligner, scanning exposure method, and manufacture of device
JP2830869B2 (en) Circuit element manufacturing method
JP2000357656A (en) Exposure system, exposure method and device manufacturing method
JP2000252192A (en) Projection exposure method and projection aligner
JP3278061B2 (en) Scanning exposure method, scanning exposure apparatus, and device manufacturing method using the method
JP2000250226A (en) Exposure device
JPH10270303A (en) Scanning aligner and method of scanning exposure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203