JPH1092580A - Thin film electroluminescent element and manufacture thereof - Google Patents

Thin film electroluminescent element and manufacture thereof

Info

Publication number
JPH1092580A
JPH1092580A JP8246779A JP24677996A JPH1092580A JP H1092580 A JPH1092580 A JP H1092580A JP 8246779 A JP8246779 A JP 8246779A JP 24677996 A JP24677996 A JP 24677996A JP H1092580 A JPH1092580 A JP H1092580A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
film
light emitting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8246779A
Other languages
Japanese (ja)
Inventor
Hisato Kato
久人 加藤
Shinichi Nakamata
伸一 仲俣
Takashi Tsuji
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8246779A priority Critical patent/JPH1092580A/en
Publication of JPH1092580A publication Critical patent/JPH1092580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film electroluminescent element provided with an insulating layer, with which an ordinary wet process can be applied at the patterning of an electrode layer formed on the insulating layer provided on a light emitting layer, and to provide the manufacture thereof. SOLUTION: In an electroluminescent element formed by laminating a first electrode layer 21, a first insulating layer 31, a light emitting layer 4 made of alkaline earth group sulfide, to which at least rare earth group element is added, a second insulating layer 32 and a second electrode layer 22 in order on an insulating board 11, density of the second insulating layer 32 is set at a value more than 87% of the density of single crystal of the material, which forms the second insulating layer. As the material of the second insulating layer 32, any one of aluminum oxide, tantalum oxide and aluminium nitride is used. An electroluminescent device using this EL element is provided with a sealing board 12 and color filters 5r, 5g, 5b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多色発光ディスプ
レイに用いられる薄膜エレクトロルミネッセンス素子お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electroluminescent device used for a multicolor light emitting display and a method for manufacturing the same.

【0002】[0002]

【従来の技術】フラットディスプレイ用の素子の1つで
ある薄膜エレクトロルミネッセンス(以下、ELと記
す)素子は、鮮明でコントラストが高く、視野角依存性
も小さいためコンピュータ端末の表示素子、車両への搭
載用表示素子等として研究開発が進められている。
2. Description of the Related Art A thin-film electroluminescence (hereinafter, referred to as EL) element, which is one of the elements for a flat display, is sharp, has high contrast, and has a small viewing angle dependency. Research and development are progressing as display elements for mounting.

【0003】図2は従来の単色薄膜EL装置を示し、
(a)は平面図であり、(b)は(a)におけるXX断
面図である。ガラス基板11の上に第1の電極層21、
第1の絶縁層31、発光層4、第2の絶縁層32、第2
の電極層22が順次積層された薄膜EL素子には封止部
材7を介して封止基板12が被せられシリコーンオイル
6が内部に注入された後、気密封止される。両電極層に
駆動電源Eを接続し、両極性のパルス電圧を印加してE
L発光させる。
FIG. 2 shows a conventional monochromatic thin film EL device.
(A) is a plan view, (b) is an XX sectional view in (a). A first electrode layer 21 on a glass substrate 11;
The first insulating layer 31, the light emitting layer 4, the second insulating layer 32, the second
The sealing substrate 12 is covered via the sealing member 7 on the thin-film EL element in which the electrode layers 22 are sequentially laminated, and after the silicone oil 6 is injected into the inside, the hermetically sealed. A drive power source E is connected to both electrode layers, and a pulse voltage of both polarities is applied to
L is emitted.

【0004】薄膜EL素子は以下の作製プロセスに沿っ
て作製される。 (1)絶縁性基板11としてガラス基板上に第1の電極
層2を成膜し、フォトプロセスにより所定のパターン
(例えば短冊状)を形成する。第1の電極層21はモリ
ブデン(Mo)、タングステン(W )等の金属層、または
酸化インジウムスズ(以下、ITOと記す)等の透明導
電層である。
[0004] A thin film EL device is manufactured according to the following manufacturing process. (1) The first electrode layer 2 is formed on a glass substrate as the insulating substrate 11, and a predetermined pattern (for example, a strip shape) is formed by a photo process. The first electrode layer 21 is a metal layer such as molybdenum (Mo) or tungsten (W), or a transparent conductive layer such as indium tin oxide (hereinafter referred to as ITO).

【0005】(2)第1の絶縁層31を成膜する。第1
の絶縁層31は化ケイ素(以下、SiO2と記す)膜と窒化
ケイ素(以下、Si3N4 と記す)膜の順の積層膜である。 (3)発光層4として黄橙色発光のZnS:Mnからなる蛍光
体層を成膜、熱処理する。 (4)第2の絶縁層6を成膜する。第1の絶縁層とは逆
順の積層膜である。
(2) The first insulating layer 31 is formed. First
The insulating layer 31 is a laminated film of a silicon oxide (hereinafter, referred to as SiO 2 ) film and a silicon nitride (hereinafter, referred to as Si 3 N 4 ) film. (3) A phosphor layer made of ZnS: Mn that emits yellow-orange light is formed as the light-emitting layer 4 and heat-treated. (4) The second insulating layer 6 is formed. It is a stacked film in the reverse order of the first insulating layer.

【0006】(5)第2の電極7を成膜し、フォトプロ
セスにより所定のパターン(例えば第1の電極に直交す
る短冊状)を作成する。第2の電極層22はITO等の
透明導電層、またはアルミニウム(Al)の様な金属電極
である。上記のZnS:Mnが用いられた単色発光の薄膜EL
ディスプレイは既に実用化されているが、ディスプレイ
内容の多様化に伴いカラー化が不可欠となっている。
(5) The second electrode 7 is formed into a film, and a predetermined pattern (for example, a rectangular shape orthogonal to the first electrode) is formed by a photo process. The second electrode layer 22 is a transparent conductive layer such as ITO or a metal electrode such as aluminum (Al). Monochromatic light emitting thin film EL using ZnS: Mn described above
Although displays have already been put to practical use, colorization has become indispensable as display contents have diversified.

【0007】カラー薄膜EL素子における発光層に用い
られる蛍光体としては、赤色用にはCaS:Eu、ZnS:Sm、Sr
S:Euなど、緑色用にはZnS:Tb、CaS:Ceなど、青色用には
SrS:Ceなど、また白色用としてSrS:CeとZnS:Mnとの積層
膜など、アルカリ土類硫化物が用いられる。白色発光材
料を用いてカラー発光させる場合は、白色薄膜EL素子
と、通常あらかじめカラーフィルターを作製した封止基
板とを重ね合わせ、封止基板側から3原色に分光された
光を放射させる(図1参照)。
Phosphors used in the light emitting layer of the color thin film EL device include CaS: Eu, ZnS: Sm, and Sr for red.
S: Eu, etc., for green, ZnS: Tb, CaS: Ce, etc., for blue
Alkaline earth sulfides such as SrS: Ce and a laminated film of SrS: Ce and ZnS: Mn for white color are used. When color emission is performed using a white light-emitting material, a white thin-film EL element is superimposed on a sealing substrate, on which a color filter is usually prepared in advance, and light separated into three primary colors is emitted from the sealing substrate side (see FIG. 1).

【0008】このようなアルカリ土類硫化物を用いた発
光層を被覆する第2の絶縁層としては、通常スパッタに
より形成された絶縁膜が用いられているが、次に述べる
ような問題点があり、カラーELディスプレイは実現さ
れていない。
As the second insulating layer covering the light emitting layer using such an alkaline earth sulfide, an insulating film formed by sputtering is usually used. However, the following problems arise. Yes, a color EL display has not been realized.

【0009】[0009]

【発明が解決しようとする課題】これらアルカリ土類硫
化物を用いた発光層の上の第2の電極層をパターニング
する際、通常の水系の溶液を用いたウエットプロセスで
は第2の絶縁層を通して発光層に水分が侵入し、アルカ
リ土類硫化物が加水分解するために、第2の電極のパタ
ーニングは不可能であった。このため、第2の電極のパ
ターニングには、ドライプロセス、または非水系プロセ
スなどの、複雑でコストの高いプロセスが必要であっ
た。
When patterning the second electrode layer on the light emitting layer using the alkaline earth sulfide, the wet process using an ordinary aqueous solution passes through the second insulating layer. Patterning of the second electrode was not possible because moisture penetrated into the light emitting layer and the alkaline earth sulfide was hydrolyzed. For this reason, patterning of the second electrode requires a complicated and expensive process such as a dry process or a non-aqueous process.

【0010】本発明の目的は、発光層上の絶縁層の上に
成膜された電極層のパターニングに、通常の水系の溶液
を用いたウエットプロセスを適用できる絶縁層を備えた
薄膜EL素子およびその製造方法を提供することにあ
る。
An object of the present invention is to provide a thin-film EL device having an insulating layer which can be applied to an electrode layer formed on an insulating layer on a light-emitting layer by a conventional wet process using an aqueous solution for patterning. It is to provide a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、絶縁性基板上に第1の電極層、第1の絶縁層、少
なくとも希土類元素が添加されたアルカリ土類硫化物よ
りなる発光層、第2の絶縁層、第2の電極とを順次積層
した薄膜エレクトロルミネッセンス素子において、第2
の絶縁層の密度(質量/体積)は第2の絶縁層を構成す
る材料の単結晶の密度の87%を越えていることとす
る。
In order to achieve the above-mentioned object, a first electrode layer, a first insulating layer, and a light emitting device comprising an alkaline earth sulfide to which at least a rare earth element is added are provided on an insulating substrate. Layer, a second insulating layer, and a second electrode are sequentially laminated.
It is assumed that the density (mass / volume) of the insulating layer exceeds 87% of the density of the single crystal of the material forming the second insulating layer.

【0012】前記第2の絶縁層の構成材料は酸化アルミ
ニウム、酸化タンタルまたは窒化アルミニウムのいずれ
かであると良い。前記薄膜エレクトロルミネッセンス素
子の製造方法において、前記第2の絶縁層は表面反応を
用いた熱CVDにより形成されると良い。前記酸化アル
ミニウムはトリメチルアルミニウムガスと水蒸気との混
合ガスを用いて成膜されると良い。
The constituent material of the second insulating layer is preferably any one of aluminum oxide, tantalum oxide and aluminum nitride. In the method for manufacturing a thin-film electroluminescence element, the second insulating layer may be formed by thermal CVD using a surface reaction. The aluminum oxide is preferably formed using a mixed gas of a trimethylaluminum gas and water vapor.

【0013】前記酸化タンタルは五塩化タンタルガスと
水蒸気との混合ガスを用いて成膜されると良い。前記窒
化アルミニウムは三塩化アルミニウムガスとアンモニア
との混合ガスを用いて成膜されると良い。
The tantalum oxide is preferably formed by using a mixed gas of tantalum pentachloride gas and water vapor. The aluminum nitride is preferably formed using a mixed gas of aluminum trichloride gas and ammonia.

【0014】[0014]

【発明の実施の形態】発明者らは、発光層に水分が侵入
する原因が、(1) 高輝度化のための熱処理で生ずる発光
層のクラックまたは(2) 発光層成膜時に発生する突起と
なる異常結晶粒などの発光層の表面形状に起因する第2
の絶縁層の欠陥以外にも、(3) 第2の絶縁層に微細なピ
ンホールが多数存在し、第2の絶縁層を構成する材料の
密度の同じ材料の単結晶の密度に対する比(相対密度)
が低下していることも大きく影響していることを見出し
た。本発明に係る相対密度の高い第2の絶縁層には微細
なピンホールはなく、さらに発光層の表面形状によらず
被覆が平滑であるため、第2の電極層のウェットエッチ
ングに際して、水分を通さず、発光層は加水分解されな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have found that the cause of intrusion of moisture into the light emitting layer is as follows: (1) cracks in the light emitting layer caused by heat treatment for increasing luminance or (2) protrusions generated during the formation of the light emitting layer. Due to the surface shape of the light emitting layer such as abnormal crystal grains
(3) The ratio of the density of the material constituting the second insulating layer to the density of the single crystal of the same material (relative density)
It has also been found that the decrease in the value has a great effect. Since the second insulating layer having a high relative density according to the present invention has no fine pinholes and has a smooth coating regardless of the surface shape of the light-emitting layer, moisture is removed during wet etching of the second electrode layer. The light-emitting layer is not hydrolyzed.

【0015】第2の絶縁層の耐水性は次のように確認し
た。第2の絶縁層まで積層成膜した基板を水に浸し、発
光層に水分が侵入し発光層(SrS:Ce)が加水分解して変
色した面積を調べた。発光層全面積に対する面積比を出
した。表1から、ピンホールを少なくして相対膜密度を
87%以上とした条件では発光層に水分が侵入せず、第
2の電極を水系の溶液でウエットパターニングすること
が可能であることが判明した。
The water resistance of the second insulating layer was confirmed as follows. The substrate on which the second insulating layer was stacked was immersed in water, and the area in which moisture penetrated into the light emitting layer and the light emitting layer (SrS: Ce) was hydrolyzed and discolored was examined. The area ratio to the total area of the light emitting layer was calculated. From Table 1, it was found that under the condition that the pinhole was reduced and the relative film density was set to 87% or more, moisture did not enter the light emitting layer, and the second electrode could be wet-patterned with an aqueous solution. did.

【0016】図1は本発明に係る実施例の多色薄膜EL
装置の断面図である。従来の単色薄膜EL装置(図2)
と異なっている点のみ説明する。第1の電極層21と対
向する第2の電極層22に電源Eからパルス電圧を印加
することにより白色発光する発光層4aとしてSrS:Ceか
らなる層とZnS:Mnからなる層の積層膜を用い、これから
の白色発光を封止基板12に形成されているカラーフィ
ルター5r、5g、5bで分光し赤色、緑色および青色
(R、G、Bと略記する)の3原色を得ることができ
る。以下に製造プロセスに沿って説明する。
FIG. 1 shows a multicolor thin film EL according to an embodiment of the present invention.
It is sectional drawing of an apparatus. Conventional single-color thin-film EL device (Fig. 2)
Only the differences from the above will be described. By applying a pulse voltage from a power source E to the second electrode layer 22 facing the first electrode layer 21, a laminated film of a layer made of SrS: Ce and a layer made of ZnS: Mn is formed as a light emitting layer 4a that emits white light. The white light to be emitted is then separated by the color filters 5r, 5g, and 5b formed on the sealing substrate 12 to obtain three primary colors of red, green, and blue (abbreviated as R, G, and B). Hereinafter, the manufacturing process will be described.

【0017】(1)無アルカリガラスの基板11上に第
1の電極層としてタングステン膜(W )を直流スパッタ
により膜厚200nm成膜した後、CF4 ガスによるドライ
エッチングによりW 膜をパターニングし、第1の電極2
とした。 (2)基板11全面に、第1の絶縁層31として酸化ケ
イ素と窒化ケイ素の積層膜を高周波反応性スパッタによ
り順に成膜した。それぞれの膜厚は、酸化ケイ素では5
0nm、窒化ケイ素では200nmとした。 (3)発光層4aとして、ZnS:Mn膜を400nm電子線蒸
着により成膜した。その後、真空を破ることなく引き続
きSrS:Ce膜1000nmを電子線蒸着法にて成膜した。こ
の後、SrS:Ceの結晶性を向上し高輝度化を図る目的で、
硫化水素雰囲気中で600℃、30分の熱処理を行っ
た。 (4)第2の絶縁層32として実施例で説明する構成材
料と成膜方法により、相対密度の高いる成膜を行った。 (5)第2の電極6として、ITO膜を直流スパッタ法
にて200nm成膜し、ウエットプロセスによりITO膜
のパターニングを行った。 (6)最後に、カラーフィルター5の形成されている封
止基板12を封止部材7を用いて対向固定し、薄膜EL
装置とした。ここで、EL素子基板11とカラーフィル
ター付き封止基板12との間には、シリコーンオイル6
を封入し、直径10μm のスペーサー(図示せず)を挿
入し、EL素子とカラーフィルターとの距離を一定とし
た。 実施例1 上記製造プロセス(4)において、第2の絶縁層として
酸化アルミニウム膜について、2つの成膜方法を試み
た。
(1) A tungsten film (W) is formed as a first electrode layer on a non-alkali glass substrate 11 by DC sputtering to a thickness of 200 nm, and then the W film is patterned by dry etching with CF 4 gas. First electrode 2
And (2) A laminated film of silicon oxide and silicon nitride was sequentially formed as a first insulating layer 31 on the entire surface of the substrate 11 by high-frequency reactive sputtering. Each film thickness is 5 for silicon oxide.
0 nm and 200 nm for silicon nitride. (3) As the light emitting layer 4a, a ZnS: Mn film was formed by 400 nm electron beam evaporation. Thereafter, a 1000 nm SrS: Ce film was continuously formed by electron beam evaporation without breaking vacuum. Then, for the purpose of improving the crystallinity of SrS: Ce and increasing the brightness,
Heat treatment was performed at 600 ° C. for 30 minutes in a hydrogen sulfide atmosphere. (4) As the second insulating layer 32, a film having a high relative density was formed by the constituent materials and the film forming method described in the example. (5) As the second electrode 6, an ITO film was formed to a thickness of 200 nm by DC sputtering, and the ITO film was patterned by a wet process. (6) Finally, the sealing substrate 12 on which the color filter 5 is formed is opposed and fixed using the sealing member 7 to form the thin film EL.
The device. Here, a silicone oil 6 is provided between the EL element substrate 11 and the sealing substrate 12 with a color filter.
And a spacer (not shown) having a diameter of 10 μm was inserted to keep the distance between the EL element and the color filter constant. Example 1 In the above manufacturing process (4), two film forming methods were tried for an aluminum oxide film as the second insulating layer.

【0018】第1の成膜方法とした熱CVDでは、トリ
メチルアルミニウムを加熱気化したガスと水蒸気の混合
ガス中に、発光層まで成膜した基板を置いて300℃に
保持し、膜厚200nmの酸化アルミニウム膜を成膜し
た。第2の成膜方法としたスパッタでは、酸化アルミニ
ウム(Al203 )のターゲットとガス圧133mPa のArを
用い、2W/cm2 の電力を投入し膜厚200nmの酸化アル
ミニウム膜を成膜した。
In the thermal CVD as the first film forming method, the substrate on which the light emitting layer is formed is placed in a mixed gas of a gas obtained by heating and vaporizing trimethyl aluminum and water vapor, and the substrate is maintained at 300 ° C. An aluminum oxide film was formed. In the sputtering as the second film formation method, an aluminum oxide (Al 2 O 3 ) target and a gas pressure of 133 mPa Ar were used and a power of 2 W / cm 2 was applied to form a 200 nm-thick aluminum oxide film. .

【0019】スパッタ絶縁層の場合は、上記製造プロセ
ス(5)の電極パターニング後で明らかに発光層が変質
したので、熱CVD絶縁層の場合のみ上記製造プロセス
(6)迄行い、EL装置に組み立てた。第1の絶縁層と
同じ構成逆順の第2の絶縁層を形成し、第2の電極層を
パターニングしないで上記製造プロセス(6)迄行った
EL装置と発光輝度とその信頼性(長期通電発光試験)
を比較したところ、熱CVD酸化アルミニウム絶縁層を
用いたEL装置は同じ特性であった。
In the case of the sputtered insulating layer, since the light emitting layer was obviously deteriorated after the electrode patterning in the above-mentioned manufacturing process (5), the above-mentioned manufacturing process (6) was performed only in the case of the thermal CVD insulating layer, and the EL device was assembled. Was. An EL device formed up to the above-described manufacturing process (6) without patterning the second electrode layer by forming a second insulating layer having the same configuration as the first insulating layer in the reverse order, and emitting luminance and its reliability (long-term energizing light emission) test)
The EL device using the thermal CVD aluminum oxide insulating layer had the same characteristics.

【0020】熱CVDの際の水蒸気により発光層が吸湿
し、発光特性が劣化することが懸念されたが、上記のよ
うに発光特性は変わらなかった。熱CVDの際、水は発
光層の表面に1分子層だけ吸着され、直ちに酸化アルミ
ニウム膜の堆積が開始するので、発光層内の水分は少な
く、加水分解は起こらないと推定できる。同時に作製し
た第2の絶縁層の密度をラザフォード後方散乱測定から
算出したところ、熱CVD絶縁層の膜密度は単結晶酸化
アルミニウムのそれの92% であり、スパッタ絶縁層で
は87% であった。
It was feared that the light-emitting layer would absorb moisture due to water vapor during thermal CVD and the light-emitting characteristics would be degraded. However, the light-emitting characteristics did not change as described above. At the time of thermal CVD, only one molecular layer of water is adsorbed on the surface of the light emitting layer, and the deposition of the aluminum oxide film starts immediately. Therefore, it is estimated that the water in the light emitting layer is small and no hydrolysis occurs. When the density of the second insulating layer formed at the same time was calculated from Rutherford backscattering measurement, the film density of the thermal CVD insulating layer was 92% of that of single crystal aluminum oxide, and 87% of the sputtered insulating layer.

【0021】また、第2の絶縁層まで成膜した基板を水
に浸漬し、発光層の加水分解による変色した部分の面積
を測定し、発光層の全面積に対する面積比を求め、これ
を耐水性の目安とした。熱CVD絶縁層とスパッタ絶縁
層の耐水性はそれぞれ0%、30%であった。表1に膜
材質、成膜方法、成膜条件および相対密度、耐水性を示
す。表1には実施例2以降のデータも示してある。
Further, the substrate on which the film was formed up to the second insulating layer was immersed in water, the area of the discolored portion of the luminescent layer due to hydrolysis was measured, and the area ratio to the total area of the luminescent layer was determined. It was a measure of gender. The water resistance of the thermal CVD insulation layer and the water resistance of the sputter insulation layer were 0% and 30%, respectively. Table 1 shows film materials, film forming methods, film forming conditions, relative densities, and water resistance. Table 1 also shows the data of Example 2 and thereafter.

【0022】[0022]

【表1】 実施例2 実施例1と同様に、第2の絶縁層として酸化タンタル膜
について、2つの成膜方法を試みた。第1の成膜方法と
した熱CVDでは、五塩化タンタルを加熱気化したガス
と水蒸気の混合ガス中に、発光層まで成膜した基板を置
いて350℃に保持し、膜厚200nmの酸化タンタル膜
を成膜した。
[Table 1] Example 2 In the same manner as in Example 1, two film forming methods were attempted for a tantalum oxide film as the second insulating layer. In thermal CVD as the first film forming method, a substrate on which a light emitting layer is formed is placed in a mixed gas of a gas obtained by heating and evaporating tantalum pentachloride and water vapor, and is maintained at 350 ° C. A film was formed.

【0023】第2の成膜方法としたスパッタでは、タン
タル(Ta)のターゲットとガス圧403mPa の30%O2
を含むArを用い、4W/cm2 の電力を投入し膜厚200nm
の酸化タンタル膜を成膜した。スパッタ絶縁層の場合
は、上記製造プロセス(5)の電極パターニング後で明
らかに発光層が変質したので、熱CVD絶縁層の場合の
み上記製造プロセス(6)迄行い、EL装置に組み立
て、実施例1と同様に発光輝度とその信頼性を調べたと
ころ、実施例1と同じであった。また、実施例1と同様
にして、相対密度と耐水性を調べた結果、熱CVD酸化
タンタルとスパッタ酸化タンタルはそれぞれ、93%、
85%および0%、25%であった。 実施例3 実施例1と同様に、第2の絶縁層として窒化アルミニウ
ム膜について、2つの成膜方法を試みた。
In the second sputtering method, a target of tantalum (Ta) and a gas pressure of 403 mPa and 30% O 2 are used.
Is used, and an electric power of 4 W / cm 2 is applied and the film thickness is 200 nm.
Was formed. In the case of the sputtered insulating layer, since the light emitting layer was obviously changed after the electrode patterning in the manufacturing process (5), the manufacturing process (6) was performed only in the case of the thermal CVD insulating layer, and the EL device was assembled. When the emission luminance and its reliability were examined in the same manner as in Example 1, it was the same as Example 1. Further, as a result of examining the relative density and the water resistance in the same manner as in Example 1, the thermal CVD tantalum oxide and the sputtered tantalum oxide were each 93%,
85% and 0%, 25%. Example 3 In the same manner as in Example 1, two film forming methods were attempted for an aluminum nitride film as the second insulating layer.

【0024】第1の成膜方法とした熱CVDでは、三塩
化アルミニウムを加熱気化したガスとアンモニアの混合
ガス中に、発光層まで成膜した基板を置いて450℃に
保持し、膜厚200nmの窒化アルミニウム膜を成膜し
た。第2の成膜方法としたスパッタでは、アルミニウム
(Al)のターゲットとガス圧670mPa の50%N2を含
むArを用い、1W/cm2 の電力を投入し膜厚200nmの窒
化アルミニウム膜を成膜した。
In the thermal CVD as the first film forming method, the substrate on which the light-emitting layer is formed is placed in a mixed gas of a gas in which aluminum trichloride is heated and vaporized and ammonia, and is maintained at 450 ° C. Was formed. In the second sputtering method, an aluminum (Al) target and Ar containing 50% N 2 at a gas pressure of 670 mPa were used, and a power of 1 W / cm 2 was applied to form a 200 nm-thick aluminum nitride film. Filmed.

【0025】スパッタ絶縁層の場合は、上記製造プロセ
ス(5)の電極パターニング後で明らかに発光層が変質
したので、熱CVD絶縁層の場合のみ上記製造プロセス
(6)迄行い、EL装置に組み立て、実施例1と同様に
発光輝度とその信頼性を調べたところ、実施例1と同じ
であった。また、実施例1と同様にして、相対密度と耐
水性を調べた結果、熱CVD窒化アルミニウムとスパッ
タ窒化アルミニウムはそれぞれ、94%、83%および
0%、45%であった。 比較例 製造方法プロセス(4)の際加水分解がおこり、高輝度
が得られなかった窒化ケイ素膜の場合を説明する。
In the case of the sputtered insulating layer, since the light emitting layer was obviously changed after the electrode patterning in the above-mentioned manufacturing process (5), the above-mentioned manufacturing process (6) was performed only in the case of the thermal CVD insulating layer, and the EL device was assembled. When the light emission luminance and its reliability were examined in the same manner as in Example 1, the result was the same as in Example 1. The relative density and the water resistance were examined in the same manner as in Example 1. As a result, the thermal CVD aluminum nitride and the sputtered aluminum nitride were 94%, 83%, 0%, and 45%, respectively. Comparative Example A case of a silicon nitride film in which high luminance was not obtained due to hydrolysis during the production process (4) will be described.

【0026】第1の成膜方法としたRFプラズマでは、
シランガス(Si H ):アンモニア(NH ):水素ガス(H )
=1:4:16を用い、ガス圧133Pa、0.5W/cm2
の電力を投入し、発光層まで成膜した基板を置いて30
0℃に保持し、膜厚200nmの酸化タンタル膜を成膜し
た。第2の成膜方法とした反応性スパッタでは、Siター
ゲットとガス圧400mPaのN2を用い、2W/cm2 の電力
を投入し、膜厚200nmの窒化ケイ素膜を成膜した。
In the RF plasma used as the first film forming method,
Silane gas (SiH): Ammonia (NH): Hydrogen gas (H)
= 1: 4: 16, gas pressure 133 Pa, 0.5 W / cm 2
Is applied, and the substrate on which the film is formed up to the light-emitting layer is placed, and 30
While maintaining the temperature at 0 ° C., a 200 nm-thick tantalum oxide film was formed. In the reactive sputtering as the second film forming method, a 200 nm-thick silicon nitride film was formed by using a Si target and N 2 at a gas pressure of 400 mPa and applying power of 2 W / cm 2 .

【0027】RFプラズマ窒化ケイ素膜と反応性スパッ
タ窒化ケイ素膜の各相対密度および耐水性は、それぞれ
85%、85%および35%、40%であった。以上の
実施例から、第2の絶縁層として、相対密度が87%を
越えていれば、製造プロセス(5)に耐え、通常のウェ
ットプロセスによるパターニングを適用できることが判
る。
The relative density and water resistance of the RF plasma silicon nitride film and the reactive sputtered silicon nitride film were 85%, 85%, 35%, and 40%, respectively. From the above examples, it can be seen that if the relative density of the second insulating layer exceeds 87%, the second insulating layer can withstand the manufacturing process (5) and can be patterned by a normal wet process.

【0028】[0028]

【発明の効果】本発明によれば、絶縁性基板上に第1の
電極層、第1の絶縁層、少なくとも希土類元素が添加さ
れたアルカリ土類硫化物よりなる発光層、第2の絶縁
層、第2の電極層とを順次積層した薄膜エレクトロルミ
ネッセンス素子において、第2の絶縁層の密度は第2の
絶縁層を構成する材料の単結晶の密度の87%を越える
ようにしたため、第2の絶縁層は水分を透過させないの
で、第2の絶縁層上の第2の電極層のパターニングにウ
ェットプロセスを適用することができるようになった。
従って、発光層はウェットプロセスの影響を受けずに、
輝度は高く、その信頼性も高い多色薄膜EL素子を得る
ことができ、これを用いて多色薄膜ELを製造すること
ができる。
According to the present invention, a first electrode layer, a first insulating layer, a light emitting layer made of an alkaline earth sulfide to which at least a rare earth element is added, and a second insulating layer are provided on an insulating substrate. In the thin-film electroluminescence device in which the second electrode layer is sequentially laminated, the density of the second insulating layer is set to exceed 87% of the density of the single crystal of the material forming the second insulating layer. Since the insulating layer does not transmit moisture, a wet process can be applied to the patterning of the second electrode layer on the second insulating layer.
Therefore, the light emitting layer is not affected by the wet process,
A multicolor thin film EL element having high luminance and high reliability can be obtained, and a multicolor thin film EL can be manufactured using this.

【0029】上記のように、第2の電極層のパターニン
グが容易に実施できるようになり、歩留りは高く、コス
トは低減できる。
As described above, the patterning of the second electrode layer can be easily performed, the yield is high, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例の多色薄膜EL装置の断面
FIG. 1 is a cross-sectional view of a multicolor thin film EL device according to an embodiment of the present invention.

【図2】従来の単色薄膜EL装置を示し、(a)は平面
図、(b)は(a)におけるXX断面図
FIGS. 2A and 2B show a conventional monochromatic thin-film EL device, wherein FIG. 2A is a plan view and FIG.

【符号の説明】[Explanation of symbols]

11 ガラス基板 21 第1の電極 31 第1の絶縁層 4 発光層 4a 白色発光層 32 第2の絶縁層 22 第2の電極 5 カラーフィルター 5r 赤色フィルター 5g 緑色フィルター 5b 青色フィルター 12 封止ガラス基板 6 シリコーンオイル 7 封止部材 E 電源 DESCRIPTION OF SYMBOLS 11 Glass substrate 21 1st electrode 31 1st insulating layer 4 Light emitting layer 4a White light emitting layer 32 2nd insulating layer 22 2nd electrode 5 Color filter 5r Red filter 5g Green filter 5b Blue filter 12 Sealing glass substrate 6 Silicone oil 7 Sealing member E Power supply

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に第1の電極層、第1の絶縁
層、少なくとも希土類元素が添加されたアルカリ土類硫
化物よりなる発光層、第2の絶縁層、第2の電極とを順
次積層した薄膜エレクトロルミネッセンス素子におい
て、第2の絶縁層の密度は第2の絶縁層を構成する材料
の単結晶の密度の87%を越えていることを特徴とする
薄膜エレクトロルミネッセンス素子。
1. A first electrode layer, a first insulating layer, a light emitting layer made of an alkaline earth sulfide to which at least a rare earth element is added, a second insulating layer, and a second electrode on an insulating substrate. Wherein the density of the second insulating layer exceeds 87% of the density of a single crystal of the material constituting the second insulating layer.
【請求項2】前記第2の絶縁層の構成材料は酸化アルミ
ニウム、酸化タンタルまたは窒化アルミニウムのいずれ
かであることを特徴とする請求項1に記載の薄膜エレク
トロルミネッセンス素子。
2. The thin-film electroluminescence device according to claim 1, wherein the constituent material of the second insulating layer is any one of aluminum oxide, tantalum oxide and aluminum nitride.
【請求項3】請求項1に記載の薄膜エレクトロルミネッ
センス素子の製造方法において、前記第2の絶縁層は表
面反応を用いた熱CVDにより形成されることを特徴と
する請求項1に記載の薄膜エレクトロルミネッセンス素
子の製造方法。
3. The thin film electroluminescent device according to claim 1, wherein the second insulating layer is formed by thermal CVD using a surface reaction. A method for manufacturing an electroluminescence element.
【請求項4】請求項2に記載の酸化アルミニウムはトリ
メチルアルミニウムガスと水蒸気との混合ガスを用いて
成膜されることを特徴とする請求項3に記載の薄膜エレ
クトロルミネッセンス素子の製造方法。
4. The method according to claim 3, wherein the aluminum oxide according to claim 2 is formed using a mixed gas of trimethylaluminum gas and water vapor.
【請求項5】請求項2に記載の酸化タンタルは五塩化タ
ンタルガスと水蒸気との混合ガスを用いて成膜されるこ
とを特徴とする請求項3に記載の薄膜エレクトロルミネ
ッセンス素子の製造方法。
5. The method according to claim 3, wherein the tantalum oxide according to claim 2 is formed using a mixed gas of tantalum pentachloride gas and water vapor.
【請求項6】請求項2に記載の窒化アルミニウムは三塩
化アルミニウムガスとアンモニアとの混合ガスを用いて
成膜されることを特徴とする請求項3に記載の薄膜エレ
クトロルミネッセンス素子の製造方法。
6. The method for manufacturing a thin film electroluminescent device according to claim 3, wherein the aluminum nitride according to claim 2 is formed using a mixed gas of aluminum trichloride gas and ammonia.
JP8246779A 1996-09-19 1996-09-19 Thin film electroluminescent element and manufacture thereof Pending JPH1092580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8246779A JPH1092580A (en) 1996-09-19 1996-09-19 Thin film electroluminescent element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8246779A JPH1092580A (en) 1996-09-19 1996-09-19 Thin film electroluminescent element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1092580A true JPH1092580A (en) 1998-04-10

Family

ID=17153543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8246779A Pending JPH1092580A (en) 1996-09-19 1996-09-19 Thin film electroluminescent element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1092580A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051048A1 (en) * 2003-11-18 2005-06-02 3M Innovative Properties Company A method of making an electroluminescent device including a color filter
US7442446B2 (en) 2002-12-20 2008-10-28 Ifire Ip Corporation Aluminum nitride passivated phosphors for electroluminescent displays
US7812522B2 (en) 2004-07-22 2010-10-12 Ifire Ip Corporation Aluminum oxide and aluminum oxynitride layers for use with phosphors for electroluminescent displays
US7892382B2 (en) 2003-11-18 2011-02-22 Samsung Mobile Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
US8569948B2 (en) 2004-12-28 2013-10-29 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442446B2 (en) 2002-12-20 2008-10-28 Ifire Ip Corporation Aluminum nitride passivated phosphors for electroluminescent displays
WO2005051048A1 (en) * 2003-11-18 2005-06-02 3M Innovative Properties Company A method of making an electroluminescent device including a color filter
US7892382B2 (en) 2003-11-18 2011-02-22 Samsung Mobile Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
US7812522B2 (en) 2004-07-22 2010-10-12 Ifire Ip Corporation Aluminum oxide and aluminum oxynitride layers for use with phosphors for electroluminescent displays
US8569948B2 (en) 2004-12-28 2013-10-29 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
US9918370B2 (en) 2004-12-28 2018-03-13 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer

Similar Documents

Publication Publication Date Title
CA2371760C (en) Electroluminescent laminate with patterned phosphor structure and thick film dielectric with improved dielectric properties
US5955835A (en) White-light emitting electroluminescent display device and manufacturing method thereof
JP2000104059A (en) Luminescent material, alternating current thin-film electroluminescent device, and thin electroluminescent emitter
US20020125821A1 (en) Electroluminescent display formed on glass with a thick film dielectric layer
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
US20030039813A1 (en) High performance dielectric layer and application to thin film electroluminescent devices
JPH10241857A (en) Manufacture of thin film electric field light emitting element
JP3127025B2 (en) Thin film EL display element
US20020125495A1 (en) Thin film alternating current electroluminescent displays
JPH10308282A (en) Thin film electroluminescence element and its manufacture
WO2002073708A2 (en) Electroluminescent display device
JP3976892B2 (en) Thin film EL device
JPH0883685A (en) White el element
JP3750199B2 (en) Method for manufacturing thin-film electroluminescence device
JP2686170B2 (en) Thin film EL element
KR950013666B1 (en) Thin el display element and manufacture method thereof
JP2803803B2 (en) Thin film EL device and method of manufacturing the same
KR890004912B1 (en) The manufacturing process of displaying elements of thin membrane electro-luminescence
JPH0878162A (en) Thin film electroluminescent element
JPH01241793A (en) Thin film el element
JPH11126690A (en) Manufacture of thin film electroluminescent element
JPS6320000B2 (en)
KR0170449B1 (en) Field emission display
JP2002270371A (en) El element and display panel using it
JPH01206596A (en) Film type electroluminescence element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030