JPH1064790A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH1064790A
JPH1064790A JP8221261A JP22126196A JPH1064790A JP H1064790 A JPH1064790 A JP H1064790A JP 8221261 A JP8221261 A JP 8221261A JP 22126196 A JP22126196 A JP 22126196A JP H1064790 A JPH1064790 A JP H1064790A
Authority
JP
Japan
Prior art keywords
illumination
light
illumination light
optical system
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8221261A
Other languages
Japanese (ja)
Other versions
JP3646757B2 (en
Inventor
Sumio Hashimoto
純夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP22126196A priority Critical patent/JP3646757B2/en
Priority to EP19970113696 priority patent/EP0823662A2/en
Publication of JPH1064790A publication Critical patent/JPH1064790A/en
Application granted granted Critical
Publication of JP3646757B2 publication Critical patent/JP3646757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a projection aligner which can suppress fluctuations in high order spherical aberration when zonal illumination or modified illumination is carried out. SOLUTION: Apart from a light source unit 1 for light exposure, another light source unit 2 is provided for emitting illumination light IL2 having such wavelengths that will not be sensitive to photoresist on a wafer 13. Provided on an optical path of illumination light IL1 is a modified mirror 5 of mirrors 6A and 6B having reflecting surfaces tilted toward a reticle 10. The illumination light IL1 for light exposure from the light source unit 1 is passed through a zonal region around the modified mirror 5; while the illumination light IL2 for non-exposure is reflected by the reflecting surfaces of the modified mirror 5 to be directed toward the reticle 10 and a projection optical system 12. With the illumination light IL1 and IL2, a lens in the vicinity of a pupil surface of the projection optical system 12 can be illuminated with a uniform illumination distribution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素
子、液晶表示素子、撮像素子(CCD等)、又は薄膜磁
気ヘッド等を製造するためのフォトリソグラフィ工程で
マスク上のパターンの像を感光基板上に露光するために
使用される投影露光装置に関し、特に輪帯照明等を行う
か、又は中心遮光型の瞳フィルターを使用する投影露光
装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, a liquid crystal display device, an image pickup device (CCD or the like), a thin film magnetic head, or the like by using a photolithography process to form an image of a pattern on a mask on a photosensitive substrate. The present invention relates to a projection exposure apparatus that is used for performing exposure to an object, and is particularly suitable for application to a projection exposure apparatus that performs annular illumination or the like or uses a center-shielded pupil filter.

【0002】[0002]

【従来の技術】従来、例えば半導体素子を製造する際
に、マスクとしてのレチクル(又はフォトマスク等)の
パターンの像を投影光学系を介して、感光基板としての
フォトレジストが塗布されたウエハ(又はガラスプレー
ト等)上に転写するステッパー等の投影露光装置が使用
されている。これらの投影露光装置では、ウエハにでき
るだけ高集積度のパターンを露光するため、露光光とし
てできるだけ短波長の照明光を使用すると共に、投影光
学系の開口数(NA)を大きくして、転写されるパター
ンの解像度を上げるという努力がなされてきた。
2. Description of the Related Art Conventionally, for example, when a semiconductor device is manufactured, a wafer on which a photoresist as a photosensitive substrate is applied by using a projection optical system to project a pattern image of a reticle (or a photomask or the like) as a mask. Or, a projection exposure apparatus such as a stepper for transferring onto a glass plate or the like is used. In these projection exposure apparatuses, in order to expose a pattern with the highest possible integration on a wafer, illumination light having the shortest possible wavelength is used as exposure light, and the numerical aperture (NA) of the projection optical system is increased to transfer the pattern. Efforts have been made to increase the resolution of such patterns.

【0003】但し、単に投影光学系の開口数を大きくす
ると、焦点深度が狭くなりすぎるため、開口数にあまり
依存することなく、或る程度以上の焦点深度を確保し
て、且つ高い解像度を得る方法として、露光光をレチク
ルに対して傾斜させて照明するという照明法が開発され
ている。この照明法には、照明光学系の2次光源の形状
を輪帯状とする輪帯照明及びその2次光源の形状を光軸
から偏心した複数(例えば4個)の小光源とする所謂変
形照明等がある。このような照明法によれば、同じ露光
波長、及び同じ投影光学系の開口数でも、投影光学系の
解像度が向上する。また、投影光学系の瞳面に輪帯状等
の瞳フィルターを配置して、所謂「超解像」により解像
度を向上させる方法も開発されている。
However, if the numerical aperture of the projection optical system is simply increased, the depth of focus becomes too narrow. Therefore, a certain depth of focus or more is secured without depending on the numerical aperture, and high resolution is obtained. As a method, an illumination method of illuminating the reticle with the exposure light inclined has been developed. This illumination method includes annular illumination in which the shape of a secondary light source in an illumination optical system is annular and so-called deformed illumination in which the shape of the secondary light source is a plurality (for example, four) of small light sources decentered from the optical axis. Etc. According to such an illumination method, the resolution of the projection optical system is improved even with the same exposure wavelength and the same numerical aperture of the projection optical system. Also, a method has been developed in which a pupil filter having a ring shape or the like is arranged on the pupil plane of the projection optical system to improve the resolution by so-called “super-resolution”.

【0004】[0004]

【発明が解決しようとする課題】以上の従来技術におい
て、輪帯照明等を使用せず、レチクルをレチクルに対し
て垂直に入射する光束を中心として一様に分布する露光
光で照明する照明方法によれば、主にレチクルのパター
ンを通過した0次回折光、+1次回折光、及び−1次回
折光の3光束によってウエハ上にそのパターンの像を形
成するために、投影光学系の瞳面付近のレンズは中心部
も周辺部もほぼ一様に照明される。また、通常の照明法
のもとで投影光学系の瞳面に中心部を遮蔽する輪帯状の
瞳フィルターを配置しない場合も、投影光学系の瞳面の
近くのレンズは一様に照明される。このような照明状態
であれば、レンズの中心部が主に温度上昇するために、
位置に関して2次以下の関数となる熱変形や屈折率変化
が主に起こり、ガウス(Gauss)像面の移動だけが光軸付
近の主な収差変動として生じる。従って、投影光学系の
高次の球面収差変動が発生する恐れは少なかった。
In the above prior art, an illumination method for illuminating a reticle with exposure light which is uniformly distributed around a light beam perpendicularly incident on the reticle without using annular illumination or the like. According to the method, an image of the pattern is formed on a wafer mainly by three light beams of the 0th-order diffracted light, the + 1st-order diffracted light, and the -1st-order diffracted light that have passed through the reticle pattern. The lens is almost uniformly illuminated both at the center and at the periphery. In addition, even when an annular pupil filter that blocks a central portion is not arranged on the pupil plane of the projection optical system under a normal illumination method, the lens near the pupil plane of the projection optical system is uniformly illuminated. . In such an illuminated state, the temperature at the center of the lens mainly increases,
Thermal deformation and a change in the refractive index, which are functions of the second order or less with respect to the position, mainly occur, and only the movement of the Gaussian image plane occurs as the main aberration fluctuation near the optical axis. Therefore, there was little possibility that high-order spherical aberration fluctuation of the projection optical system would occur.

【0005】しかし、輪帯照明や変形照明法により照明
を行った場合には、レチクルのパターンを通過した露光
用の照明光の内の主に0次回折光及び1次回折光によっ
てウエハ上にそのパターンの像を形成するため、投影光
学系の解像度の限界線幅に近いパターンが多い場合に
は、投影光学系の光軸付近を透過する光線の量が周辺部
に比べて極めて少なくなる。また、投影光学系の瞳面に
光軸付近を遮光した瞳フィルターを配置した場合でも、
瞳面よりもウエハに近い側に配置されているレンズの光
軸付近を透過する光線の量は周辺部に比べて極めて少な
くなる。
However, when illumination is performed by the annular illumination or the modified illumination method, when the illumination light for exposure that has passed through the pattern of the reticle is mainly the 0th-order diffracted light and the 1st-order diffracted light, the pattern is formed on the wafer. Therefore, when there are many patterns close to the critical line width of the resolution of the projection optical system, the amount of light transmitted near the optical axis of the projection optical system is extremely small as compared with the peripheral portion. Also, even if a pupil filter that shields the vicinity of the optical axis is arranged on the pupil plane of the projection optical system,
The amount of light rays passing near the optical axis of the lens disposed closer to the wafer than the pupil plane is extremely small as compared with the peripheral part.

【0006】このように投影光学系のレンズに対する照
射エネルギーの分布が不均一になると、レンズの周辺部
が主に熱を吸収して温度上昇し、中心部が温度上昇しな
いという現象が起こる。このような温度上昇に比例し
て、部分的にレンズの屈折率が変動したり、レンズが熱
変形したりするので、2次よりも高次の非球面やそれに
相当する屈折率分布が新たに形成される。そのため、投
影光学系の光軸に近い部分では、露光光の照射によりガ
ウス像面の移動だけでなく、新たに高次の球面収差変動
が生じるという不都合があった。
[0006] When the distribution of the irradiation energy to the lens of the projection optical system becomes non-uniform as described above, a phenomenon occurs in which the peripheral portion of the lens mainly absorbs heat and the temperature rises, and the central portion does not rise. In proportion to such a temperature rise, the refractive index of the lens partially fluctuates or the lens is thermally deformed, so that a higher-order aspherical surface than the second-order and a corresponding refractive index distribution are newly added. It is formed. For this reason, in a portion near the optical axis of the projection optical system, there is a disadvantage that the irradiation of the exposure light causes not only the movement of the Gaussian image plane but also a new high-order spherical aberration fluctuation.

【0007】本発明は斯かる点に鑑み、輪帯照明や変形
照明等を用いるか、又は光軸付近を遮光する瞳フィルタ
ーを使用して露光を行う際に、投影光学系の高次の球面
収差変動を抑えて高い解像度が得られる投影露光装置を
提供することを目的とする。
[0007] In view of the above, the present invention provides a high-order spherical surface of a projection optical system when performing exposure using annular illumination, modified illumination, or the like, or using a pupil filter that blocks light near the optical axis. It is an object of the present invention to provide a projection exposure apparatus capable of obtaining high resolution while suppressing aberration fluctuation.

【0008】[0008]

【課題を解決するための手段】本発明による第1の投影
露光装置は、例えば図1に示すように、露光用の照明光
(IL1)のもとでマスク(10)上のパターンの像を
感光基板(13)上に投影する投影光学系(12)と、
その投影光学系の瞳面、即ちマスク(10)のパターン
面に対する光学的フーリエ変換面(PS)と共役な面上
で光軸(AX)から偏心した領域に分布する光源(2次
光源を含む)からのその露光用の照明光(IL1)を用
いてそのマスク(10)を照明する照明光学系(1,
3,9)と、を有する投影露光装置において、その感光
基板(13)に対して非感光性の波長域の照明光(IL
2)をその投影光学系(12)の瞳面(PS)上でその
露光用の照明光(IL1)が通過しない領域に照射する
補助照明系(2)を設けたものである。
A first projection exposure apparatus according to the present invention, as shown in FIG. 1, for example, forms an image of a pattern on a mask (10) under exposure illumination light (IL1). A projection optical system (12) for projecting on a photosensitive substrate (13);
A light source (including a secondary light source) distributed in a region decentered from the optical axis (AX) on a pupil plane of the projection optical system, that is, a plane conjugate with the optical Fourier transform plane (PS) with respect to the pattern plane of the mask (10). ) To illuminate the mask (10) using the exposure illumination light (IL1) from (1).
3, 9), the illumination light (IL) in a wavelength range insensitive to the photosensitive substrate (13).
An auxiliary illumination system (2) is provided to irradiate the area (2) on the pupil plane (PS) of the projection optical system (12) through which the illumination light (IL1) for exposure does not pass.

【0009】斯かる本発明の第1の投影露光装置によれ
ば、投影光学系(12)の瞳面(PS)と共役な面上で
光軸(AX)から偏心した領域に分布する光源からの露
光用の照明光(IL1)を用いるとは、輪帯照明法や変
形照明法を用いることを意味する。この際に、投影光学
系(12)の瞳面近傍のレンズは主に光軸から偏心した
領域が露光用の照明光(IL1)により照明され、例え
ば所定の周期的パターンに対して高解像度が得られる。
また、補助照明系により投影光学系(12)の瞳面(P
S)上で露光用の照明光(IL1)が通過しない領域、
即ち光軸近傍の領域も感光基板に対して非感光性の照明
光(IL2)で照明されるため、投影光学系(12)の
瞳面(PS)に近いレンズに対する照度分布が均一にな
り、レンズの熱変形や屈折率の変化における高次の変動
成分が減少する。このためには、非感光性の照明光(I
L2)は、露光用の照明光(IL1)と同程度の吸収率
で投影光学系(12)のレンズ、又はこのレンズのコー
ティング膜で吸収される必要がある。レンズの球面収差
変動は、レンズの熱変形や屈折率の変化に比例するた
め、投影光学系(12)の高次の球面収差変動が抑えら
れる。但し、補助照明系(2)からの照明光(IL2)
は非感光性であるため、感光基板(13)上に転写され
る像には影響がない。
According to the first projection exposure apparatus of the present invention, on the plane conjugate with the pupil plane (PS) of the projection optical system (12), a light source distributed in a region decentered from the optical axis (AX) is used. Using the illumination light (IL1) for exposure means that an annular illumination method or a modified illumination method is used. At this time, the lens near the pupil plane of the projection optical system (12) is mainly illuminated by the illumination light (IL1) for exposure in a region decentered from the optical axis. can get.
Further, the pupil plane (P) of the projection optical system (12) is
S) a region on which the illumination light for exposure (IL1) does not pass;
That is, since the area near the optical axis is also illuminated with the non-photosensitive illumination light (IL2) on the photosensitive substrate, the illuminance distribution on the lens close to the pupil plane (PS) of the projection optical system (12) becomes uniform, Higher order fluctuation components in the thermal deformation of the lens and changes in the refractive index are reduced. For this, the non-photosensitive illumination light (I
L2) needs to be absorbed by the lens of the projection optical system (12) or the coating film of this lens with the same absorptivity as the illumination light (IL1) for exposure. Since the fluctuation of the spherical aberration of the lens is proportional to the thermal deformation and the change of the refractive index of the lens, the fluctuation of the higher-order spherical aberration of the projection optical system (12) is suppressed. However, the illumination light (IL2) from the auxiliary illumination system (2)
Has no effect on the image transferred on the photosensitive substrate (13) because it is non-photosensitive.

【0010】この場合、その照明光学系は、輪帯状の光
源、又は光軸に対して偏心した位置にある複数の光源か
らのその露光用の照明光(IL1)でそのマスク(1
0)を照明することが好ましい。これは、所謂輪帯照明
や変形照明による照明法を意味し、これにより高い解像
度が得られる。また、その照明光学系は、その露光用の
照明光(IL1)の照度分布を均一化するためのオプテ
ィカル・インテグレータ(24)を有し、このオプティ
カル・インテグレータとそのマスク(10)との間に、
その補助照明系(2)からの照明光(IL2)をそのマ
スク(10)に導く補助光導入部材(4,6A〜6D,
7A,7B)を設けることが好ましい。これにより、露
光用の照明光(IL1)と照明光(IL2)とを容易に
合成できる。
In this case, the illumination optical system uses the illumination light (IL1) for exposure from an annular light source or a plurality of light sources located eccentrically with respect to the optical axis to the mask (1).
It is preferable to illuminate 0). This means an illumination method using so-called annular illumination or deformed illumination, whereby a high resolution can be obtained. Further, the illumination optical system has an optical integrator (24) for making the illuminance distribution of the exposure illumination light (IL1) uniform, and between the optical integrator and the mask (10). ,
Auxiliary light introducing members (4, 6A to 6D, and 4A) for guiding illumination light (IL2) from the auxiliary illumination system (2) to the mask (10).
7A, 7B). Thereby, the illumination light (IL1) for exposure and the illumination light (IL2) can be easily combined.

【0011】また、本発明による第2の投影露光装置
は、例えば図6に示すように、露光用の照明光(IL1
B)のもとでマスク(10)上のパターンの像を投影光
学系(12)を介して感光基板(13)上に投影する際
に、その投影光学系(12)の瞳面(PS)上で光軸
(AX)から偏心した領域を通過する結像光束を用いる
投影露光装置において、その露光用の照明光(IL1
B)及びその感光基板(13)に対して非感光性の照明
光(IL2B)をその投影光学系の瞳面(PS)に導く
合成照明光学系(1B,42,2B,4B,7A,8
A)と、その投影光学系(12)のその瞳面(PS)上
に配置され、その光軸から偏心した領域以外の領域では
その感光基板(13)に対して非感光性の照明光(IL
2B)のみをその感光基板側に通過させる波長選択性を
有する光学部材(5B)と、を有するものである。
A second projection exposure apparatus according to the present invention, for example, as shown in FIG.
When the image of the pattern on the mask (10) is projected on the photosensitive substrate (13) via the projection optical system (12) under B), the pupil plane (PS) of the projection optical system (12) In the projection exposure apparatus using the imaging light flux passing through the area decentered from the optical axis (AX), the illumination light (IL1) for the exposure is used.
B) and the combined illumination optical system (1B, 42, 2B, 4B, 7A, 8) that guides the illumination light (IL2B) that is insensitive to the photosensitive substrate (13) to the pupil plane (PS) of the projection optical system.
A), and illumination light () that is arranged on the pupil plane (PS) of the projection optical system (12) and is non-photosensitive to the photosensitive substrate (13) in a region other than a region decentered from the optical axis. IL
2B), and an optical member (5B) having wavelength selectivity for passing only the photosensitive substrate side.

【0012】斯かる本発明の第2の投影露光装置によれ
ば、投影光学系(12)の瞳面(PS)上で光軸(A
X)から偏心した領域を通過する結像光束を用いるた
め、実質的に中心遮光型の瞳フィルターを用いるのと等
価となって高い解像度が得られる。この場合、光学部材
(5B)により、露光用の照明光(IL1B)は、輪帯
状等の領域のみを通過し、感光基板(13)に対して非
感光性の照明光(IL2B)は、その光軸から偏心した
領域以外の領域を通過する。従って、投影光学系(1
2)の瞳面(PS)近傍のレンズは、2つの照明光(I
L1B,IL2B)により均一な照度分布で照射される
ため、レンズの熱変形や屈折率の変化における高次の変
動成分が減少し、高次の球面収差変動も減少する。しか
も、非感光性の照明光(IL2B)は感光基板(13)
上の投影像には影響を与えない。
According to the second projection exposure apparatus of the present invention, the optical axis (A) on the pupil plane (PS) of the projection optical system (12).
Since an imaging light flux passing through a region decentered from X) is used, high resolution is obtained substantially equivalent to the use of a pupil filter of a central light shielding type. In this case, the illumination light (IL1B) for exposure passes only through an annular region or the like by the optical member (5B), and the illumination light (IL2B) that is non-photosensitive to the photosensitive substrate (13). It passes through an area other than the area decentered from the optical axis. Therefore, the projection optical system (1)
The lens in the vicinity of the pupil plane (PS) of 2) has two illumination lights (I
L1B, IL2B), the light is irradiated with a uniform illuminance distribution, so that higher-order fluctuation components in the thermal deformation of the lens and changes in the refractive index are reduced, and the higher-order spherical aberration fluctuation is also reduced. In addition, the non-photosensitive illumination light (IL2B) is applied to the photosensitive substrate (13).
The above projected image is not affected.

【0013】[0013]

【発明の実施の形態】以下、本発明の投影露光装置の実
施の形態の第1の例につき図1〜図3を参照して説明す
る。本例は、レチクル上のパターンを投影光学系を介し
てウエハ上の各ショット領域に投影するステッパー型の
投影露光装置に本発明を適用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a projection exposure apparatus according to the present invention will be described below with reference to FIGS. In this embodiment, the present invention is applied to a stepper type projection exposure apparatus that projects a pattern on a reticle onto each shot area on a wafer via a projection optical system.

【0014】図1は、本例の投影露光装置の概略構成を
示し、この図1に示すように本例の投影露光装置には3
つの光源部(図1では2つの光源部1,2が現れてい
る)が設けられている。露光時には、第1の光源部1か
らはウエハ13上のフォトレジストに感光性の波長λ1
の照明光IL1が射出され、第2の光源部2及び不図示
の第3の光源部からはウエハ13上のフォトレジストに
非感光性の波長λ2の照明光IL2が射出される。光源
部1の水銀ランプよりなる光源21から射出された照明
光は、楕円鏡22によって第2焦点に集光した後、発散
光となって、不図示の干渉フィルター等に入射し、干渉
フィルターにより例えばi線(波長365nm)の照明
光IL1が抽出される。次に、照明光IL1はインプッ
トレンズ23により平行光束となってオプティカルイン
テグレータとしてのフライアイレンズ24に入射する。
フライアイレンズ24の各レンズエレメントの夫々の射
出面には2次光源が形成され、これらの2次光源により
面光源が作られる。フライアイレンズ24の射出面に
は、面光源の大きさを調整するための切り換え自在の複
数の開口絞り26A〜26C(図2(a)参照)が配置
されている。これらの開口絞り26A〜26Cは、ター
レット状の円板25に固定され、円板25を駆動装置2
5Aで回転することで所望の開口絞りをフライアイレン
ズ24の射出面に設定できる。
FIG. 1 shows a schematic configuration of the projection exposure apparatus of the present embodiment. As shown in FIG.
One light source unit (two light source units 1 and 2 appear in FIG. 1) is provided. During exposure, the first light source unit 1 applies a photosensitive wavelength λ1 to the photoresist on the wafer 13.
And the second light source unit 2 and a third light source unit (not shown) emit non-photosensitive illumination light IL2 having a wavelength λ2 to the photoresist on the wafer 13. Illumination light emitted from the light source 21 composed of a mercury lamp of the light source unit 1 is converged on the second focal point by the elliptical mirror 22, becomes divergent light, enters an interference filter or the like (not shown), and is emitted by the interference filter. For example, illumination light IL1 of i-line (wavelength 365 nm) is extracted. Next, the illumination light IL1 is converted into a parallel light beam by the input lens 23 and is incident on a fly-eye lens 24 as an optical integrator.
A secondary light source is formed on each exit surface of each lens element of the fly-eye lens 24, and these secondary light sources form a surface light source. A plurality of switchable aperture stops 26A to 26C (see FIG. 2A) for adjusting the size of the surface light source are arranged on the exit surface of the fly-eye lens 24. These aperture stops 26A to 26C are fixed to a turret-shaped disk 25, and the disk 25 is
By rotating at 5A, a desired aperture stop can be set on the exit surface of the fly-eye lens 24.

【0015】図2(a)は、図1の円板25上の開口絞
りの具体的な構成を説明するための平面図を示し、この
図2(a)において、3個の開口絞り26A〜26Cは
ターレット状の円板25の周辺に等角度間隔で固定され
ている。第1の開口絞り26Aは通常の照明を行う場合
に使用される円形開口を有し、第2の開口絞り26Bは
小さいコヒーレンスファクタ(σ値)で照明を行う場合
に使用される小さい円形開口を有する。第3の開口絞り
26Cは、大きな円形開口を有し、本例では輪帯照明、
又は変形照明を行う場合にその第3の開口絞り26Cを
フライアイレンズ24の射出面に設定する。即ち、通常
輪帯照明時には図2(b)に示す輪帯状の開口絞り26
Dが使用され、変形照明時には図2(c)に示す光軸を
中心として配置された4個の小さい開口を有する開口絞
り26Eが使用される。しかし、本例では後述の変形ミ
ラー5等によって、実質的に開口絞り26D等が兼用さ
れる。図1では第3の開口絞り26Cが照明光IL1の
光路上に配置されている。
FIG. 2A is a plan view for explaining a specific configuration of the aperture stop on the disk 25 of FIG. 1. In FIG. 2A, three aperture stops 26A to 26A are shown. 26C is fixed at equal angular intervals around the turret disk 25. The first aperture stop 26A has a circular aperture used for normal illumination, and the second aperture stop 26B has a small circular aperture used for illumination with a small coherence factor (σ value). Have. The third aperture stop 26C has a large circular aperture, and in this example, annular illumination,
Alternatively, when performing modified illumination, the third aperture stop 26C is set on the exit surface of the fly-eye lens 24. That is, at the time of normal annular illumination, the annular aperture stop 26 shown in FIG.
D is used, and an aperture stop 26E having four small apertures arranged around the optical axis shown in FIG. However, in this example, the aperture stop 26D and the like are also used substantially by the later-described deformable mirror 5 and the like. In FIG. 1, the third aperture stop 26C is arranged on the optical path of the illumination light IL1.

【0016】開口絞り26Cを通過した照明光IL1
は、第1リレーレンズ27を透過し、視野絞り(レチク
ルブラインド)28により照明範囲が規定される。照明
範囲が規定された照明光IL1は、光源部1から射出さ
れて第2リレーレンズ3を介して、照明光学系の光軸A
Xを中心として第2リレーレンズ3側に凹の4角錐状に
配置された4枚のミラー6A〜6D(図1ではその内の
2枚のミラー6A,6Bを示す)からなる変形ミラー5
の周囲を通過する。変形ミラー5の4枚のミラーの反射
面は外側を向き、照明光学系の光軸AXに対してほぼ4
5°傾斜している。更に、変形ミラー5の上面は、開口
絞り26Cの配置面に共役な位置に配置されている。変
形ミラー5の周囲を通過した照明光IL1は、コンデン
サレンズ9を経てレチクル10に入射する。
The illumination light IL1 that has passed through the aperture stop 26C
Is transmitted through the first relay lens 27, and the illumination range is defined by a field stop (reticle blind) 28. The illumination light IL1 whose illumination range is defined is emitted from the light source unit 1 and passes through the second relay lens 3 to the optical axis A of the illumination optical system.
A deformed mirror 5 composed of four mirrors 6A to 6D (two mirrors 6A and 6B are shown in FIG. 1) arranged in a concave pyramid shape on the side of the second relay lens 3 with X as the center.
Pass around. The reflecting surfaces of the four mirrors of the deformable mirror 5 face outward, and are approximately 4 with respect to the optical axis AX of the illumination optical system.
It is inclined at 5 °. Further, the upper surface of the deformable mirror 5 is arranged at a position conjugate with the arrangement surface of the aperture stop 26C. The illumination light IL1 that has passed around the deformable mirror 5 enters the reticle 10 via the condenser lens 9.

【0017】図3(a)は、図1の変形ミラー5をレチ
クル10側からみた図を示し、この図3(a)におい
て、ミラー6A〜6Dは互いに等しい形状で、照明光学
系の光軸AXを頂点とする4角錐を形成するように密接
して配置されている。また、ミラー6A〜6Dの底面の
外形17は、全体として光軸AXを中心とする1つの円
周を形成している。そして、その外形17と図1の開口
絞り26Cの開口の像の外周16との間の輪帯状の領域
15を照明光IL1が通過するように構成されている。
即ち、本例の変形ミラー5は、輪帯状の開口絞りを兼用
している。
FIG. 3A shows the deformed mirror 5 of FIG. 1 viewed from the reticle 10 side. In FIG. 3A, the mirrors 6A to 6D have the same shape and the optical axis of the illumination optical system. They are arranged closely so as to form a quadrangular pyramid having AX as a vertex. Further, the outer shape 17 of the bottom surface of each of the mirrors 6A to 6D forms a single circumference centered on the optical axis AX as a whole. The illumination light IL1 is configured to pass through a ring-shaped area 15 between the outer shape 17 and the outer periphery 16 of the image of the aperture of the aperture stop 26C in FIG.
That is, the deformable mirror 5 of the present example also serves as a ring-shaped aperture stop.

【0018】図1に戻り、変形ミラー5は退避交換装置
8によって照明光IL1の光路外に退避できると共に、
別の変形ミラーと交換できるように構成されている。次
に、第2の光源部2は非露光用の光源、及びその光源か
らの光束を所定の拡がり角で放出するレンズ系等を含ん
で構成されている。そして、レチクル10の左上部に配
置された光源部2から射出されたフォトレジストに非感
光性の照明光IL2は、リレーレンズ4により平行光束
にされ、一部が照明光学系の光軸AXと直交する方向か
ら変形ミラー5中のミラー6Aに入射する。照明光IL
2の一部はミラー6Aにより下方に向けて反射される。
ミラー6Aの下方を通過した照明光IL2は、ミラー7
A,7Bにより反射されて変形ミラー5中のミラー6B
に入射し、ミラー6Bにより反射された光束は、ミラー
6Aで反射された光束と共にコンデンサレンズ9に入射
する。不図示であるが、光源部2、リレーレンズ4、及
びミラー7A,7Bよりなる光学系と同様の光学系は図
1の紙面に垂直な方向にも配置されており、この図1の
紙面に垂直な方向に配置された第3の光源部からのフォ
トレジストに非感光性の照明光(これも照明光IL2と
する)は、変形ミラー5中のミラー6C,6D(図3参
照)により下方に反射される。従って、照明光IL2
は、図3(a)において照明光IL1が通過する輪帯状
の領域15の内側の円形の領域で反射される。
Returning to FIG. 1, the deformable mirror 5 can be retracted outside the optical path of the illumination light IL1 by the retractable exchange device 8, and
It is configured so that it can be replaced with another deformable mirror. Next, the second light source unit 2 includes a non-exposure light source, a lens system that emits a light beam from the light source at a predetermined divergent angle, and the like. Then, the illumination light IL2 which is non-photosensitive to the photoresist emitted from the light source unit 2 disposed at the upper left of the reticle 10 is converted into a parallel light flux by the relay lens 4, and a part of the illumination light IL2 is aligned with the optical axis AX of the illumination optical system. The light is incident on the mirror 6A in the deformable mirror 5 from a direction orthogonal to the mirror. Illumination light IL
Part 2 is reflected downward by the mirror 6A.
The illumination light IL2 that has passed below the mirror 6A is
Mirror 6B in deformed mirror 5 reflected by A and 7B
And the light beam reflected by the mirror 6B is incident on the condenser lens 9 together with the light beam reflected by the mirror 6A. Although not shown, an optical system similar to the optical system including the light source unit 2, the relay lens 4, and the mirrors 7A and 7B is also arranged in a direction perpendicular to the plane of FIG. Illumination light (also referred to as illumination light IL2) that is non-photosensitive to the photoresist from the third light source unit disposed in the vertical direction is lowered by mirrors 6C and 6D (see FIG. 3) in the deformable mirror 5. Is reflected by Therefore, the illumination light IL2
Is reflected by a circular area inside the annular area 15 through which the illumination light IL1 passes in FIG.

【0019】図1において、変形ミラー5の周囲を通過
した照明光IL1、及び変形ミラー5により反射された
照明光IL2は、共にコンデンサレンズ9によりレチク
ル10上に照射される。レチクル10上に照射された照
明光IL1,IL2は、レチクル上のパターン領域を通
過し、投影光学系12を介してウエハ13上に照射され
る。露光用の照明光IL1のもとで、投影光学系12に
関してレチクル10のパターン面とウエハ13の表面と
は共役であり、照明光IL2は、ウエハ13上のフォト
レジストに非感光性であるため、その露光用の照明光I
L1により照明されたレチクル10上のパターン像だけ
がウエハ13上のフォトレジストを感光させる。この場
合、投影光学系12内の瞳面PS、即ちレチクル10の
パターン面に対する光学的フーリエ変換面は開口絞り2
6Cの配置面ひいては変形ミラー5の上面と共役であ
り、瞳面PSには開口絞りASが配置されている。
In FIG. 1, the illumination light IL1 passing around the deformable mirror 5 and the illumination light IL2 reflected by the deformable mirror 5 are both irradiated onto the reticle 10 by the condenser lens 9. The illumination lights IL1 and IL2 applied to the reticle 10 pass through the pattern area on the reticle, and are applied to the wafer 13 via the projection optical system 12. Under the illumination light IL1 for exposure, the pattern surface of the reticle 10 and the surface of the wafer 13 are conjugate with respect to the projection optical system 12, and the illumination light IL2 is non-photosensitive to the photoresist on the wafer 13. , The illumination light I for the exposure
Only the pattern image on the reticle 10 illuminated by L1 exposes the photoresist on the wafer 13. In this case, the pupil plane PS in the projection optical system 12, that is, the optical Fourier transform plane with respect to the pattern plane of the reticle 10, is
The aperture stop AS is arranged on the pupil plane PS, being conjugate with the arrangement surface of 6C and thus the upper surface of the deformable mirror 5.

【0020】照明光IL1の波長λ1及び照明IL2の
波長λ2は、フォトレジストの種類及び投影光学系12
のレンズを形成する硝材の種類等により異なるが、通常
の場合、波長λ1は530nm未満、波長λ2は530
nm以上の波長を選択する。露光用の照明光IL1とし
ては、本例では水銀ランプのi線が使用されているが、
それ以外に水銀ランプのg線(波長436nm)等の輝
線、ArFエキシマレーザ光(波長193.2nm)や
KrFエキシマレーザ光(波長248.5nm)、ある
いは銅蒸気レーザやYAGレーザの高調波等が使用でき
る。また、照明光IL2としては、フォトレジストを感
光させない波長で、レンズの硝材又はコーティング膜で
の単位面積当たりの光吸収量が全体として照明光IL1
に近いものが好ましい。その意味から、照明光IL2と
しては、光吸収率が小さいときには光源の光強度が強
く、一方光源の光強度が小さいときには、投影光学系1
2のレンズの硝材又はコーティング膜に対する光吸収率
のできるだけ大きなものが好ましい。照明光IL2の一
例としては、例えばHe−Neレーザからのレーザビー
ム(波長633nm)等が挙げられる。
The wavelength λ1 of the illumination light IL1 and the wavelength λ2 of the illumination IL2 depend on the type of photoresist and the projection optical system 12.
In general, the wavelength λ1 is less than 530 nm, and the wavelength λ2 is 530.
Select a wavelength of at least nm. As the illumination light IL1 for exposure, i-line of a mercury lamp is used in this example,
In addition, bright lines such as a g-line (wavelength 436 nm) of a mercury lamp, ArF excimer laser light (wavelength 193.2 nm) and KrF excimer laser light (wavelength 248.5 nm), or harmonics of a copper vapor laser or a YAG laser are used. Can be used. The illumination light IL2 has a wavelength at which the photoresist is not exposed, and the amount of light absorbed per unit area by the glass material or the coating film of the lens is the illumination light IL1 as a whole.
Is preferable. In that sense, as the illumination light IL2, when the light absorption rate is low, the light intensity of the light source is high, while when the light intensity of the light source is low, the projection optical system 1
It is preferable that the second lens has as large an optical absorptivity as possible with respect to the glass material or coating film. As an example of the illumination light IL2, for example, a laser beam (wavelength: 633 nm) from a He—Ne laser or the like can be given.

【0021】なお、投影光学系のレンズ用の硝材とし
て、石英や紫外域から近赤外域までの透過率が良好な所
定のガラスが使用された場合、これらの硝材は、約2μ
m以上の長い波長からかなりの光吸収率を有するので、
照明光IL2として、フッ化水素(HF)ガスの化学反
応を利用したHF化学レーザ光(波長2.4〜3.4μ
m)等を使用してもよい。また、石英以外の光学ガラス
は、不純物を含んでいるため、530nm以上の波長で
も1%/cmに近い光吸収率を有するものもあり、この
ような1%/cmに近い光吸収率を有する照明光でも十
分有効である。このような照明光の例としては、水素
(H2)放電管からのC線(波長656.3nm)やヘリ
ウム(He)放電管からのd線(波長587.6nm)
等が挙げられる。図1において、照明光学系の光軸AX
は投影光学系12の光軸と合致しており、以下では光軸
AXに平行にZ軸を取り、Z軸に垂直な2次元平面上で
図1の紙面に平行にX軸、図1の紙面に垂直にY軸を取
って説明する。
When a glass material such as quartz or a glass having a good transmittance from the ultraviolet region to the near-infrared region is used as a glass material for the lens of the projection optical system, these glass materials have a thickness of about 2 μm.
m has a considerable light absorption from long wavelengths of m or more,
As the illumination light IL2, HF chemical laser light (wavelength: 2.4 to 3.4 μm) using a chemical reaction of hydrogen fluoride (HF) gas
m) and the like may be used. In addition, since optical glasses other than quartz contain impurities, some optical glasses have a light absorptivity close to 1% / cm even at a wavelength of 530 nm or more, and have such a light absorptivity close to 1% / cm. Even illumination light is sufficiently effective. Examples of such illumination light include a C-line (wavelength 656.3 nm) from a hydrogen (H 2 ) discharge tube and a d-line (wavelength 587.6 nm) from a helium (He) discharge tube.
And the like. In FIG. 1, the optical axis AX of the illumination optical system is shown.
1 coincides with the optical axis of the projection optical system 12, takes the Z axis parallel to the optical axis AX, and sets the X axis parallel to the plane of FIG. 1 on a two-dimensional plane perpendicular to the Z axis. The description will be made taking the Y axis perpendicular to the paper surface.

【0022】レチクル10はX方向、Y方向、及び回転
方向に微動可能なレチクルステージ11上に載置されて
いる。レチクルステージ10の位置は外部のレーザ干渉
計(不図示)により精密に計測されており、そのレーザ
干渉計の測定値に基づいてレチクルステージ11の位置
が制御されている。一方、ウエハ13は不図示のウエハ
ホルダを介してX方向、Y方向、及びZ方向にウエハを
位置決めするウエハステージ14上に載置され、ウエハ
ステージ14の位置は、外部のレーザ干渉計により精密
に計測されており、その計測値に基づいてウエハステー
ジ14の位置が制御されている。ウエハステージ14に
よりウエハ13の各ショット領域の中心を投影光学系1
2の露光中心に移動する動作と、露光動作とがステップ
・アンド・リピート方式で繰り返されて、レチクル10
上のパターンの像がウエハ13上の各ショット領域に転
写される。
The reticle 10 is mounted on a reticle stage 11 which can be finely moved in the X, Y and rotation directions. The position of the reticle stage 10 is precisely measured by an external laser interferometer (not shown), and the position of the reticle stage 11 is controlled based on the measurement value of the laser interferometer. On the other hand, the wafer 13 is placed on a wafer stage 14 for positioning the wafer in the X, Y, and Z directions via a wafer holder (not shown), and the position of the wafer stage 14 is precisely determined by an external laser interferometer. The position of the wafer stage 14 is controlled based on the measured value. The center of each shot area of the wafer 13 is projected by the wafer stage 14 onto the projection optical system 1.
The operation of moving to the center of exposure 2 and the exposure operation are repeated in a step-and-repeat manner, so that the reticle 10
The image of the upper pattern is transferred to each shot area on the wafer 13.

【0023】次に、本例の投影露光装置の動作について
説明する。本例では、先ず図1に示すように、大きな開
口を有する開口絞り26Cと、変形ミラー5とを組み合
わせて露光用の照明光IL1で実質的に輪帯照明を行っ
ているため、例えば所定の周期的なパターンに対して高
い解像度が得られる。また、図3(a)に示すように、
投影光学系12の瞳面PSとほぼ共役な面上で、フォト
レジストに感光性の照明光IL1は輪帯状の領域15を
通過し、変形ミラー5の反射面により反射されたフォト
レジストに非感光性の照明光IL2は、領域15の内側
の領域を通過する。このような照明状態で、照明光IL
1,IL2を図1のレチクル10を経て投影光学系12
に入射させると、投影光学系12の瞳面PS上で、照明
光IL1,IL2は全体として光軸AXを中心とする円
形領域内を通過する。従って、その瞳面PSの付近の投
影光学系12のレンズは周辺部ばかりでなく中心部も熱
エネルギーを吸収して温度上昇する。そのため、瞳面P
S付近のレンズでは熱変形や屈折率変化の2次の変動成
分の割合が高次の変動成分に対して大きくなる。投影光
学系12の球面収差変動は、瞳面PS付近のレンズの熱
変形や屈折率の変化にほぼ比例するため、球面収差変動
も2次の成分が多くなり、投影光学系12の高次の球面
収差変動が抑えられる。
Next, the operation of the projection exposure apparatus of this embodiment will be described. In this example, first, as shown in FIG. 1, an annular stop 26C having a large aperture and a deformable mirror 5 are combined to perform substantially annular illumination with the illumination light IL1 for exposure. High resolution is obtained for periodic patterns. Also, as shown in FIG.
On a plane substantially conjugate to the pupil plane PS of the projection optical system 12, the illumination light IL1 photosensitive to the photoresist passes through the annular zone 15 and is not exposed to the photoresist reflected by the reflection surface of the deformable mirror 5. Illumination light IL2 passes through a region inside the region 15. In such an illumination state, the illumination light IL
1 and IL2 through the reticle 10 of FIG.
, The illumination light IL1, IL2 as a whole passes through a circular area centered on the optical axis AX on the pupil plane PS of the projection optical system 12. Accordingly, the lens of the projection optical system 12 near the pupil plane PS absorbs heat energy not only in the peripheral part but also in the central part, and the temperature rises. Therefore, the pupil plane P
In the lens near S, the ratio of the second-order fluctuation component of the thermal deformation or the change in the refractive index is larger than that of the higher-order fluctuation component. Since the spherical aberration fluctuation of the projection optical system 12 is almost proportional to the thermal deformation of the lens near the pupil plane PS and the change in the refractive index, the spherical aberration fluctuation also has a second-order component, and the higher order of the projection optical system 12 Variations in spherical aberration are suppressed.

【0024】なお、図1では輪帯照明用の変形ミラー5
を使用したが、本例では図2(c)に示す変形照明用の
開口絞り26Eを兼用する4角錐状の変形ミラー5A
(図3(b)参照)も用意されている。即ち、変形照明
を行うときには、図1の退避交換装置8を介して変形ミ
ラー5の代わりに変形ミラー5Aを照明光IL1の光路
上に設定する。
FIG. 1 shows a deformed mirror 5 for annular illumination.
In this example, a quadrangular pyramid-shaped deformed mirror 5A also serving as a modified illumination aperture stop 26E shown in FIG. 2C is used.
(See FIG. 3B). That is, when performing the deformed illumination, the deformed mirror 5A is set on the optical path of the illumination light IL1 instead of the deformed mirror 5 via the evacuation and exchange device 8 of FIG.

【0025】図3(b)は、変形照明用の変形ミラー5
Aを図1のレチクル10側から見た図を示し、この図3
(b)において、変形ミラー5Aを構成する4個のミラ
ー19A〜19Dは互いに等しい扇状で、光軸AXを頂
点とするレチクル10に凸面を向けた4角錐を形成する
ように密接して配置されている。また、ミラー19A〜
19Dはレチクル10側の面が反射面となっており、ミ
ラー19A〜19Dのレチクル10から見た外形は全体
として光軸AXを中心とする1つの円周16Aとなって
いる。この円周16Aは、図3(a)の照明光IL1が
通過する円形の領域の外周16とほぼ等しい。また、各
ミラー19A〜19Dの外形の円周16Aの内側に等角
度間隔で、レチクル10側から見て円形の透過部18A
〜18Dが形成され、この透過部18A〜18Dを図1
の露光用の照明光IL1が透過するように構成されてい
る。この変形ミラー5Aが、図2(c)の変形照明用の
開口絞り26Eを兼用している。
FIG. 3B shows a deformed mirror 5 for deformed illumination.
FIG. 3A is a view as viewed from the reticle 10 side of FIG.
In (b), the four mirrors 19A to 19D constituting the deformable mirror 5A are arranged in close contact with each other so as to form a quadrangular pyramid having a fan shape equal to each other and having a convex surface directed to the reticle 10 having the optical axis AX as a vertex. ing. In addition, mirror 19A ~
In 19D, the surface on the reticle 10 side is a reflection surface, and the outer shape of the mirrors 19A to 19D viewed from the reticle 10 is a single circumference 16A centered on the optical axis AX as a whole. The circumference 16A is substantially equal to the outer circumference 16 of the circular area through which the illumination light IL1 of FIG. 3A passes. Further, a circular transmission portion 18A as viewed from the reticle 10 side is provided at equal angular intervals inside the outer circumference 16A of each mirror 19A to 19D.
-18D are formed, and the transmitting portions 18A-18D are
Is configured to transmit the illumination light IL1 for exposure. The deformed mirror 5A also serves as the aperture stop 26E for the deformed illumination shown in FIG.

【0026】即ち、本例で変形照明を行うときには、図
1の退避交換装置8を介して、図1の変形ミラー5の代
わりに変形ミラー5Aを角錐の頂点が光軸AXに一致す
るように、且つその頂点をレチクル10側に向けて配置
する。これによって、照明光IL1は4個の透過部18
A〜18Dを透過して図1のレチクル10上に照射され
る。一方、非露光用の照明光IL2は、図3(b)の円
周16A内で透過部18A〜18Dを除く領域で反射さ
れてレチクル10上に照射される。変形ミラー5Aの上
面は投影光学系12の瞳面PSと共役であるため、投影
光学系12の瞳面PS上では、光軸AXを中心とする円
形の領域が照明光IL1及びIL2によって照明され
る。従って、変形照明法で高い解像度が得られると共
に、高次の球面収差変動が抑えられる。しかも、非露光
用の照明光IL2は結像特性には悪影響を与えない。ま
た、図1において、通常の照明法を用いるときには、退
避交換装置8を介して変形ミラー5,5Aを照明光IL
1の光路から退避させて、開口絞りとして図2(a)の
開口絞り26A,26Bを設定すればよい。
That is, when performing the deformed illumination in this embodiment, the deformed mirror 5A is replaced with the deformed mirror 5A instead of the deformed mirror 5 of FIG. 1 via the evacuation and exchange device 8 of FIG. 1 so that the apex of the pyramid coincides with the optical axis AX. And the vertex thereof is arranged toward the reticle 10 side. As a result, the illumination light IL1 is transmitted through the four transmission portions 18.
The reticle 10 shown in FIG. On the other hand, the non-exposure illumination light IL2 is reflected on a region other than the transmission portions 18A to 18D within the circumference 16A of FIG. Since the upper surface of the deformable mirror 5A is conjugate with the pupil plane PS of the projection optical system 12, a circular area centered on the optical axis AX is illuminated on the pupil plane PS of the projection optical system 12 by the illumination lights IL1 and IL2. You. Therefore, a high resolution can be obtained by the modified illumination method, and high-order spherical aberration fluctuation can be suppressed. In addition, the illumination light IL2 for non-exposure does not adversely affect the imaging characteristics. In FIG. 1, when a normal illumination method is used, the deformable mirrors 5 and 5A are illuminated with the illumination light IL via the evacuation and exchange device 8.
The aperture stops 26A and 26B shown in FIG. 2A may be set as the aperture stops after being retracted from the optical path 1.

【0027】なお、図3(a)又は図3(b)の変形ミ
ラー5,5Aの反射面でフォトレジストに感光性の照明
光IL1を反射し、フォトレジストに非感光性の照明光
IL2の一部を遮光するような構成にしてもよい。この
ような構成にする場合は、図1において、光源部1,2
及び関連する光学系の配置を入れ換えると共に、例えば
図3(a)の変形ミラー5の代わりに、中央部に照明光
IL2が透過するように円形の透過部を設け、その透過
部の周辺に照明光IL2に対して直交する方向から入射
する照明光IL1を反射する輪帯状の反射面を有する変
形ミラーを使用すればよい。
The photosensitive illumination light IL1 is reflected on the photoresist by the reflecting surfaces of the deformable mirrors 5 and 5A in FIG. 3A or 3B, and the non-photosensitive illumination light IL2 is reflected on the photoresist. A configuration in which a part is shielded from light may be adopted. In the case of such a configuration, in FIG.
In addition, the arrangement of the related optical systems is exchanged, and a circular transmission part is provided in the center part so that the illumination light IL2 is transmitted, for example, instead of the deformable mirror 5 in FIG. What is necessary is just to use the deformation | transformation mirror which has an annular reflection surface which reflects the illumination light IL1 which injects from the direction orthogonal to the light IL2.

【0028】次に、本発明の実施の形態の第1の例の変
形例について、図4を参照して説明する。本変形例は、
露光用の照明光とフォトレジストに非感光性の照明光と
を予め合成し、その合成光をレチクル10の手前に設け
た波長選択性を有する開口絞りにより再び2つの照明光
に分けて、レチクル10を照明するように構成したもの
である。図4において図1に対応する部分には同一符号
を付し、その詳細説明を省略する。
Next, a modification of the first embodiment of the present invention will be described with reference to FIG. This variation is
The illumination light for exposure and the non-photosensitive illumination light on the photoresist are combined in advance, and the combined light is again divided into two illumination lights by a wavelength-selective aperture stop provided in front of the reticle 10, and the reticle 10 is configured to be illuminated. 4, the same reference numerals are given to portions corresponding to FIG. 1, and detailed description thereof will be omitted.

【0029】図4は、本変形例の投影露光装置の概略構
成を示し、この図4において、図1の光源部1と同様に
フォトレジストに対して感光性の照明光IL1Aを射出
する光源部1Aと、図1の光源部2と同様にフォトレジ
ストに対して非感光性の照明光IL2Aを射出する光源
部2Aとを互いに位置を代える形で配置している。そし
て、それらの照明光IL1Aと照明光IL2Aとが交差
する位置に偏光ビームスプリッター31を配置してい
る。本変形例の照明光IL1A及びIL2Aはそれぞれ
P偏光の直線偏光であるとする。光源部2Aの視野絞り
から射出された波長λ2のP偏光の照明光IL2Aは、
リレーレンズ4Aにより平行光束にされて偏光ビームス
プリッター31を透過し、1/4波長板34により円偏
光に変換される。一方、光源部1Aの視野絞りから射出
され、リレーレンズ3Aにより平行光束にされたP偏光
の照明光IL1Aは、照明光IL2Aの光路に直交する
方向から偏光ビームスプリッター31を透過して、1/
4波長板32を経てミラー33により反射されて再び1
/4波長板32に入射してS偏光に変換される。S偏光
に変換された照明光IL1Aは、偏光ビームスプリッタ
ー31により反射されて、1/4波長板34に入射し、
円偏光に変換される。1/4波長板34により円偏光に
変換された照明光IL1A,IL2Aは、リレーレンズ
35及び36を経て波長選択性を有する開口絞り37に
入射する。
FIG. 4 shows a schematic configuration of a projection exposure apparatus according to the present modification. In FIG. 4, a light source unit for emitting illumination light IL1A which is photosensitive to a photoresist, similarly to the light source unit 1 in FIG. 1A and a light source unit 2A that emits illumination light IL2A that is non-photosensitive to a photoresist, like the light source unit 2 in FIG. And the polarization beam splitter 31 is arrange | positioned in the position where those illumination light IL1A and illumination light IL2A cross. It is assumed that the illumination lights IL1A and IL2A of this modification are linearly polarized light of P polarization. The P-polarized illumination light IL2A of wavelength λ2 emitted from the field stop of the light source unit 2A is:
The light is converted into a parallel light beam by the relay lens 4A, passes through the polarization beam splitter 31, and is converted into circularly polarized light by the quarter wavelength plate. On the other hand, the P-polarized illumination light IL1A emitted from the field stop of the light source unit 1A and converted into a parallel light flux by the relay lens 3A passes through the polarization beam splitter 31 from a direction orthogonal to the optical path of the illumination light IL2A, and
After being reflected by the mirror 33 via the four-wavelength plate 32,
The light enters the 4 wavelength plate 32 and is converted into S-polarized light. The illumination light IL1A converted into the S-polarized light is reflected by the polarization beam splitter 31, and enters the quarter-wave plate 34,
Converted to circularly polarized light. The illumination lights IL1A and IL2A converted into circularly polarized light by the 波長 wavelength plate 34 enter the aperture stop 37 having wavelength selectivity via the relay lenses 35 and 36.

【0030】図5(a)は、開口絞り37の平面図を示
し、この図5(a)において、開口絞り37は波長λ1
の照明光IL1Aを透過し、波長λ2の照明光IL2A
を殆ど透過しない輪帯状の光学フィルター39と、波長
λ2の照明光IL2Aを透過し、波長λ1の照明光IL
1を殆ど透過しない円形の光学フィルター38とから構
成されている。また、開口絞り37は中心が光軸AXに
合致するように投影光学系12の瞳面PSと共役な面上
に配置されている。そして、光源部1Aからの照明光I
L1Aは輪帯状の光学フィルター39を含む領域に照射
され、光源部2Aからの照明光IL2Aは円形の光学フ
ィルター38を含む領域に照射されている。
FIG. 5A is a plan view of the aperture stop 37. In FIG. 5A, the aperture stop 37 has a wavelength λ1.
Illumination light IL1A having a wavelength of λ2
And an illumination filter IL that transmits the illumination light IL2A having the wavelength λ2 and transmits the illumination light IL2A having the wavelength λ1.
And a circular optical filter 38 that hardly transmits 1. The aperture stop 37 is disposed on a plane conjugate with the pupil plane PS of the projection optical system 12 such that the center coincides with the optical axis AX. Then, the illumination light I from the light source unit 1A
L <b> 1 </ b> A is applied to an area including the annular optical filter 39, and illumination light IL <b> 2 </ b> A from the light source unit 2 </ b> A is applied to an area including the circular optical filter 38.

【0031】偏光ビームスプリッター31により合成さ
れた2つの照明光IL1A,IL2Aは、開口絞り37
を通過した後、コンデンサレンズ9を介してレチクル1
0上に照射される。レチクル10のパターン像は投影光
学系12を介してウエハ13上に投影される。投影光学
系12の瞳面PS上では、第1の例と同様の照明光IL
1A,IL2Aがほぼ円形の領域を通過する。以下の照
明光IL1A,IL2Aの光路は第1の例と同様につき
説明を省略する。
The two illumination lights IL1A and IL2A synthesized by the polarization beam splitter 31 are transmitted through an aperture stop 37.
After passing through the reticle 1 via the condenser lens 9
Irradiated on zero. The pattern image of the reticle 10 is projected onto the wafer 13 via the projection optical system 12. On the pupil plane PS of the projection optical system 12, the same illumination light IL as in the first example is used.
1A and IL2A pass through a substantially circular area. The optical paths of the following illumination lights IL1A and IL2A are the same as in the first example, and description thereof is omitted.

【0032】本変形例によれば、第1の例と同様の高次
の球面収差低減効果が得られると共に、波長選択性を有
する開口絞り37により照明光IL1A,IL2Aの通
過領域を規定するため、第1の例のように変形ミラー5
を用いるという複雑な構成が不要である。また、波長λ
2の光源部2Aが1つで済むため、装置全体をコンパク
トに構成できる。また、偏光ビームスプリッター31で
合成された直線偏光の2光束は、1/4波長板34によ
って円偏光に変換されるので、ウエハ13上に結像する
際に、レチクル10のパターンの方向が変わっても良好
な転写が行われる。なお、偏光ビームスプリッター31
に代えて図4の2点鎖線で示すように、ダイクロイック
ミラー31Aを使用することもできる。このダイクロイ
ックミラー31Aは、照明光IL2Aを透過して、照明
光IL1Aを反射する波長選択性を有し、これによって
両照明光IL1A,IL2Aが無駄なく合成される。こ
の際には1/4波長板32,34及びミラー33は不要
となり、構成が簡単となる。また、図4の開口絞り37
は、図1の退避交換装置8と同様の装置によって変形照
明用の開口絞り37Aと交換できるように構成されてい
る。
According to this modification, the same high-order spherical aberration reduction effect as that of the first embodiment can be obtained, and at the same time, the aperture stop 37 having wavelength selectivity defines the passage area of the illumination lights IL1A and IL2A. , The deformable mirror 5 as in the first example
A complicated configuration of using the is unnecessary. Also, the wavelength λ
Since only one light source unit 2A is required, the entire apparatus can be made compact. Further, the two light beams of linearly polarized light synthesized by the polarization beam splitter 31 are converted into circularly polarized light by the 波長 wavelength plate 34, so that when the image is formed on the wafer 13, the direction of the pattern of the reticle 10 changes. However, good transfer is performed. Note that the polarization beam splitter 31
Alternatively, a dichroic mirror 31A can be used as shown by a two-dot chain line in FIG. The dichroic mirror 31A has a wavelength selectivity of transmitting the illumination light IL2A and reflecting the illumination light IL1A, whereby the two illumination lights IL1A and IL2A are combined without waste. In this case, the quarter-wave plates 32 and 34 and the mirror 33 are not required, and the configuration is simplified. Further, the aperture stop 37 shown in FIG.
Is configured so that it can be replaced with an aperture stop 37A for deformed illumination by a device similar to the evacuation and replacement device 8 of FIG.

【0033】図5(b)は、変形照明を行う際に図4の
開口絞り37の代わりに用いられる波長選択性を有する
開口絞り37Aの平面図を示し、この図5(b)におい
て、開口絞り37Aは、波長λ1の照明光IL1Aを透
過し、波長λ2の照明光IL2Aを殆ど透過しない4個
の小さい円形の光学フィルター40A〜40D、及びこ
れらの光学フィルター40A〜40Dを除く領域で波長
λ2の照明光IL2Aを透過し、波長λ1の照明光IL
1Aを殆ど透過しない外形が円形の光学フィルター41
から構成されている。光学フィルター41は、図5
(a)の光学フィルター39の外径とほぼ等しい外径を
もち、その外周近くに等角度間隔で形成された4個の小
さな円形の開口部を有し、それら4個の開口部にそれぞ
れ光学フィルター40A〜40Dが設けられている。露
光用の照明光IL1Aは、4個の光学フィルター40A
〜40Dを通過し、フォトレジストに非感光性の照明光
IL2Aは、その光学フィルター40A〜40Dの周囲
の光学フィルター41を通過する。これによって変形照
明が行われると共に、高次の球面収差変動が抑制され
る。
FIG. 5B is a plan view of an aperture stop 37A having wavelength selectivity that is used in place of the aperture stop 37 of FIG. 4 when performing modified illumination. The aperture 37A transmits four small circular optical filters 40A to 40D that transmit the illumination light IL1A of the wavelength λ1 and hardly transmit the illumination light IL2A of the wavelength λ2, and a wavelength λ2 in a region excluding these optical filters 40A to 40D. Illumination light IL2A having a wavelength of λ1
Optical filter 41 having a circular outer shape that hardly transmits 1A
It is composed of The optical filter 41 is shown in FIG.
(A) has an outer diameter substantially equal to the outer diameter of the optical filter 39, and has four small circular openings formed at equal angular intervals near the outer periphery thereof; Filters 40A to 40D are provided. The illumination light IL1A for exposure includes four optical filters 40A.
The illumination light IL2A that passes through -40D and is not photosensitive to the photoresist passes through an optical filter 41 surrounding the optical filters 40A-40D. As a result, deformed illumination is performed, and high-order spherical aberration fluctuation is suppressed.

【0034】なお、図5(a)及び図5(b)におい
て、光源部1Aからの照明光IL1Aが透過する光学フ
ィルター38及び40A〜40Dとしては、できるだけ
光源部2Aからの照明光IL2Aを透過しないものが、
高次の球面収差変動を低減する効果が大きく、望まし
い。次に、本発明の投影露光装置の実施の形態の第2の
例について図6を参照して説明する。本例は、輪帯状の
瞳フィルターを使用する場合に本発明を適用したもので
ある。なお、図6において図1に対応する部分には同一
符号を付し、その詳細説明を省略する。
In FIGS. 5A and 5B, the optical filters 38 and 40A to 40D through which the illumination light IL1A from the light source section 1A passes are transmitted as much as possible to the illumination light IL2A from the light source section 2A. What does not
The effect of reducing high-order spherical aberration fluctuation is large and desirable. Next, a second embodiment of the projection exposure apparatus according to the present invention will be described with reference to FIG. In this example, the present invention is applied to a case where an annular pupil filter is used. In FIG. 6, parts corresponding to those in FIG. 1 are given the same reference numerals, and detailed description thereof will be omitted.

【0035】図6は、本例の投影露光装置の概略構成を
示し、この図6において、簡単のため、投影光学系12
を上部レンズ系12A及び下部レンズ系12Bに分けて
説明する。本例では、それらの上部レンズ系12A及び
下部レンズ系12Bの間の瞳面PSの近傍に図1の変形
ミラー5と同様の4角錐型の変形ミラー5Bを配置して
いる。図1の光源部1と同様の光源部1Bの視野絞りか
ら射出されたフォトレジストに感光性の波長λ1の照明
光IL1Bは、コンデンサレンズ42を介してレチクル
10上に照射される。光源部1B内の開口絞りは図2
(a)の開口絞り26Cと同様の大きな円形である。レ
チクル10を透過した照明光IL1Bは、上部レンズ系
12Aにより光学的にフーリエ変換されて、変形ミラー
5Bの周囲を通過する。この変形ミラー5Bにより、フ
ォトレジストに感光性の照明光IL1Bが光軸AXを中
心とする円形領域で遮光される。即ち、変形ミラー5B
は輪帯状の瞳フィルターを兼用している。一方、図1の
光源部2と同様の光源部2Bから射出された波長λ2の
フォトレジストに非感光性の照明光IL2Bは、リレー
レンズ4Bで平行光束にされた後、一部が変形ミラー5
Bの第1の反射面でウエハ13側に向けて反射される。
この場合、図1の第1の例と同様に変形ミラー5Bの下
方を通過した照明光IL2Bを反射して、変形ミラー5
Bの第2の反射面に入射させるためのミラー7A,8A
が配置されている。
FIG. 6 shows a schematic configuration of the projection exposure apparatus of the present embodiment. In FIG.
Will be described separately for the upper lens system 12A and the lower lens system 12B. In this example, a quadrangular pyramid-shaped deformed mirror 5B similar to the deformed mirror 5 of FIG. 1 is arranged near the pupil plane PS between the upper lens system 12A and the lower lens system 12B. Illumination light IL1B having a wavelength λ1 that is photosensitive to a photoresist emitted from a field stop of a light source unit 1B similar to the light source unit 1 of FIG. 1 is irradiated onto a reticle 10 via a condenser lens. The aperture stop in the light source unit 1B is shown in FIG.
This is a large circle similar to the aperture stop 26C in FIG. The illumination light IL1B transmitted through the reticle 10 is optically Fourier-transformed by the upper lens system 12A, and passes around the deformable mirror 5B. With this deformed mirror 5B, the illumination light IL1B photosensitive to the photoresist is shielded in a circular area centered on the optical axis AX. That is, the deformable mirror 5B
Is also used as an annular pupil filter. On the other hand, the illumination light IL2B which is non-photosensitive to the photoresist having the wavelength λ2 emitted from the light source unit 2B similar to the light source unit 2 of FIG.
The light is reflected toward the wafer 13 by the first reflection surface B.
In this case, similarly to the first example of FIG. 1, the illumination light IL2B that has passed below the deformed mirror 5B is reflected and the deformed mirror 5B is reflected.
Mirrors 7A and 8A for entering the second reflection surface of B
Is arranged.

【0036】更に、本例でも図6の紙面に垂直な方向
に、変形ミラー5Bの第3及び第4の反射面に対して波
長λ2の照明光を供給する光源部等が設けられている。
変形ミラー5Bで反射された照明光IL2Bは、下部レ
ンズ系12Bを介してウエハ13上に照射される。本例
では、投影光学系12の瞳面PSに配置された変形ミラ
ー5Bにより露光用の照明光IL1Bの光軸AX近傍の
領域が遮光されるため、所定のパターンに対して輪帯状
の中心遮光型の瞳フィルターを設置した場合と同様の高
い解像度が得られる。また、下部レンズ系12Bの硝材
は、2波長の照明光IL1B,IL2Bにより均一な照
度分布で照明されるため、高次の熱変形や屈折率の変化
が抑えられ、投影光学系12の高次の球面収差変動が抑
えられる。
Further, in this embodiment, a light source section for supplying illumination light of wavelength λ2 to the third and fourth reflecting surfaces of the deformable mirror 5B is provided in a direction perpendicular to the plane of FIG.
The illumination light IL2B reflected by the deformable mirror 5B is irradiated onto the wafer 13 via the lower lens system 12B. In this example, since the area near the optical axis AX of the illumination light IL1B for exposure is shielded by the deforming mirror 5B disposed on the pupil plane PS of the projection optical system 12, a ring-shaped center light shield is provided for a predetermined pattern. The same high resolution as when a pupil filter of the type is installed is obtained. In addition, since the glass material of the lower lens system 12B is illuminated by the two wavelengths of illumination light IL1B and IL2B with a uniform illuminance distribution, high-order thermal deformation and a change in refractive index are suppressed, and the high-order Is suppressed.

【0037】なお、本発明の実施の形態の第1の例にお
いて補足したように、変形ミラー5Bの反射面でフォト
レジストに感光性の照明光IL1Bを反射し、それ以外
の部分でフォトレジストに非感光性の照明光IL2Bを
透過させるような構成にしてもよい。このような構成に
する場合は、図6において、光源部1B,2B、レチク
ル10、上部レンズ系12A、及び関連する光学系の配
置を入れ換えると共に、変形ミラーとして、中央部に照
明光IL2Bが透過するように円形の開口を設け、その
開口部の周辺に照明光IL2Bに対して直交する方向か
ら入射する照明光IL1Bに対して輪帯状の反射面を有
する変形ミラーを使用すればよい。
As supplemented in the first example of the embodiment of the present invention, the photosensitive illumination light IL1B is reflected on the photoresist on the reflection surface of the deformable mirror 5B, and the photoresist is reflected on the other portions on the photoresist. A configuration in which the non-photosensitive illumination light IL2B is transmitted may be employed. In such a configuration, in FIG. 6, the arrangement of the light source units 1B and 2B, the reticle 10, the upper lens system 12A, and the related optical system are interchanged, and the illumination light IL2B is transmitted to the center as a deformable mirror. It is sufficient to use a deformed mirror having a ring-shaped reflecting surface for the illumination light IL1B incident on the periphery of the circular opening from a direction orthogonal to the illumination light IL2B.

【0038】次に、本発明の実施の形態の第2の例の変
形例について、図7を参照して説明する。本変形例の投
影露光装置の投影光学系までの構成は、図4の第1の例
の変形例とほぼ同様であり(但し、開口絞り37が省か
れている)、図7において図4及び図6に対応する部分
には同一符号を付し、その詳細説明を省略する。図7
は、本例の投影露光装置の概略構成を示し、この図7に
おいて、投影光学系12の上部レンズ系12A及び下部
レンズ系12Bの間の瞳面PSの近傍に図5(a)の開
口絞り37と同様の波長選択性を有する開口絞り43を
配置している。光源部2Aから射出されたフォトレジス
トに非感光性の波長λ2の照明光IL2A、及び光源部
1Aから射出されたフォトレジストに感光性の波長λ1
の照明光IL1Aは、偏光ビームスプリッター31で合
成され、レチクル10を透過して投影光学系12の上部
レンズ系12Aで光学的にフーリエ変換されて、開口絞
り43に入射する。開口絞り43には、図5(a)と同
様にフォトレジストに感光性の照明光IL1Aのみを透
過する輪帯状の光学フィルターと、その内側でフォトレ
ジストに非感光性の照明光IL2Aのみを透過する円形
の光学フィルターとが形成されており、開口絞り43は
照明光IL1Aに対して中心遮光型の瞳フィルターとし
て作用する。もう一方の照明光IL2Aは照明光IL1
Aが遮光された円形領域を通過した後、下部レンズ系1
2Bを介してウエハ13上に入射する。
Next, a modification of the second embodiment of the present invention will be described with reference to FIG. The configuration of the projection exposure apparatus of this modification up to the projection optical system is almost the same as that of the modification of the first example of FIG. 4 (however, the aperture stop 37 is omitted). Parts corresponding to those in FIG. 6 are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG.
7 shows a schematic configuration of the projection exposure apparatus of this embodiment. In FIG. 7, the aperture stop shown in FIG. 5A is located near the pupil plane PS between the upper lens system 12A and the lower lens system 12B of the projection optical system 12. An aperture stop 43 having the same wavelength selectivity as that of the aperture stop 37 is provided. The illumination light IL2A having a wavelength λ2 which is non-photosensitive to the photoresist emitted from the light source unit 2A, and the wavelength λ1 which is photosensitive to the photoresist emitted from the light source unit 1A.
The illumination light IL1A is combined by the polarization beam splitter 31, transmitted through the reticle 10, optically Fourier-transformed by the upper lens system 12A of the projection optical system 12, and incident on the aperture stop 43. As shown in FIG. 5A, the aperture stop 43 has a ring-shaped optical filter that transmits only the illumination light IL1A that is photosensitive to the photoresist, and transmits only the non-photosensitive illumination light IL2A to the photoresist inside the filter. A circular optical filter is formed, and the aperture stop 43 functions as a central light shielding type pupil filter for the illumination light IL1A. The other illumination light IL2A is illumination light IL1.
After A has passed through the shaded circular area, the lower lens system 1
The light enters the wafer 13 via 2B.

【0039】本変形例では、投影光学系12の瞳面PS
に配置された開口絞り43により、図6の例と同様に高
い解像度が得られる。また、下部レンズ系12Bの硝材
は、2つの照明光IL1A,IL2Aにより均一な照度
分布で照明されるため、高次の球面収差変動が抑えられ
る。なお、光源部1Aからの照明光IL1Aを透過する
光学フィルターとしては、光源部2Aからの照明光IL
2Aをできるだけ透過しない光学フィルターが、高次の
収差を低減する効果が大きく望ましい。なお、図4の例
と同様に、偏光ビームスプリッター31に代えてダイク
ロイックミラーを使用してもよい。
In this modification, the pupil plane PS of the projection optical system 12
6, a high resolution can be obtained as in the example of FIG. Further, since the glass material of the lower lens system 12B is illuminated by the two illumination lights IL1A and IL2A with a uniform illuminance distribution, high-order spherical aberration fluctuation is suppressed. The optical filter that transmits the illumination light IL1A from the light source unit 1A includes the illumination light IL from the light source unit 2A.
It is desirable that an optical filter that does not transmit 2A as much as possible has a large effect of reducing higher-order aberrations. As in the example of FIG. 4, a dichroic mirror may be used instead of the polarization beam splitter 31.

【0040】次に、上述の実施の形態において、投影光
学系12のレンズに対する照度分布が均一化され、高次
の収差変動が抑えられることを計算例に基づいて説明す
る。先ず、照明光の照射による上昇後の温度分布を計算
する。レンズを円筒形に近似して、レンズの側面から周
辺の空気を通して熱が流出せず、レンズの縁が金属と接
することにより、その縁からのみ熱が流出し、レンズに
おける吸収エネルギー密度分布が光軸AXの回りの角度
に対して一定であるとする。そのレンズの半径方向の距
離を表す変数をrとすれば、上昇後の温度分布は変数r
の関数T(r)となり、レンズの単位体積当たりの熱吸
収量及び熱伝導率をそれぞれ、ω(r)及びλとし、レ
ンズの外半径をaとすると、熱平衡状態での円筒座標系
での熱伝導方程式は、次式のように表せる。
Next, a description will be given, based on a calculation example, that the illuminance distribution to the lens of the projection optical system 12 is made uniform and high-order aberration fluctuation is suppressed in the above embodiment. First, the temperature distribution after the rise due to the illumination light irradiation is calculated. By approximating the lens to a cylindrical shape, heat does not flow out from the side of the lens through the surrounding air, and when the edge of the lens comes into contact with metal, heat flows out only from that edge and the absorbed energy density distribution in the lens changes to light. It is assumed that the angle is constant with respect to the angle around the axis AX. Assuming that a variable representing the radial distance of the lens is r, the temperature distribution after the rise is a variable r
Where T (r) is the heat absorption amount and thermal conductivity per unit volume of the lens, and a is the outer radius of the lens. In the cylindrical coordinate system in a thermal equilibrium state, The heat conduction equation can be expressed as the following equation.

【0041】[0041]

【数1】∂2 T/∂r2 +(1/r)∂T/∂r+ω
(r)/λ=0 この熱伝導方程式を解くと、次式のようになる。
2 T / ∂r 2 + (1 / r) ∂T / ∂r + ω
(R) / λ = 0 By solving this heat conduction equation, the following equation is obtained.

【0042】[0042]

【数2】 (Equation 2)

【0043】ここで、Jn(pi ・r)は第1種第n次
(n=0,1,2,…)のベッセル(Bessel)関数で、
i はJ1(pi ・a)=0を満たす数列である(i=
1,2,3,…)。また、係数Bi は次式により求めら
れる。
Here, J n (p i · r) is a Bessel function of the n-th order (n = 0, 1, 2,...) Of the first kind,
p i is a sequence satisfying J 1 (p i · a) = 0 (i =
1, 2, 3, ...). The coefficient B i is obtained by the following equation.

【0044】[0044]

【数3】 (Equation 3)

【0045】特に、熱吸収量ω(r)が照射領域の半径
(照射半径)内で階段状の関数で表されるとき、即ち或
るj(1≦j≦N)において、変数rが、hj ≦r≦h
j+1を満たす区間において、熱吸収量ω(r)が一定値
ωj をとるとき、次の関係が成立する。
In particular, when the heat absorption amount ω (r) is represented by a step-like function within the radius of the irradiation area (irradiation radius), that is, at a certain j (1 ≦ j ≦ N), the variable r becomes h j ≦ r ≦ h
In the section that satisfies j + 1, when the heat absorption amount omega (r) takes a constant value omega j, the following relation is established.

【0046】[0046]

【数4】 (Equation 4)

【0047】従って、(数4)を(数3)に代入するこ
とにより係数Bi が求められ、この係数Bi を(数2)
に代入することにより、上昇後の温度分布T(r)が求
められる。次に、上昇後の温度分布T(r)により、ど
の次数の収差変動が多く現れるかを調べるために、上昇
後の温度分布T(r)を以下のように最小2乗法でr10
の項までベキ級数展開すると、次式のようになる。
[0047] Thus, equation (4) coefficient B i is obtained by substituting the (number 3), the coefficients B i (Equation 2)
To obtain the temperature distribution T (r) after the rise. Then, the increase after the temperature distribution T (r), r 10 to determine which order of aberration variation occurs more, the temperature distribution T after rise (r) with a minimum square method as follows
When the power series is expanded up to the term, the following equation is obtained.

【0048】[0048]

【数5】T(r)=T0 +C2 ・r2 +C4 ・r4 +C
6 ・r6 +C8 ・r8+C10・r10 この場合、上昇後の温度分布T(r)の単位は℃、変数
rの単位はmmである。また、T0 は、光軸AX、即ち
変数rが0の位置における上昇後の温度分布T(0)で
ある。
T (r) = T 0 + C 2 · r 2 + C 4 · r 4 + C
6 · r 6 + C 8 · r 8 + C 10 · r 10 In this case, the unit of the temperature distribution T (r) after the rise is ° C., and the unit of the variable r is mm. T 0 is the optical axis AX, that is, the temperature distribution T (0) after the rise at the position where the variable r is 0.

【0049】以下、実際の数値に基づく計算例について
説明する。投影光学系の入射側の開口数(NA)に対す
る照明光学系の出射側の開口数の比の値(コヒーレンス
ファクタ)をσ値とし、このσ値を0.75に設定す
る。そして、σ値が0.75の照明系によって外半径4
0mmの円筒形の石英からなるレンズが照明され、レン
ズ上の照射領域の半径dが30mmであるような場合に
ついて、(数2)〜(数4)の熱伝導方程式の解に基づ
いて計算する。石英の熱伝導率を0.0138W/(c
m・℃)とし、ウエハ上のフォトレジストに感光性の照
明光に対するレンズの熱吸収率を2%/cmとする。
Hereinafter, a calculation example based on actual numerical values will be described. The value (coherence factor) of the ratio of the numerical aperture on the exit side of the illumination optical system to the numerical aperture (NA) on the entrance side of the projection optical system is defined as a σ value, and this σ value is set to 0.75. An outer radius of 4 is obtained by an illumination system having a σ value of 0.75.
In the case where a lens made of 0 mm cylindrical quartz is illuminated and the radius d of the irradiation area on the lens is 30 mm, calculation is performed based on the solutions of the heat conduction equations of (Equation 2) to (Equation 4). . The thermal conductivity of quartz is 0.0138 W / (c
m · ° C.), and the heat absorption rate of the lens to the illumination light sensitive to the photoresist on the wafer is set to 2% / cm.

【0050】第1の計算例では、先ず比較のため、照明
光の全照射エネルギー量が1Wで、σ値が0.75の範
囲内でレンズが一様に照射されている場合について計算
する。図8(a)は、第1の計算例による上昇後の温度
分布T(r)を示し、横軸は変数r、縦軸は上昇後の温
度分布T(r)を表す。実線の曲線46Aに示すよう
に、上昇後の温度分布T(r)は原点、即ち光軸AXに
最大値を有し、光軸AXに関して軸対称な山型の変化を
示す。なお、参考として、照明光の照射エネルギー密度
P(r)を点線47Aにより示す。照射エネルギー密度
P(r)は、変数rが0〜d(照射半径)の間で一定の
値P1となる。また、光軸AXでの温度分布T0 、及び
温度分布T(r)を(数5)によりベキ級数に展開した
ときの係数C2 〜C10を表1に示す。
In the first calculation example, first, for comparison, calculation is performed for a case where the total irradiation energy amount of the illumination light is 1 W and the lens is uniformly irradiated within a range of σ of 0.75. FIG. 8A shows the temperature distribution T (r) after the rise in the first calculation example, where the horizontal axis represents the variable r and the vertical axis represents the temperature distribution T (r) after the rise. As shown by the solid curve 46A, the temperature distribution T (r) after the rise has a maximum value at the origin, that is, the optical axis AX, and shows a mountain-shaped change that is axisymmetric with respect to the optical axis AX. For reference, the irradiation energy density P (r) of the illumination light is indicated by a dotted line 47A. The irradiation energy density P (r) has a constant value P1 when the variable r is between 0 and d (irradiation radius). Further, Table 1 shows coefficients C 2 to C 10 when the temperature distribution T 0 on the optical axis AX and the temperature distribution T (r) are expanded into a power series by (Equation 5).

【0051】[0051]

【表1】 [Table 1]

【0052】次に、第2の計算例について説明する。こ
の計算例は輪帯照明だけ行われた場合の例であり、第1
の計算例と同様に比較のための計算例である。σ値は最
大で0.75で、輪帯の内側のσ値は0.5である。そ
のσ値が0.5〜0.75の間でレンズが一様に照明さ
れ、全照射エネルギー量が1Wである場合について上昇
後の温度分布T(r)を計算したものである。
Next, a second calculation example will be described. This calculation example is an example in which only annular illumination is performed.
This is a calculation example for comparison as in the calculation example of FIG. The σ value is 0.75 at the maximum, and the σ value inside the annular zone is 0.5. The temperature distribution T (r) after the rise is calculated when the lens is uniformly illuminated when the σ value is in the range of 0.5 to 0.75 and the total irradiation energy amount is 1 W.

【0053】図4(b)は、第2の計算例による上昇後
の温度分布T(r)を示し、この図4(b)において、
実線の曲線46Bに示すように、上昇後の温度分布T
(r)は変数rがほぼ0〜eの間で一定の上昇温度TB
となる。点線47Bで示す照射エネルギー密度P(r)
は、変数rがe〜dの間で一定の値P2となり、変数r
が0〜eの間では0となっている。第1の計算例と同様
に、光軸AXでの上昇後の温度分布T0 、及び上昇後の
温度分布T(r)を(数5)によりベキ級数に展開した
ときの係数C2 〜C10を表2に示す。
FIG. 4B shows a temperature distribution T (r) after the rise according to the second calculation example.
As shown by the solid line curve 46B, the temperature distribution T
(R) is a constant rising temperature TB when the variable r is approximately between 0 and e.
Becomes Irradiation energy density P (r) indicated by dotted line 47B
Indicates that the variable r has a constant value P2 between e and d, and the variable r
Is 0 between 0 and e. Similarly to the first calculation example, the coefficients C 2 to C 2 when the temperature distribution T 0 after the rise on the optical axis AX and the temperature distribution T (r) after the rise are expanded into a power series by (Equation 5). Table 10 shows Table 10 .

【0054】[0054]

【表2】 [Table 2]

【0055】次に、第3の計算例について説明する。こ
の計算例は、図1、図4、図6、図7に示す実施の形態
のように、ウエハ13上のフォトレジストに感光性の照
明光及びそのフォトレジストに非感光性の照明光の2つ
の照明光によりレンズが照明されている場合の上昇後の
温度分布T(r)を求めるものである。この場合、σ値
が0.75から0.5の範囲内では、フォトレジストに
感光性の照明光により全照射エネルギー量が1Wでレン
ズが一様に照明され、σ値が0.5から0.0の範囲内
においては、フォトレジストに非感光性の波長の照明光
により、照射エネルギー密度P(r)がσ値が0.75
から0.5の範囲での照射エネルギー密度の1/2にな
るようにレンズが照明されているものとする。
Next, a third calculation example will be described. This calculation example is, as in the embodiment shown in FIGS. 1, 4, 6 and 7, two types of illumination light that is photosensitive to the photoresist on the wafer 13 and illumination light that is not photosensitive to the photoresist. The temperature distribution T (r) after the rise when the lens is illuminated by two illumination lights is obtained. In this case, when the σ value is in the range of 0.75 to 0.5, the photoresist is uniformly illuminated with the photosensitive illumination light at a total irradiation energy of 1 W, and the σ value is 0.5 to 0. Within the range of 0.0, the irradiation energy density P (r) is reduced to 0.75 by the illumination light having a wavelength insensitive to the photoresist.
It is assumed that the lens is illuminated so that the irradiation energy density becomes 2 of the irradiation energy density in the range of 0.5 to 0.5.

【0056】図4(c)は、第3の計算例による上昇後
の温度分布T(r)を示し、この図4(c)において、
実線の曲線46Cに示すように、上昇後の温度分布T
(r)は原点、即ち光軸AXに最大値TCを有し、光軸
AXに関して軸対称な山型の変化を示す。また、照射エ
ネルギー密度P(r)は階段状に変化する点線47Cに
示すように、変数rがe〜dの間で一定の値P2とな
り、変数rが0〜eの間では一定の値P3(=P2/
2)となっている。また、光軸AXでの温度分布T0
及び温度分布T(r)を(数5)によりベキ級数に展開
したときの係数C2 〜C10を表3に示す。
FIG. 4C shows the temperature distribution T (r) after the rise according to the third calculation example.
As shown by the solid line curve 46C, the temperature distribution T
(R) has a maximum value TC at the origin, that is, the optical axis AX, and shows a mountain-shaped change that is axially symmetric with respect to the optical axis AX. The irradiation energy density P (r) has a constant value P2 when the variable r is between e and d, and a constant value P3 when the variable r is between 0 and e, as shown by a dotted line 47C that changes stepwise. (= P2 /
2). Further, a temperature distribution T 0 on the optical axis AX,
Table 3 shows coefficients C 2 to C 10 when the temperature distribution T (r) is expanded into a power series by (Equation 5).

【0057】[0057]

【表3】 [Table 3]

【0058】なお、第1及び第2の計算例においては、
全照射エネルギー量を1Wとし、第3の計算例において
は、σ値が0.75から0.5の範囲内における照射エ
ネルギー量を1Wとしている。この第3の計算例におい
ては、σ値が0.5〜0.0の範囲における照射エネル
ギー量を加えると、全照射エネルギー量は1Wを超え
る。これは、第1〜第3の計算例におけるウエハ13上
のフォトレジストに感光性の照明光の照射エネルギー量
を等しくして、露光時間(スループット)が等しくなる
ように設定したものである。
Note that in the first and second calculation examples,
The total irradiation energy amount is 1 W, and in the third calculation example, the irradiation energy amount is 1 W when the σ value is in the range of 0.75 to 0.5. In the third calculation example, the total irradiation energy exceeds 1 W when the irradiation energy in the range of 0.5 to 0.0 is added. In this case, the irradiation energy (sensitivity) of the illumination light sensitive to the photoresist on the wafer 13 in the first to third calculation examples is set to be equal so that the exposure time (throughput) is equal.

【0059】第1の計算例に示す照明形態(一様照明)
と、第2の計算例に示す照明形態(輪帯照明)とを比較
した場合、表1及び表2で示すように、輪帯照明の方が
一様照明に比較して、光軸AXにおける上昇温度が低
い。それにもかかわらず、例えばベキ級数の係数C4
比較すると、一様照明の場合の係数C4 の値が、4.4
000×10-8に対して、輪帯照明の場合の係数C4
は、2.7328×10-7と、輪帯照明の方が大きくな
っている。即ち、一様照明と輪帯照明とを比較すると、
係数C2 以外のベキ級数の係数の絶対値は全て輪帯照明
の方が大きくなっている。熱変形や屈折率変化は上昇後
の温度分布T(r)に比例するので、収差変動も上昇後
の温度分布T(r)に比例する。係数C2 より高次のベ
キ級数の係数が全て輪帯照明の方が大きいということ
は、輪帯照明の方が高次の収差変動が大きいことを意味
する。
Illumination form shown in the first calculation example (uniform illumination)
In comparison with the illumination modes (zonal illumination) shown in the second calculation example, as shown in Tables 1 and 2, the annular illumination is more uniform than the uniform illumination in the optical axis AX. Low rise temperature. Nevertheless, when the power series coefficient C 4 is compared, for example, the value of the coefficient C 4 in the case of uniform illumination is 4.4.
000 × 10 -8 , coefficient C 4 in the case of annular illumination
Is 2.7328 × 10 −7, which is larger for annular illumination. That is, comparing uniform illumination with annular illumination,
Absolute values of the coefficients of the power series other than the coefficient C 2 is better for all annular illumination is large. Since the thermal deformation and the change in the refractive index are proportional to the temperature distribution T (r) after the rise, the aberration fluctuation is also proportional to the temperature distribution T (r) after the rise. That the coefficient of the high-order power series from the coefficient C 2 is greater in all annular illumination means towards the annular illumination is large higher order aberrations change.

【0060】ここで、図1、図4、図6、図7に示す実
施の形態での照明形態を「合成照明」とすれば、合成照
明により光軸近傍にも照明光を照射すると、第3の計算
例に示すように、全照射量が一様照明や輪帯照明よりも
多いのにもかかわらず、表1及び表2に示すように、係
数C4 の値(=1.7624×10-7)は、輪帯照明で
の係数C4 の値(=2.7328×10-7)よりも小さ
くなっている。更に、係数C6,C8,C10の絶対値を比較
すると、何れの係数においても合成照明の方が輪帯照明
よりも小さくなっている。これは、合成照明により高次
の収差変動が小さくなることを意味する。
Here, if the illumination mode in the embodiment shown in FIGS. 1, 4, 6 and 7 is "synthetic illumination", the illumination light is also applied to the vicinity of the optical axis by the synthetic illumination. As shown in the calculation example of FIG. 3, despite the fact that the total irradiation amount is larger than that of the uniform illumination or the annular illumination, as shown in Tables 1 and 2, the value of the coefficient C 4 (= 1.7624 × 10 −7 ) is smaller than the value of the coefficient C 4 in the annular illumination (= 2.7328 × 10 −7 ). Furthermore, comparing the absolute values of the coefficients C 6 , C 8 , and C 10 , the combined illumination is smaller than the annular illumination in any of the coefficients. This means that high-order aberration fluctuations are reduced by the combined illumination.

【0061】また、第3の計算例においては、σ値が0
〜0.5の間における照射エネルギー密度を、σ値が
0.5〜0.75の間における密度分布の1/2とした
が、σ値が0〜0.75の範囲において全て一様な照射
エネルギー分布により照射されている場合の温度分布T
(r)について計算し、図4(b)の輪帯照明の場合と
比較してみる。
In the third calculation example, the σ value is 0
The irradiation energy density between 0.5 and 0.5 is の of the density distribution when the σ value is between 0.5 and 0.75. Temperature distribution T when irradiation is performed by irradiation energy distribution
(R) is calculated and compared with the case of the annular illumination of FIG. 4 (b).

【0062】図8(a)のエネルギー密度P1と図8
(b)の照射エネルギー密度P2との間には、P2=
1.8・P1の関係が成立する。従って、図8(b)の
ような輪帯照明において、σ値が0.5以内の範囲も輪
帯照明領域と等しい照射エネルギー密度で照射する場合
には、図8(a)において、照射エネルギー密度を1.
8倍した状態と等価である。従って、ベキ級数の係数も
全て1.8倍されるので、表1における係数C4,C6,C
8,C10はそれぞれ、7.9200×10-8,−1.78
21×10-10 ,1.4937×10-13 ,−3.73
41×10-17 となる。これらの係数の値を表2のそれ
ぞれの係数と比較した場合、光軸AX近傍の上昇後の温
度分布T0 が輪帯照明の場合よりもかなり大きいにもか
かわらず、係数C4 〜C10までの係数は輪帯照明の場合
より全て小さくなっている。即ち、合成照明によりσ値
が0〜0.75の範囲内において、輪帯照明と同じ照射
エネルギー密度P2で照射した場合でも、輪帯照明の場
合より高次の収差変動が少ないことを意味している。
The energy density P1 shown in FIG.
Between the irradiation energy density P2 of (b), P2 =
The relationship of 1.8 · P1 is established. Accordingly, in the annular illumination as shown in FIG. 8B, when the irradiation is performed at the same irradiation energy density as the annular illumination area even in a range where the σ value is within 0.5, the irradiation energy in FIG. Density is 1.
This is equivalent to a state multiplied by eight. Therefore, all coefficients of the power series are also multiplied by 1.8, so that the coefficients C 4 , C 6 , C
8, C 10, respectively, 7.9200 × 10 -8, -1.78
21 × 10 −10 , 1.4937 × 10 −13 , −3.73
It becomes 41 × 10 -17 . When the values of these coefficients are compared with the respective coefficients in Table 2, the coefficients C 4 to C 10 are higher even though the temperature distribution T 0 after the rise near the optical axis AX is considerably larger than that in the case of the annular illumination. Are all smaller than in the case of annular illumination. That is, when the σ value is within the range of 0 to 0.75 by the combined illumination, even when the irradiation is performed at the same irradiation energy density P2 as that of the annular illumination, the higher-order aberration fluctuation is smaller than that of the annular illumination. ing.

【0063】なお、上述の実施の形態はステッパー型の
投影露光装置に本発明を適用したものであるが、本発明
はステップ・アンド・スキャン方式のような走査露光型
の投影露光装置にも適用できる。なお、本発明は上述の
実施の形態に限定されず、本発明の要旨を逸脱しない範
囲で種々の構成を取り得ることは勿論である。
In the above-described embodiment, the present invention is applied to a stepper type projection exposure apparatus, but the present invention is also applied to a scanning exposure type projection exposure apparatus such as a step-and-scan method. it can. It should be noted that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the spirit of the present invention.

【0064】[0064]

【発明の効果】本発明の第1の投影露光装置によれば、
投影光学系の瞳面と共役な面上で光軸から偏心した領域
に分布する光源からの露光用の照明光を用いるため、例
えば輪帯照明又は変形照明を行う場合と同じような解像
力向上の効果が得られる。また、輪帯照明や変形照明を
行う場合に露光用の照明光が通過しない領域に、非感光
性の照明光を照射しているため、投影光学系のレンズの
高次の熱変形や屈折率変化が減少し、投影光学系の高次
の球面収差変動が抑えられる利点がある。
According to the first projection exposure apparatus of the present invention,
In order to use illumination light for exposure from a light source distributed in a region decentered from the optical axis on a plane conjugate with the pupil plane of the projection optical system, for example, the same improvement in resolution as when performing annular illumination or deformed illumination The effect is obtained. In addition, since non-photosensitive illumination light is applied to the area where the illumination light for exposure does not pass when performing annular illumination or deformed illumination, higher-order thermal deformation or refractive index of the lens of the projection optical system is used. There is an advantage that the change is reduced and a higher-order spherical aberration fluctuation of the projection optical system is suppressed.

【0065】また、照明光学系が、輪帯状の光源、又は
光軸に対して偏心した位置にある複数の光源からの露光
用の照明光でマスクを照明する場合には、所謂輪帯照明
や変形照明により高い解像度が得られる。また、照明光
学系が、露光用の照明光の照度分布を均一化するための
オプティカル・インテグレータを有し、オプティカル・
インテグレータとマスクとの間に、補助照明系からの照
明光をマスクに導く補助光導入部材を設ける場合には、
露光用の照明光と非感光性の照明光とを瞳面と共役な面
上で正確に分離した状態でマスクを照明でき、結像特性
が劣化しない利点がある。
When the illumination optical system illuminates the mask with exposure illumination light from an annular light source or a plurality of light sources eccentric to the optical axis, a so-called annular illumination or High resolution can be obtained by deformed illumination. Further, the illumination optical system has an optical integrator for equalizing the illuminance distribution of the illumination light for exposure, and
When an auxiliary light introducing member for guiding illumination light from the auxiliary illumination system to the mask is provided between the integrator and the mask,
The mask can be illuminated in a state where the illumination light for exposure and the non-photosensitive illumination light are accurately separated on a plane conjugate with the pupil plane, and there is an advantage that the imaging characteristics are not deteriorated.

【0066】また、本発明の第2の投影露光装置によれ
ば、波長選択性を有する光学部材によって投影光学系の
瞳面上で光軸から偏心した領域を通過する結像光束を用
いるため、輪帯状の中心遮光型の瞳フィルターを設置し
た場合と同様の解像度が得られる利点がある。更に、投
影光学系の瞳面近傍のレンズは、露光用の照明光と感光
基板に非感光性の照明光との2つの照明光により均一な
照度分布で照射されるため、レンズの熱変形や屈折率の
高次の変動成分が減少し、投影光学系の高次の球面収差
変動が減少する利点がある。
Further, according to the second projection exposure apparatus of the present invention, since the image forming light beam passing through the area decentered from the optical axis on the pupil plane of the projection optical system by the optical member having wavelength selectivity is used, There is an advantage that the same resolution can be obtained as when a ring-shaped center light blocking pupil filter is installed. Further, the lens near the pupil plane of the projection optical system is illuminated with a uniform illuminance distribution by two illumination lights, i.e., illumination light for exposure and non-photosensitive illumination light on the photosensitive substrate. There is an advantage that the higher-order fluctuation component of the refractive index is reduced, and the higher-order spherical aberration fluctuation of the projection optical system is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の投影露光装置の実施の形態の第1の例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first example of an embodiment of a projection exposure apparatus of the present invention.

【図2】図1の光源部に設けられた各種の開口絞りを示
す拡大平面図である。
FIG. 2 is an enlarged plan view showing various aperture stops provided in the light source unit of FIG.

【図3】(a)は図1の変形ミラー5をレチクル側から
見た図、(b)は別の変形ミラー5Aをレチクル側から
見た図である。
3A is a view of the deformed mirror 5 of FIG. 1 viewed from the reticle side, and FIG. 3B is a view of another deformed mirror 5A viewed from the reticle side.

【図4】本発明の実施の形態の第1の例の変形例を示す
概略構成図である。
FIG. 4 is a schematic configuration diagram showing a modification of the first example of the embodiment of the present invention.

【図5】(a)は図4中の開口絞り37を示す平面図、
(b)は別の開口絞り37Aを示す平面図である。
5A is a plan view showing an aperture stop 37 in FIG. 4, FIG.
(B) is a plan view showing another aperture stop 37A.

【図6】本発明の投影露光装置の実施の形態の第2の例
を示す概略構成図である。
FIG. 6 is a schematic configuration diagram showing a second example of the embodiment of the projection exposure apparatus of the present invention.

【図7】その実施の形態の第2の例の変形例を示す概略
構成図である。
FIG. 7 is a schematic configuration diagram showing a modification of the second example of the embodiment.

【図8】本発明の実施の形態において、照射エネルギー
による温度分布計算例を説明するための図である。
FIG. 8 is a diagram for explaining an example of calculating a temperature distribution based on irradiation energy in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1A,1B 光源部(露光用) 2,2A,2B 光源部(非露光用) 5,5A,5B 変形ミラー 6A〜6D,19A〜19D ミラー 10 レチクル 12 投影光学系 12A 上部レンズ系 12B 下部レンズ系 PS 瞳面 13 ウエハ 14 ウエハステージ 24 フライアイレンズ 26A〜26C 開口絞り 31 偏光ビームスプリッター 32,34 1/4波長板 37,37A,43 波長選択性を有する開口絞り 1, 1A, 1B Light source unit (for exposure) 2, 2A, 2B Light source unit (for non-exposure) 5, 5A, 5B Deformable mirror 6A to 6D, 19A to 19D Mirror 10 Reticle 12 Projection optical system 12A Upper lens system 12B Lower part Lens system PS Pupil plane 13 Wafer 14 Wafer stage 24 Fly eye lens 26A-26C Aperture stop 31 Polarization beam splitter 32,34 Quarter wave plate 37,37A, 43 Aperture stop having wavelength selectivity

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 露光用の照明光のもとでマスク上のパタ
ーンの像を感光基板上に投影する投影光学系と、 前記投影光学系の瞳面と共役な面上で光軸から偏心した
領域に分布する光源からの前記露光用の照明光を用いて
前記マスクを照明する照明光学系と、を有する投影露光
装置において、 前記感光基板に対して非感光性の波長域の照明光を前記
投影光学系の瞳面上で前記露光用の照明光が通過しない
領域に照射する補助照明系を設けたことを特徴とする投
影露光装置。
1. A projection optical system for projecting an image of a pattern on a mask onto a photosensitive substrate under illumination light for exposure, and a projection optical system decentered from an optical axis on a plane conjugate with a pupil plane of the projection optical system. An illumination optical system that illuminates the mask using the illumination light for exposure from a light source distributed in a region, and a projection exposure apparatus, wherein the illumination light in a wavelength range that is insensitive to the photosensitive substrate. A projection exposure apparatus, comprising an auxiliary illumination system for irradiating an area on the pupil plane of the projection optical system through which the illumination light for exposure does not pass.
【請求項2】 請求項1記載の投影露光装置であって、 前記照明光学系は、輪帯状の光源、又は光軸に対して偏
心した位置にある複数の光源からの前記露光用の照明光
で前記マスクを照明することを特徴とする投影露光装
置。
2. The projection exposure apparatus according to claim 1, wherein the illumination optical system includes illumination light for exposure from a ring-shaped light source or a plurality of light sources eccentric to an optical axis. A projection exposure apparatus, wherein the mask is illuminated by:
【請求項3】 請求項1、又は2記載の投影露光装置で
あって、 前記照明光学系は、前記露光用の照明光の照度分布を均
一化するためのオプティカル・インテグレータを有し、 該オプティカル・インテグレータと前記マスクとの間
に、前記補助照明系からの照明光を前記マスクに導く補
助光導入部材を設けたことを特徴とする投影露光装置。
3. The projection exposure apparatus according to claim 1, wherein the illumination optical system has an optical integrator for uniforming the illuminance distribution of the exposure illumination light, and A projection exposure apparatus, wherein an auxiliary light introducing member for guiding illumination light from the auxiliary illumination system to the mask is provided between the integrator and the mask;
【請求項4】 露光用の照明光のもとでマスク上のパタ
ーンの像を投影光学系を介して感光基板上に投影する際
に、前記投影光学系の瞳面上で光軸から偏心した領域を
通過する結像光束を用いる投影露光装置において、 前記露光用の照明光及び前記感光基板に対して非感光性
の照明光を前記投影光学系の瞳面に導く合成照明光学系
と、 前記投影光学系の瞳面上に配置され、前記光軸から偏心
した領域以外の領域では前記感光基板に対して非感光性
の照明光のみを前記感光基板側に通過させる波長選択性
を有する光学部材と、を有することを特徴とする投影露
光装置。
4. When an image of a pattern on a mask is projected onto a photosensitive substrate via a projection optical system under illumination light for exposure, the pattern is decentered from an optical axis on a pupil plane of the projection optical system. In a projection exposure apparatus using an image forming light beam passing through a region, a synthetic illumination optical system that guides the illumination light for exposure and the illumination light that is insensitive to the photosensitive substrate to a pupil plane of the projection optical system; An optical member that is disposed on a pupil plane of the projection optical system and has wavelength selectivity that allows only non-photosensitive illumination light to pass through the photosensitive substrate to the photosensitive substrate in a region other than a region decentered from the optical axis; And a projection exposure apparatus.
JP22126196A 1996-08-07 1996-08-22 Projection exposure method and apparatus Expired - Lifetime JP3646757B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22126196A JP3646757B2 (en) 1996-08-22 1996-08-22 Projection exposure method and apparatus
EP19970113696 EP0823662A2 (en) 1996-08-07 1997-08-07 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22126196A JP3646757B2 (en) 1996-08-22 1996-08-22 Projection exposure method and apparatus

Publications (2)

Publication Number Publication Date
JPH1064790A true JPH1064790A (en) 1998-03-06
JP3646757B2 JP3646757B2 (en) 2005-05-11

Family

ID=16764005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22126196A Expired - Lifetime JP3646757B2 (en) 1996-08-07 1996-08-22 Projection exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP3646757B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022614A1 (en) 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP2005166871A (en) * 2003-12-02 2005-06-23 Nikon Corp Illumination optical device, projection aligner, exposure method and device manufacturing method
WO2005078774A1 (en) 2004-02-13 2005-08-25 Nikon Corporation Exposure method and system, and device production method
JP2007139773A (en) * 2005-11-14 2007-06-07 Carl Zeiss Smt Ag Measuring apparatus and operating method for optical imaging system
JP2008135742A (en) * 2006-11-27 2008-06-12 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and computer program product
JP2008219010A (en) * 2007-03-05 2008-09-18 Asml Netherlands Bv Device manufacturing method, computer program and lithographic apparatus
JP2010153878A (en) * 2010-01-14 2010-07-08 Nikon Corp Polarization conversion member, lighting optical device, projection exposure device, exposing method, and method of manufacturing device
JP2010157743A (en) * 2010-01-14 2010-07-15 Nikon Corp Illumination optical apparatus, projection aligner, exposure method, and device manufacturing method
JP2010541292A (en) * 2007-10-09 2010-12-24 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography projection exposure apparatus
US7903234B2 (en) 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US8027025B2 (en) 2007-06-27 2011-09-27 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9146477B2 (en) 2010-12-23 2015-09-29 Asml Netherlands B.V. Lithographic apparatus and method of modifying a beam of radiation within a lithographic apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9366857B2 (en) 2007-03-27 2016-06-14 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9965578B2 (en) 2012-10-31 2018-05-08 Asml Netherlands B.V. Compensation for patterning device deformation
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN111948910A (en) * 2019-05-17 2020-11-17 佳能株式会社 Exposure apparatus, exposure method, determination method, and article manufacturing method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US7817249B2 (en) 2003-08-28 2010-10-19 Nikon Corporation Exposure method and apparatus, and device producing method using two light beams to correct non-rotationally symmetric aberration
WO2005022614A1 (en) 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2005166871A (en) * 2003-12-02 2005-06-23 Nikon Corp Illumination optical device, projection aligner, exposure method and device manufacturing method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JPWO2005078774A1 (en) * 2004-02-13 2007-10-18 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP4692753B2 (en) * 2004-02-13 2011-06-01 株式会社ニコン Exposure method and apparatus, and device manufacturing method
US8111378B2 (en) 2004-02-13 2012-02-07 Nikon Corporation Exposure method and apparatus, and device production method
WO2005078774A1 (en) 2004-02-13 2005-08-25 Nikon Corporation Exposure method and system, and device production method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007139773A (en) * 2005-11-14 2007-06-07 Carl Zeiss Smt Ag Measuring apparatus and operating method for optical imaging system
US7903234B2 (en) 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
JP2008135742A (en) * 2006-11-27 2008-06-12 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and computer program product
US8068212B2 (en) 2007-03-05 2011-11-29 Asml Netherlands B.V. Lithographic apparatus configured to compensate for variations in a critical dimension of projected features due to heating of optical elements
JP2008219010A (en) * 2007-03-05 2008-09-18 Asml Netherlands Bv Device manufacturing method, computer program and lithographic apparatus
US9366857B2 (en) 2007-03-27 2016-06-14 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
US10054786B2 (en) 2007-03-27 2018-08-21 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
US8027025B2 (en) 2007-06-27 2011-09-27 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US8773638B2 (en) 2007-10-09 2014-07-08 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus with correction optical system that heats projection objective element
JP2010541292A (en) * 2007-10-09 2010-12-24 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography projection exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP4553066B2 (en) * 2010-01-14 2010-09-29 株式会社ニコン Polarization conversion member, illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
JP2010157743A (en) * 2010-01-14 2010-07-15 Nikon Corp Illumination optical apparatus, projection aligner, exposure method, and device manufacturing method
JP2010153878A (en) * 2010-01-14 2010-07-08 Nikon Corp Polarization conversion member, lighting optical device, projection exposure device, exposing method, and method of manufacturing device
US9146477B2 (en) 2010-12-23 2015-09-29 Asml Netherlands B.V. Lithographic apparatus and method of modifying a beam of radiation within a lithographic apparatus
US9965578B2 (en) 2012-10-31 2018-05-08 Asml Netherlands B.V. Compensation for patterning device deformation
CN111948910A (en) * 2019-05-17 2020-11-17 佳能株式会社 Exposure apparatus, exposure method, determination method, and article manufacturing method

Also Published As

Publication number Publication date
JP3646757B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP3646757B2 (en) Projection exposure method and apparatus
EP0823662A2 (en) Projection exposure apparatus
KR101503992B1 (en) Exposure method and apparatus, and device manufacturing method
US7126667B2 (en) Exposure apparatus and method
JP5026788B2 (en) Microlithography illumination system
KR101391384B1 (en) Lighting optical device exposure system and exposure method
US5303001A (en) Illumination system for half-field dyson stepper
JPH05160002A (en) Exposing method and device, exposing system and mask circuit pattern inspection system
JPH0567558A (en) Exposure method
JPH1079337A (en) Projection aligner
JP2001284212A (en) Illuminator and exposure system equipped therewith
TW200809919A (en) Exposure apparatus
JP3790833B2 (en) Projection exposure method and apparatus
KR20010062343A (en) Projection exposure apparatus and method of manufacturing a device using the projection exposure apparatus
JPH06244082A (en) Projection exposure device
JP3647272B2 (en) Exposure method and exposure apparatus
WO1999025009A1 (en) Exposure apparatus
JP3997199B2 (en) Exposure method and apparatus
JPWO2002042728A1 (en) Projection optical system aberration measurement method and apparatus, and exposure method and apparatus
JP2009130071A (en) Illumination optical system, exposure apparatus, and method of manufacturing device
JP3296296B2 (en) Exposure method and exposure apparatus
JPH06163362A (en) Projection exposure device
JPH05234846A (en) Exposure method using projection optical system
JP4936499B2 (en) Exposure apparatus and exposure method
JP2005223007A (en) Lighting optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170218

Year of fee payment: 12

EXPY Cancellation because of completion of term