JPH1079337A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH1079337A
JPH1079337A JP8234158A JP23415896A JPH1079337A JP H1079337 A JPH1079337 A JP H1079337A JP 8234158 A JP8234158 A JP 8234158A JP 23415896 A JP23415896 A JP 23415896A JP H1079337 A JPH1079337 A JP H1079337A
Authority
JP
Japan
Prior art keywords
light
illumination
optical system
polarizing plate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8234158A
Other languages
Japanese (ja)
Inventor
Sumio Hashimoto
純夫 橋本
Shintaro Kudo
慎太郎 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8234158A priority Critical patent/JPH1079337A/en
Priority to EP19970113696 priority patent/EP0823662A2/en
Publication of JPH1079337A publication Critical patent/JPH1079337A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress high-order spherical aberration fluctuation in the case of zonal illumination or irregular illumination. SOLUTION: A partially polarizing plate 10 which allows linear polarized components to pass through in a circular region 25 in the vicinity of a light axis AX, and which allows illumination light to pass through as it is in a zonal region 26 is provided on an illumination system pupil face PS2 conjugate with a pupil face PS1 of a projection optic system 13, and a polarizing plate 14 which allows linear polarized components orthogonal to a polarizing direction of the region 25 of the partially polarizing plate 10 to pass through is provided between the projection optic system 13 and a wafer 15, whereby high resolution similar to that with zonal illumination is obtained. In this case, since the linear polarized components which have passed through the zonal region at the center pass through in addition to a light flux which has passed through a zonal region of the partially polarizing plate 10 in the projection optic system 13, an illumination distribution in the projection optic system 13 can be leveled, so that the linear polarized components are shielded by the polarizing plate 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素
子、液晶表示素子、撮像素子(CCD等)、又は薄膜磁
気ヘッド等を製造するためのフォトリソグラフィ工程で
マスク上のパターンの像を感光基板上に露光するために
使用される投影露光装置に関し、特に輪帯照明等を行う
か、又は中心遮光型の瞳フィルターを使用する投影露光
装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, a liquid crystal display device, an image pickup device (CCD or the like), a thin film magnetic head, or the like by using a photolithography process to form an image of a pattern on a mask on a photosensitive substrate. The present invention relates to a projection exposure apparatus that is used for performing exposure to an object, and is particularly suitable for application to a projection exposure apparatus that performs annular illumination or the like or uses a center-shielded pupil filter.

【0002】[0002]

【従来の技術】従来、例えば半導体素子を製造する際
に、マスクとしてのレチクル(又はフォトマスク等)の
パターンの像を投影光学系を介して感光基板としてのフ
ォトレジストが塗布されたウエハ(又はガラスプレート
等)上に転写するステッパー等の投影露光装置が使用さ
れている。これらの投影露光装置では、ウエハにできる
だけ高集積度のパターンを露光するため、露光光として
出来るだけ短波長の照明光を使用すると共に、投影光学
系の開口数(NA)を大きくして、パターンの解像度を
上げるという努力がなされてきた。
2. Description of the Related Art Conventionally, for example, when manufacturing a semiconductor device, a wafer (or a photoresist (photosensitive substrate) coated with a photoresist as a photosensitive substrate via a projection optical system is used to project a pattern image of a reticle (or a photomask or the like) as a mask. A projection exposure apparatus such as a stepper for transferring onto a glass plate or the like is used. In these projection exposure apparatuses, in order to expose a pattern with the highest degree of integration onto a wafer, illumination light having the shortest possible wavelength is used as exposure light, and the numerical aperture (NA) of the projection optical system is increased. Efforts have been made to increase the resolution of.

【0003】但し、単に投影光学系の開口数を大きくす
ると、焦点深度が狭くなりすぎるため、開口数にあまり
依存することなく、或る程度以上の焦点深度を確保し
て、且つ高い解像度を得る方法として、露光光をレチク
ルに対して傾斜させて照明するという照明法が開発され
ている。この照明法には、照明光学系の2次光源の形状
を輪帯状とする輪帯照明及びその2次光源の形状を光軸
から偏心した複数(例えば4個)の小光源とする、所謂
変形照明等がある。このような照明法によれば、同じ露
光波長、及び同じ投影光学系の開口数でも、投影光学系
の解像度が向上する。また、投影光学系の瞳面に輪帯状
等の瞳フィルターを配置して、所謂「超解像」により解
像度を向上させる方法も開発されている。
However, if the numerical aperture of the projection optical system is simply increased, the depth of focus becomes too narrow. Therefore, a certain depth of focus or more is secured without depending on the numerical aperture, and high resolution is obtained. As a method, an illumination method of illuminating the reticle with the exposure light inclined has been developed. This illumination method includes an annular illumination in which the shape of a secondary light source of an illumination optical system is an annular shape and a shape of the secondary light source is a plurality (for example, four) of small light sources decentered from an optical axis, so-called deformation. There is lighting etc. According to such an illumination method, the resolution of the projection optical system is improved even with the same exposure wavelength and the same numerical aperture of the projection optical system. Also, a method has been developed in which a pupil filter having a ring shape or the like is arranged on the pupil plane of the projection optical system to improve the resolution by so-called “super-resolution”.

【0004】[0004]

【発明が解決しようとする課題】以上の従来技術におい
て、輪帯照明等を使用せず、レチクルをレチクルに対し
て垂直に入射する光束を中心として一様に分布する露光
光で照明する照明方法によれば、主にレチクルのパター
ンを通過した0次回折光、+1次回折光、及び−1次回
折光の3光束によってウエハ上にそのパターンの像を形
成するために、投影光学系の瞳面付近のレンズは中心部
も周辺部もほぼ一様に照明される。また、通常の照明法
のもとで投影光学系の瞳面に中心部を遮蔽する輪帯状の
瞳フィルターを配置しない場合も、投影光学系の瞳面の
近くのレンズは一様に照明される。このような照明状態
であれば、レンズの中心部が主に温度上昇するために、
位置に関して2次以下の関数となる熱変形や屈折率変化
が主に起こり、ガウス(Gauss)像面の移動だけが光軸付
近の主な収差変動として生じる。従って、投影光学系の
高次の球面収差変動が発生する恐れは少なかった。
In the above prior art, an illumination method for illuminating a reticle with exposure light which is uniformly distributed around a light beam perpendicularly incident on the reticle without using annular illumination or the like. According to the method, an image of the pattern is formed on a wafer mainly by three light beams of the 0th-order diffracted light, the + 1st-order diffracted light, and the -1st-order diffracted light that have passed through the reticle pattern. The lens is almost uniformly illuminated both at the center and at the periphery. In addition, even when an annular pupil filter that blocks a central portion is not arranged on the pupil plane of the projection optical system under a normal illumination method, the lens near the pupil plane of the projection optical system is uniformly illuminated. . In such an illuminated state, the temperature at the center of the lens mainly increases,
Thermal deformation and a change in the refractive index, which are functions of the second order or less with respect to the position, mainly occur, and only the movement of the Gaussian image plane occurs as the main aberration fluctuation near the optical axis. Therefore, there was little possibility that high-order spherical aberration fluctuation of the projection optical system would occur.

【0005】しかし、輪帯照明や変形照明法により照明
を行った場合には、レチクルのパターンを通過した露光
用の照明光の内の主に0次回折光及び1次回折光によっ
てウエハ上にそのパターンの像を形成するため、投影光
学系の解像度の限界線幅に近いパターンが多い場合に
は、投影光学系の光軸付近を透過する光線の量が周辺部
に比べて極めて少なくなる。また、投影光学系の瞳面に
光軸付近を遮光した瞳フィルターを配置した場合でも、
瞳面よりもウエハに近い側に配置されているレンズの光
軸付近を透過する光線の量は周辺部に比べて極めて少な
くなる。
However, when illumination is performed by the annular illumination or the modified illumination method, when the illumination light for exposure that has passed through the pattern of the reticle is mainly the 0th-order diffracted light and the 1st-order diffracted light, the pattern is formed on the wafer. Therefore, when there are many patterns close to the critical line width of the resolution of the projection optical system, the amount of light transmitted near the optical axis of the projection optical system is extremely small as compared with the peripheral portion. Also, even if a pupil filter that shields the vicinity of the optical axis is arranged on the pupil plane of the projection optical system,
The amount of light rays passing near the optical axis of the lens disposed closer to the wafer than the pupil plane is extremely small as compared with the peripheral part.

【0006】このように投影光学系のレンズに対する照
射エネルギーの分布が不均一になると、レンズの周辺部
が主に熱を吸収して温度上昇し、中心部が温度上昇しな
いという現象が起こる。このような温度上昇に比例し
て、部分的にレンズの屈折率が変動したり、レンズが熱
変形したりするので、2次よりも高次の非球面やそれに
相当する屈折率分布が新たに形成される。そのため、投
影光学系の光軸に近い部分では、照明光の照射によりガ
ウス像面の移動だけでなく、新たに高次の球面収差変動
が生じるという不都合があった。
[0006] When the distribution of the irradiation energy to the lens of the projection optical system becomes non-uniform as described above, a phenomenon occurs in which the peripheral portion of the lens mainly absorbs heat and the temperature rises, and the central portion does not rise. In proportion to such a temperature rise, the refractive index of the lens partially fluctuates or the lens is thermally deformed, so that a higher-order aspherical surface than the second-order and a corresponding refractive index distribution are newly added. It is formed. For this reason, in a portion close to the optical axis of the projection optical system, there is an inconvenience that not only the movement of the Gaussian image plane but also a new high-order spherical aberration fluctuation occurs due to the irradiation of the illumination light.

【0007】本発明は斯かる点に鑑み、輪帯照明や変形
照明等を用いるか、又は光軸付近を遮光する瞳フィルタ
ーを使用して露光を行う際に、投影光学系の高次の球面
収差変動を抑えて高い解像度が得られる投影露光装置を
提供することを目的とする。
[0007] In view of the above, the present invention provides a high-order spherical surface of a projection optical system when performing exposure using annular illumination, modified illumination, or the like, or using a pupil filter that blocks light near the optical axis. It is an object of the present invention to provide a projection exposure apparatus capable of obtaining high resolution while suppressing aberration fluctuation.

【0008】[0008]

【課題を解決するための手段】本発明による投影露光装
置は、露光光(IL)のもとでマスク(12)上のパタ
ーンの像を感光基板(15)上に投影する投影光学系
(13)を有し、その露光光(IL)の内でそのマスク
(12)から傾斜して射出される光束、又はそのマスク
(12)に対して傾斜して入射する光束を有効な結像光
束として使用する投影露光装置であって、その投影光学
系(13)の瞳面(PS1)、即ちそのマスクのパター
ン面に対する光学的フーリエ変換面と共役な面上で実質
的に光軸(AX)を中心とする円形の領域に一様に分布
する光源(6C)(2次光源を含む)からのその露光光
(IL)を用いてそのマスク(12)を照明する照明光
学系(7〜9,11)と、その投影光学系(13)の瞳
面(PS1)、又はこの瞳面と共役な面(PS2)上
で、その有効な結像光束が通過する領域(26;27A
〜27D;26A)以外の領域(25;28;25A)
を通過するその露光光(IL)の偏光方向を所定方向に
設定する第1偏光部材(10;10A;10C)と、そ
の投影光学系(13)とその感光基板(15)との間に
配置されその投影光学系(13)を通過したその露光光
(IL)の内でその所定方向に偏光する光束を遮光する
第2偏光部材(14)と、を設けたものである。
A projection exposure apparatus according to the present invention comprises a projection optical system (13) for projecting an image of a pattern on a mask (12) onto a photosensitive substrate (15) under exposure light (IL). ), And among the exposure light (IL), a light flux emitted obliquely from the mask (12) or a light flux obliquely incident on the mask (12) as an effective imaging light flux A projection exposure apparatus to be used, wherein an optical axis (AX) is substantially defined on a pupil plane (PS1) of the projection optical system (13), that is, a plane conjugate with an optical Fourier transform plane with respect to a pattern plane of the mask. An illumination optical system (7 to 9, which illuminates the mask (12) using the exposure light (IL) from the light source (6C) (including the secondary light source) uniformly distributed in the center circular region. 11) and the pupil plane (PS1) of the projection optical system (13), or On the pupil plane and a plane conjugate (PS2), a region (26 in which the effective imaging light beam passes; 27A
To 27D; region other than 26A) (25; 28; 25A)
A first polarizing member (10; 10A; 10C) for setting the polarization direction of the exposure light (IL) passing through the first direction to a predetermined direction, and disposed between the projection optical system (13) and the photosensitive substrate (15). And a second polarizing member (14) for shielding a light beam polarized in the predetermined direction from the exposure light (IL) having passed through the projection optical system (13).

【0009】斯かる本発明の投影露光装置によれば、そ
のマスク(12)から傾斜して射出される光束を有効な
結像光束とする場合には、その第1偏光部材(10C)
はその瞳面上に配置されて実質的に中心遮光型の瞳フィ
ルターとして作用する。一方、そのマスク(12)に対
して傾斜して入射する光束を有効な結像光束とする場合
には、その第1偏光部材(10;10A)はその照明光
学系内でその投影光学系の瞳面と共役な面上に配置され
て、実質的に輪帯照明又は変形照明法で照明が行われる
ことになる。
According to the projection exposure apparatus of the present invention, when the light flux emitted obliquely from the mask (12) is used as an effective imaging light flux, the first polarizing member (10C) is used.
Are arranged on the pupil plane and function substantially as a pupil filter of a central light shielding type. On the other hand, when the light beam obliquely incident on the mask (12) is used as an effective image-forming light beam, the first polarizing member (10; 10A) is provided in the illumination optical system by the projection optical system. Arranged on a plane conjugate with the pupil plane, the illumination is performed substantially by the annular illumination or the modified illumination method.

【0010】また、その第1偏光部材(10;10A;
10C)とその第2偏光部材(14)との間を、その有
効な結像光束と、その第1偏光部材により所定方向に偏
光された光束とが合成されて通過する。従って、その第
1偏光部材(10;10A;10C)とその第2偏光部
材(14)との間に配置された投影光学系(13)の特
に瞳面(PS1)近傍のレンズにおける照度分布が均一
になり、その瞳面(PS1)の近傍のレンズの高次の熱
変形や屈折率の変化が抑えられ、結果的に投影光学系
(13)の高次の球面収差変動が抑えられる。しかも、
その結像光束以外の光束は、その第2偏光部材(14)
によって遮光されるため、その感光基板上では高い解像
度が得られる。
The first polarizing member (10; 10A;
10C) and the second polarizing member (14), the effective image-forming light beam and the light beam polarized in a predetermined direction by the first polarizing member are combined and passed. Therefore, the illuminance distribution of the projection optical system (13) disposed between the first polarizing member (10; 10A; 10C) and the second polarizing member (14), particularly in the lens near the pupil plane (PS1), is reduced. Higher order thermal deformation and change in refractive index of the lens near the pupil plane (PS1) are suppressed, and as a result, higher order spherical aberration fluctuation of the projection optical system (13) is suppressed. Moreover,
The light beam other than the imaging light beam is transmitted to the second polarizing member (14).
As a result, high resolution can be obtained on the photosensitive substrate.

【0011】この場合、その第1偏光部材(10;10
A;10C)の一例は、その光軸(AX)の周りの輪帯
状領域の内側の領域(25;25A)、又はその光軸か
ら偏心した複数の領域(27A〜27D)を除く領域
(28)を通過するその露光光(IL)の偏光方向をそ
の所定方向に設定する部材である。その第1偏光部材が
輪帯領域の内側の領域を除く領域での偏光方向をその所
定方向に設定する部材(10;10C)であるときに
は、輪帯照明又は中心遮光型の瞳フィルターを使用する
場合と等価になる。一方、その第1偏光部材が光軸から
偏心した複数の領域を除く領域での偏光方向をその所定
方向に設定する部材(10A)であるときには、変形照
明法を使用する場合と等価になる。
In this case, the first polarizing member (10; 10)
A; 10C) is an example of a region (25; 25A) inside a ring-shaped region around the optical axis (AX) or a region (28) excluding a plurality of regions (27A to 27D) eccentric from the optical axis. ) Is a member for setting the polarization direction of the exposure light (IL) passing through the predetermined direction. When the first polarizing member is a member (10; 10C) for setting the polarization direction in a region other than the region inside the annular region to the predetermined direction, an annular illumination or a center light shielding type pupil filter is used. It is equivalent to the case. On the other hand, when the first polarizing member is a member (10A) for setting the polarization direction in a region other than a plurality of regions decentered from the optical axis to the predetermined direction, it is equivalent to the case where the modified illumination method is used.

【0012】また、その第1偏光部材(10;10A;
10C)と、その第2偏光部材(14)とを一定の相対
角度関係を保ってそれぞれ回転する駆動手段(21〜2
3)を設けることが好ましい。露光中にその第1偏光部
材(10;10A;10C)及びその第2偏光部材(1
4)を回転することによって、感光基板(15)上に入
射する露光光の偏光方向が回転する。従って、マスクパ
ターンの周期方向に依らずに、その感光基板(15)に
結像されるそのマスクパターンの像の線幅異常の発生が
抑えられる。更に、その第1偏光部材(10)と、その
第2偏光部材(14)とは一定の相対角度関係を保って
回転するため、その第1偏光部材(10)により偏光さ
れた光束はその第2偏光部材(14)により確実に遮光
される。
The first polarizing member (10; 10A;
10C) and the driving means (21 to 2) that rotate the second polarizing member (14) while maintaining a constant relative angular relationship.
Preferably, 3) is provided. During the exposure, the first polarizing member (10; 10A; 10C) and the second polarizing member (1
By rotating 4), the polarization direction of the exposure light incident on the photosensitive substrate (15) is rotated. Therefore, regardless of the periodic direction of the mask pattern, occurrence of line width abnormality of the image of the mask pattern formed on the photosensitive substrate (15) can be suppressed. Further, since the first polarizing member (10) and the second polarizing member (14) rotate while maintaining a constant relative angle relationship, the light beam polarized by the first polarizing member (10) is rotated by the first polarizing member (10). The light is reliably shielded by the two polarizing members (14).

【0013】また、そのように駆動手段(21〜23)
を設ける代わりに、その第2偏光部材(14)とその感
光基板(15)との間に、その第2偏光部材(14)を
通過したその露光光(IL)を円偏光に変換する第3偏
光部材(17)を設けるようにしてもよい。これによ
り、感光基板(15)上に結像する結像光束は円偏光と
なるため、マスクパターンの周期方向による線幅異常は
減少する。
Also, the driving means (21 to 23)
Instead of providing a third polarizing member (14) between the second polarizing member (14) and the photosensitive substrate (15) for converting the exposure light (IL) having passed through the second polarizing member (14) into circularly polarized light. A polarizing member (17) may be provided. As a result, the image-forming light beam that forms an image on the photosensitive substrate (15) becomes circularly polarized light, so that the line width abnormality due to the periodic direction of the mask pattern decreases.

【0014】[0014]

【発明の実施の形態】以下、本発明の投影露光装置の実
施の形態の一例につき図1〜図3を参照して説明する。
本例は、レチクル上のパターンを投影光学系を介してウ
エハ上の各ショット領域に投影するステッパー型の投影
露光装置で、実質的に輪帯照明又は変形照明を行う場合
に本発明を適用したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a projection exposure apparatus according to the present invention will be described below with reference to FIGS.
This example is a stepper type projection exposure apparatus that projects a pattern on a reticle onto each shot area on a wafer via a projection optical system, and the present invention is applied when substantially annular illumination or deformed illumination is performed. Things.

【0015】図1は、本例の投影露光装置の構成を説明
するためのウエハ側から見た斜視図を示し、この図1に
おいて、露光時には、水銀ランプよりなる光源1から射
出されたウエハ15上のフォトレジストに感光性の照明
光ILは、楕円鏡2によって集光された後、インプット
レンズ3及び不図示の干渉フィルターに入射し、干渉フ
ィルターにより、例えばi線(波長365nm)の照明
光ILが抽出される。照明光ILとしては、i線の他に
g線等の輝線、又はArFエキシマレーザ光やKrFエ
キシマレーザ光、あるいは銅蒸気レーザやYAGレーザ
の高調波等が使用される。
FIG. 1 is a perspective view seen from the wafer side for explaining the configuration of the projection exposure apparatus of the present embodiment. In FIG. 1, at the time of exposure, a wafer 15 emitted from a light source 1 composed of a mercury lamp is shown. Illumination light IL photosensitive to the upper photoresist is condensed by the elliptical mirror 2, then enters the input lens 3 and an interference filter (not shown), and is irradiated with, for example, i-line (wavelength 365 nm) illumination light by the interference filter. The IL is extracted. As the illumination light IL, besides the i-line, a bright line such as a g-line, an ArF excimer laser beam, a KrF excimer laser beam, or a harmonic of a copper vapor laser or a YAG laser is used.

【0016】照明光ILはインプットレンズ3により平
行光束となってオプティカルインテグレータとしてのフ
ライアイレンズ4に入射する。フライアイレンズ4の各
レンズエレメントの夫々の射出面には2次光源が形成さ
れ、これらの2次光源により面光源が作られる。フライ
アイレンズ4の射出面には、面光源の大きさを調整する
ために複数の開口絞り6A〜6C(図2(a)参照)か
ら選択された1つの開口絞りが配置されている。これら
の開口絞り6A〜6Cは、ターレット状の円板5に固定
され、円板5を不図示の駆動装置により回転することで
所望の開口絞りをフライアイレンズ4の射出面に設定で
きる。
The illumination light IL is converted into a parallel light beam by the input lens 3 and is incident on a fly-eye lens 4 as an optical integrator. A secondary light source is formed on each exit surface of each lens element of the fly-eye lens 4, and these secondary light sources form a surface light source. On the exit surface of the fly-eye lens 4, one aperture stop selected from a plurality of aperture stops 6A to 6C (see FIG. 2A) is arranged to adjust the size of the surface light source. These aperture stops 6A to 6C are fixed to a turret-shaped disk 5, and a desired aperture stop can be set on the exit surface of the fly-eye lens 4 by rotating the disk 5 by a driving device (not shown).

【0017】図2(a)は、図1の円板5上の開口絞り
の具体的な構成を説明するための平面図を示し、この図
2(a)において、3個の開口絞り6A〜6Cはターレ
ット状の円板5上に等角度間隔で固定されている。第1
の開口絞り6Aは通常の照明を行う場合に使用される円
形開口を有し、第2の開口絞り6Bは小さいコヒーレン
スファクタ(σ値)で照明を行う場合に使用される小さ
い円形開口を有する。第3の開口絞り6Cは、大きな円
形開口を有し、本例では輪帯照明、又は変形照明を行う
場合にその第3の開口絞り6Cをフライアイレンズ4の
射出面に設定する。即ち、通常輪帯照明時には図2
(b)に示す輪帯状の開口絞り6Dが使用され、変形照
明時には図2(c)に示す光軸を中心として配置された
4個(又は2個)の小さい開口を有する開口絞り6Eが
使用される。しかし、本例では後述の部分偏光板10等
によって、実質的に開口絞り6D等が兼用される。図1
では第3の開口絞り6Cが照明光ILの光路上に配置さ
れている。
FIG. 2A is a plan view for explaining a specific configuration of the aperture stop on the disk 5 of FIG. 1. In FIG. 2A, three aperture stops 6A to 6A are shown. 6C are fixed on the turret disk 5 at equal angular intervals. First
The aperture stop 6A has a circular aperture used for normal illumination, and the second aperture stop 6B has a small circular aperture used for illumination with a small coherence factor (σ value). The third aperture stop 6C has a large circular aperture. In this example, the third aperture stop 6C is set on the exit surface of the fly-eye lens 4 when performing annular illumination or deformed illumination. That is, during normal annular illumination, FIG.
An annular aperture stop 6D shown in (b) is used, and an aperture stop 6E having four (or two) small apertures arranged around the optical axis shown in FIG. Is done. However, in this example, the aperture stop 6D and the like are also used substantially by the partial polarizer 10 and the like described later. FIG.
In the figure, the third aperture stop 6C is arranged on the optical path of the illumination light IL.

【0018】開口絞り6Cを通過した照明光ILは、第
1リレーレンズ7を透過し、視野絞り(レチクルブライ
ンド)8により照明範囲が規定される。照明範囲が規定
された照明光ILは、第2リレーレンズ9を透過して部
分偏光板10に入射する。部分偏光板10に入射する照
明光ILは自然光と同様にランダムな偏光成分からな
る、所謂ランダム偏光の光束である。開口絞り6Cの配
置面と部分偏光板10の配置面(以下、「照明系瞳面」
と呼ぶ)PS2とは共役である。
The illumination light IL that has passed through the aperture stop 6C passes through the first relay lens 7, and the illumination range is defined by a field stop (reticle blind) 8. The illumination light IL whose illumination range is defined passes through the second relay lens 9 and enters the partial polarizer 10. The illumination light IL incident on the partial polarizer 10 is a so-called random polarized light beam composed of random polarized components similarly to natural light. The plane on which the aperture stop 6C is disposed and the plane on which the partial polarizer 10 is disposed (hereinafter referred to as "illumination pupil plane").
PS2) is conjugate.

【0019】図3(a)は、部分偏光板10の平面図を
示し、この図3(a)において、部分偏向板10の中心
は照明光学系の光軸AXにほぼ一致するように配置され
ており、その光軸AXを中心とする円形の領域25は、
入射する光束の内で偏光方向が矢印で示す方向である直
線偏光成分のみを通過させる偏光板となっている。即
ち、領域25に入射する照明光ILの内で矢印で示す直
線偏光成分のみが領域25を通過する。なお、その矢印
は電気ベクトルの方向を示している(以下同様)。一
方、円形の領域25の外周25Aの外側の輪帯状の領域
26を透過する照明光ILは、ランダム偏光のまま部分
偏光板10を透過する。輪帯状の領域26の外周は、図
1の開口絞り6Cの開口の像の外周より大きくなるよう
に設定されている。また、図1に示すように、部分偏光
板10は照明光学系の光軸AXを中心として180°回
転可能に構成されており、回転角制御系22により回転
駆動体21を介して部分偏光板10の光軸AX周りの回
転角が制御される。更に、部分偏光板10は回転駆動体
21を介して他の変形照明用の部分偏光板と交換できる
と共に、照明光ILの光路から随時退避できるように構
成されている。
FIG. 3A is a plan view of the partial polarizing plate 10. In FIG. 3A, the center of the partial polarizing plate 10 is arranged so as to substantially coincide with the optical axis AX of the illumination optical system. And a circular area 25 centered on the optical axis AX is
The polarizing plate transmits only a linearly polarized light component of which the polarization direction is the direction indicated by the arrow in the incident light beam. That is, of the illumination light IL incident on the region 25, only the linearly polarized light component indicated by the arrow passes through the region 25. The arrow indicates the direction of the electric vector (the same applies hereinafter). On the other hand, the illumination light IL that passes through the annular region 26 outside the outer periphery 25A of the circular region 25 passes through the partial polarizer 10 with random polarization. The outer periphery of the annular zone 26 is set to be larger than the outer periphery of the image of the aperture of the aperture stop 6C in FIG. As shown in FIG. 1, the partial polarizing plate 10 is configured to be rotatable by 180 ° about the optical axis AX of the illumination optical system, and is rotated by a rotation angle control system 22 via a rotation driver 21. The rotation angles of the ten optical axes AX are controlled. Further, the partial polarizing plate 10 is configured to be exchangeable with another partial polarizing plate for modified illumination via the rotary driver 21 and to be able to withdraw from the optical path of the illumination light IL at any time.

【0020】図3(b)及び図3(c)は、変形照明用
の部分偏光板を示し、この図3(b)において、部分偏
光板10Aの周辺部に等角度間隔で4個の円形の開口2
7A〜27Dが設けられており、その周囲の領域28は
矢印の方向の直線偏光成分を通過させる偏光板となって
いる。部分偏光板10Aの中心を図1の照明光学系の光
軸AXに一致するように配置すれば、光軸AXから偏心
した4個の円形の開口27A〜27Dをランダム偏光の
照明光ILが通過し、それ以外の領域28では直線偏光
成分のみが通過する。
FIGS. 3 (b) and 3 (c) show a partial polarizing plate for modified illumination. In FIG. 3 (b), four circular plates are formed at equal angular intervals around the partial polarizing plate 10A. Opening 2
7A to 27D are provided, and the surrounding area 28 is a polarizing plate that passes a linearly polarized light component in the direction of the arrow. If the center of the partial polarizing plate 10A is arranged so as to coincide with the optical axis AX of the illumination optical system of FIG. 1, the illumination light IL of random polarization passes through the four circular openings 27A to 27D decentered from the optical axis AX. However, in the other area 28, only the linearly polarized light component passes.

【0021】また、図3(c)に示すように、両端に2
つの開口29A,29Bを設け、その周囲の領域30を
矢印の方向に直線偏光する光束を通過させる偏光板とし
た部分偏光板10Bも使用される。その開口29A,2
9Bを通過する照明光の偏光状態もランダム偏光が維持
される。そして、これらの部分偏光板10A,10Bも
回転駆動体21によって回転される。
Further, as shown in FIG.
A partial polarizing plate 10B is also used in which two openings 29A and 29B are provided, and a region 30 around the openings 29A and 29B is a polarizing plate that transmits a light beam that is linearly polarized in the direction of the arrow. The opening 29A, 2
The polarization state of the illumination light passing through 9B is also maintained at random polarization. Then, these partial polarizing plates 10A and 10B are also rotated by the rotation driver 21.

【0022】図1において、部分偏光板10を通過した
ランダム偏光の光束と直線偏光の光束とからなる照明光
ILは、コンデンサレンズ11によりレチクル12上に
照射される。レチクル12上に照射された照明光IL
は、レチクル12上のパターン領域を通過し、投影光学
系13を介して偏光板14に入射する。偏光板14の偏
光特性は入射する光束の内で、部分偏光板10の円形の
領域25を通過する直線偏光成分と直交する方向に直線
偏光する成分のみを通過させるように設定されており、
部分偏光板10の円形の領域25を通過した直線偏光成
分は偏光板14により遮光され、部分偏光板10の輪帯
状の領域26を通過したランダム偏光の光束の内の偏光
板14の偏光方向と平行な直線偏光成分だけが、偏光板
14を通過してウエハ15上に照射される。照明光IL
のもとでレチクル12のパターン面とウエハ15の表面
とは投影光学系13に関して共役であり、その偏光板1
4を通過した光束によりレチクル12上のパターンの像
がウエハ15上に転写される。
In FIG. 1, illumination light IL, which is composed of a randomly polarized light beam and a linearly polarized light beam that has passed through a partial polarizing plate 10, is irradiated onto a reticle 12 by a condenser lens 11. Illumination light IL irradiated on reticle 12
Passes through the pattern area on the reticle 12 and enters the polarizing plate 14 via the projection optical system 13. The polarization characteristics of the polarizing plate 14 are set so that, of the incident light flux, only a component that is linearly polarized in a direction orthogonal to the linearly polarized light component that passes through the circular region 25 of the partial polarizing plate 10 is passed.
The linearly polarized light component passing through the circular region 25 of the partial polarizing plate 10 is shielded by the polarizing plate 14, and the polarization direction of the polarizing plate 14 in the light beam of the randomly polarized light passing through the annular region 26 of the partial polarizing plate 10. Only the parallel linearly polarized light component passes through the polarizer 14 and irradiates the wafer 15. Illumination light IL
, The pattern surface of the reticle 12 and the surface of the wafer 15 are conjugate with respect to the projection optical system 13, and the polarizing plate 1
The image of the pattern on the reticle 12 is transferred onto the wafer 15 by the light beam having passed through the reticle 4.

【0023】更に、偏光板14も部分偏光板10と同様
に、光軸AXを中心として180°回転可能に構成され
ており、回転角制御系22により回転駆動体23を介し
て偏光板10の光軸AX周りの回転角が制御される。こ
の際に、部分偏光板10と偏光板14とは常に相対角度
関係が一定の状態で、即ち部分偏光板10の領域25と
偏光板14との偏光方向が直交した状態で同期して回転
される。この場合、投影光学系13内の瞳面PS1、即
ちレチクル12のパターン面に対する光学的フーリエ変
換面は開口絞り6Cの配置面、ひいては部分偏光板10
の配置面である照明系瞳面PS2と共役である。図1に
おいて、照明光学系の光軸AXは投影光学系13の光軸
と合致しており、以下では光軸AXに平行にZ軸を取
り、Z軸に垂直な2次元平面内の直交座標系をX軸、及
びY軸として説明する。
Further, similarly to the partial polarizing plate 10, the polarizing plate 14 is configured to be rotatable by 180 ° about the optical axis AX, and the rotation angle control system 22 controls the rotation of the polarizing plate 10 via a rotation driver 23. The rotation angle about the optical axis AX is controlled. At this time, the partial polarizer 10 and the polarizer 14 are rotated synchronously in a state where the relative angle relationship is always constant, that is, in a state where the polarization directions of the region 25 of the partial polarizer 10 and the polarizer 14 are orthogonal. You. In this case, the pupil plane PS1 in the projection optical system 13, that is, the optical Fourier transform plane with respect to the pattern plane of the reticle 12, is the arrangement plane of the aperture stop 6C, and thus the partial polarizer 10
Is conjugate with the illumination system pupil plane PS2, which is the arrangement plane of. In FIG. 1, the optical axis AX of the illumination optical system coincides with the optical axis of the projection optical system 13. Hereinafter, the Z axis is taken in parallel with the optical axis AX, and the rectangular coordinates in a two-dimensional plane perpendicular to the Z axis will be described below. The system will be described as an X axis and a Y axis.

【0024】レチクル12はX方向、Y方向、及び回転
方向に微動可能なレチクルステージ(不図示)上に載置
されている。レチクル12の位置は外部のレーザ干渉計
(不図示)により精密に計測されており、そのレーザ干
渉計の測定値に基づいてレチクル12の位置が制御され
ている。一方、ウエハ15は不図示のウエハホルダを介
してX方向、Y方向及びZ方向にウエハ15を位置決め
するウエハステージ16上に載置され、ウエハステージ
16のX方向、Y方向の位置は外部のレーザ干渉計によ
り精密に計測されており、その計測値に基づいてウエハ
ステージ16の位置が制御されている。ウエハステージ
16によりウエハ15の各ショット領域の中心を投影光
学系13の露光中心に移動する動作と露光動作とがステ
ップ・アンド・リピート方式で繰り返されて、レチクル
12上のパターンの像がウエハ15上の各ショット領域
に順次転写される。
The reticle 12 is mounted on a reticle stage (not shown) that is finely movable in the X, Y, and rotation directions. The position of the reticle 12 is precisely measured by an external laser interferometer (not shown), and the position of the reticle 12 is controlled based on the measurement value of the laser interferometer. On the other hand, the wafer 15 is placed on a wafer stage 16 for positioning the wafer 15 in the X, Y and Z directions via a wafer holder (not shown), and the position of the wafer stage 16 in the X and Y directions is controlled by an external laser. It is precisely measured by an interferometer, and the position of the wafer stage 16 is controlled based on the measured value. The operation of moving the center of each shot area of the wafer 15 to the exposure center of the projection optical system 13 by the wafer stage 16 and the exposure operation are repeated in a step-and-repeat manner, so that the image of the pattern on the reticle 12 is The image is sequentially transferred to each upper shot area.

【0025】次に、本例の投影露光装置の露光動作につ
いて説明する。先ず、本例で輪帯照明を行う場合には、
図1に示すように、大きな開口の開口絞り6Cをフライ
アイレンズ4の射出面に設定し、回転駆動体21で照明
光ILの光路上に部分偏光板10を設定する。この場
合、フライアイレンズ4から射出される照明光ILは、
あらゆる偏光成分を含む光束である。そして、照明系瞳
面PS2に配置された部分偏光板10により、その照明
光ILの内で光軸AXの近傍の領域25を通過する光束
は直線偏光成分のみである。また、照明光ILは部分偏
光板10の周辺の輪帯状の領域26をランダム偏光のま
ま透過する。このように、照明系瞳面PS2で或る開口
数よりも小さい光束が直線偏光であり、周辺の光束がラ
ンダム偏光であるような照明光ILによりレチクル12
を照明すると、投影光学系13の瞳面PS1の近傍のレ
ンズでは光軸AXの近傍を主に直線偏光の光束が透過す
る。従って、レンズの周辺部ばかりでなく、中心部も照
射エネルギーを吸収して温度上昇するので、レンズの熱
変形や屈折率変化において高次の変動成分に対する2次
の変動成分の比率が増し、結果的に高次の球面収差変動
が少なくなる。
Next, the exposure operation of the projection exposure apparatus of this embodiment will be described. First, when performing annular illumination in this example,
As shown in FIG. 1, an aperture stop 6C having a large aperture is set on the exit surface of the fly-eye lens 4, and the rotation driver 21 sets the partial polarizer 10 on the optical path of the illumination light IL. In this case, the illumination light IL emitted from the fly-eye lens 4 is
It is a light beam containing all polarization components. Then, due to the partial polarizer 10 disposed on the illumination system pupil plane PS2, the light flux passing through the region 25 near the optical axis AX in the illumination light IL is only a linearly polarized light component. In addition, the illumination light IL passes through the annular zone 26 around the partial polarizer 10 with random polarization. As described above, the reticle 12 is irradiated with the illumination light IL such that the light flux smaller than a certain numerical aperture on the illumination system pupil plane PS2 is linearly polarized light and the peripheral light flux is random polarization.
Is illuminated, the lens near the optical axis AX of the lens near the pupil plane PS1 of the projection optical system 13 mainly transmits linearly polarized light. Therefore, not only the peripheral part but also the central part of the lens absorbs the irradiation energy and the temperature rises, so that the ratio of the second-order fluctuation component to the higher-order fluctuation component in the thermal deformation and the change in the refractive index of the lens increases. Higher order spherical aberration fluctuations are reduced.

【0026】また、部分偏光板10の領域25と偏光方
向が直交する偏光板14が投影光学系13とウエハ15
との間に配置されており、部分偏光板10の円形の領域
25により選択された直線偏光成分は偏光板14によっ
て遮光されて、ウエハ15の結像には関与しない。しか
し、部分偏光板10の輪帯状の領域26を通過した照明
光ILのうち、偏光板14の偏光方向に平行な偏光成分
はウエハ15の結像に関与するので、結果的に図2
(b)に示すような中心部が遮光された輪帯状の開口部
を有する開口絞り6Dを用いて輪帯照明を行った場合と
等価になる。
The polarizing plate 14 whose polarization direction is orthogonal to the region 25 of the partial polarizing plate 10 is formed by the projection optical system 13 and the wafer 15.
The linearly polarized light component selected by the circular region 25 of the partial polarizer 10 is shielded by the polarizer 14 and does not contribute to the imaging of the wafer 15. However, of the illumination light IL that has passed through the annular region 26 of the partial polarizer 10, a polarized component parallel to the polarization direction of the polarizer 14 is involved in the image formation on the wafer 15, and as a result, FIG.
This is equivalent to a case where annular illumination is performed using an aperture stop 6D having an annular aperture whose center is shielded as shown in FIG.

【0027】この場合、ウエハ15の結像に関係する照
明光ILは直線偏光であるため、その直線偏光の偏光方
向と、レチクル12のパターンの周期方向との角度差に
よって、ウエハ15上のパターンの像の線幅が異なると
いう線幅異常が起こる恐れがある。そこで、露光中に部
分偏光板10及び偏光板14を回転制御系22により、
それぞれ回転駆動体21及び23を介して互いの偏光方
向が直交する状態を保って同期して回転駆動する。即
ち、露光中に部分偏光板10及び偏光板14をそれぞれ
180°回転する。これによって、レチクル12のパタ
ーンの周期方向に依らずに、ウエハ15上のパターンの
像の線幅異常の発生が抑えられる。
In this case, since the illumination light IL related to the image formation on the wafer 15 is linearly polarized light, the pattern on the wafer 15 is determined by the angle difference between the polarization direction of the linearly polarized light and the periodic direction of the pattern of the reticle 12. There is a possibility that a line width abnormality that the line widths of the images are different will occur. Therefore, the partial polarization plate 10 and the polarization plate 14 are rotated by the rotation control system 22 during the exposure.
Rotational driving is performed synchronously via the rotary driving bodies 21 and 23 while keeping the polarization directions orthogonal to each other. That is, the partial polarizing plate 10 and the polarizing plate 14 are rotated by 180 ° during the exposure. Thus, occurrence of an abnormal line width of the image of the pattern on the wafer 15 is suppressed regardless of the periodic direction of the pattern of the reticle 12.

【0028】なお、上述のように部分偏光板10及び偏
光板14を回転する機構を設ける代わりに、直線偏光の
偏光方向とレチクルのパターンの周期方向との角度差に
よる線幅異常を解消するために、図1の2点鎖線で示す
ように、偏光板14とウエハ15との間の照明光ILの
光路上に、直線偏光を円偏光に変換する1/4波長板1
7を配置してもよい。これによって、ウエハ15に入射
する結像光束は円偏光となる。更に、1/4波長板17
の代わりに、1/2波長板を設けてこの1/2波長板を
回転させてもよい。これらの場合には、部分偏光板10
及び偏光板14の回転機構、即ち図1の回転駆動体2
1,23及び回転角制御系22を省略できる。
Instead of providing a mechanism for rotating the partial polarizer 10 and the polarizer 14 as described above, the line width abnormality caused by the angle difference between the polarization direction of the linearly polarized light and the periodic direction of the reticle pattern is eliminated. As shown by a two-dot chain line in FIG. 1, a 1 / wavelength plate 1 for converting linearly polarized light to circularly polarized light is provided on the optical path of the illumination light IL between the polarizing plate 14 and the wafer 15.
7 may be arranged. As a result, the imaging light beam incident on the wafer 15 becomes circularly polarized light. Further, the 波長 wavelength plate 17
Alternatively, a half-wave plate may be provided, and the half-wave plate may be rotated. In these cases, the partial polarizer 10
And the rotation mechanism of the polarizing plate 14, that is, the rotation driver 2 of FIG.
1 and 23 and the rotation angle control system 22 can be omitted.

【0029】また、偏光板14は、投影光学系13の全
てのレンズが部分偏光板10の領域25を通過した直線
偏光成分で照射されるように、投影光学系13とウエハ
15との間に配置するのが最も望ましい。しかし、球面
収差変動には投影光学系13の瞳面PS1付近のレンズ
に対する不均一な照度分布による熱変形や屈折率変動が
大きく関与しているので、偏光板14は少なくとも投影
光学系13内で瞳面PS1に対してウエハ15に近い位
置に配置すればよい。
The polarizing plate 14 is provided between the projection optical system 13 and the wafer 15 so that all the lenses of the projection optical system 13 are irradiated with linearly polarized light components passing through the region 25 of the partial polarizing plate 10. It is most desirable to arrange them. However, thermal deformation and refractive index fluctuation due to non-uniform illuminance distribution on the lens near the pupil plane PS1 of the projection optical system 13 greatly contribute to the spherical aberration fluctuation. What is necessary is just to arrange | position at the position near the wafer 15 with respect to the pupil plane PS1.

【0030】また、図1に示すように、部分偏光板10
を照明系瞳面PS2に配置すると、投影光学系13の瞳
面PS1付近のレンズの中心部は直線偏光光、周辺部は
ランダム偏光光が主に照射される。ランダム偏光光は、
2つの互いに直交する直線偏光成分がそれぞれ1/2ず
つ混合された光束と見なすことができる。従って、瞳面
PS1付近のレンズの中心部は周辺部に比較して1/2
の照射エネルギー密度となる。このために高次の球面収
差変動が充分小さくならない場合は、照明系瞳面PS2
の部分偏光板10の輪帯状の領域26での照度を下げる
必要がある。そのためには、輪帯状の領域26に光強度
を弱めるためのNDフィルタ(NeutralDensity filte
r)を設けてもよい。
Further, as shown in FIG.
Is arranged on the illumination system pupil plane PS2, the center of the lens near the pupil plane PS1 of the projection optical system 13 is mainly irradiated with linearly polarized light, and the peripheral part is mainly irradiated with random polarized light. The randomly polarized light is
It can be regarded as a light beam in which two mutually orthogonal linearly polarized light components are mixed by 1 /. Therefore, the center of the lens near the pupil plane PS1 is 1 / of the periphery of the lens.
Irradiation energy density. For this reason, if the high-order spherical aberration fluctuation does not become sufficiently small, the illumination system pupil plane PS2
It is necessary to lower the illuminance in the annular zone 26 of the partial polarizing plate 10. For this purpose, an ND filter (Neutral Density filte) for weakening the light intensity in the annular zone 26 is used.
r) may be provided.

【0031】次に、変形照明を行う場合には、図1の回
転駆動体21を介して照明光IL1の光路上に、図3
(b)の部分偏光板10A、又は図3(c)の部分偏光
板10Bを配置する。この際に、部分偏光板10Aの4
個の開口27A〜27D以外の領域28、又は部分偏光
板10Bの2個の開口29A,29B以外の領域30を
通過した照明光ILの直線偏光成分が、図1の投影光学
系13の瞳面PS1付近のレンズの光軸近傍を通過する
ため、高次の球面収差変動が抑制される。また、その直
線偏光成分は偏光板14で遮光されるため、実質的に変
形照明を行った場合と等価となって、所定の周期的パタ
ーンに対して高い解像度が得られる。
Next, in the case of performing the deformed illumination, the rotational drive 21 shown in FIG.
The partial polarizing plate 10A of FIG. 3B or the partial polarizing plate 10B of FIG. At this time, the partial polarizing plate 10A
The linearly polarized component of the illumination light IL that has passed through the region 28 other than the two openings 27A to 27D or the region 30 other than the two openings 29A and 29B of the partial polarizer 10B is the pupil plane of the projection optical system 13 in FIG. Since the light passes through the vicinity of the optical axis of the lens near PS1, fluctuations in high-order spherical aberration are suppressed. Further, since the linearly polarized light component is shielded by the polarizing plate 14, it is substantially equivalent to the case of performing deformed illumination, and a high resolution can be obtained for a predetermined periodic pattern.

【0032】特に図3(c)に示す部分偏光板10Bを
用いるときには、図3(b)のように局在化した4個の
部分に開口を設けるよりも解像力が向上することがあ
る。即ち、部分偏光板10Bを使用した場合には、結果
的に偏光方向と垂直な方向に傾斜した直線偏光によって
ウエハ15が照明されることになる。この部分偏光板1
0Bを1回の露光中に少なくとも180°回転するよう
な機構を設けると、あらゆる方向の周期性のパターンに
対して、照明の傾斜方向と偏光方向とが垂直になる。こ
れは、特開平6−53120号公報に開示されているよ
うに、ラジアル方向に垂直な方向(円周方向)に偏光す
るような輪帯偏光板を照明光学系中に配置したのと同様
の解像度の向上効果がある。解像力の向上効果について
は、特開平6−53120号公報に詳しく書かれている
のでその説明を省略する。
In particular, when the partial polarizing plate 10B shown in FIG. 3C is used, the resolution may be improved as compared with the case where openings are provided in four localized portions as shown in FIG. 3B. That is, when the partial polarizing plate 10B is used, as a result, the wafer 15 is illuminated by linearly polarized light inclined in a direction perpendicular to the polarization direction. This partial polarizing plate 1
By providing a mechanism for rotating OB at least 180 ° during one exposure, the inclination direction and the polarization direction of the illumination become perpendicular to the periodic pattern in all directions. This is the same as that in which an annular polarizer that polarizes in a direction perpendicular to the radial direction (circumferential direction) is disposed in the illumination optical system, as disclosed in Japanese Patent Application Laid-Open No. 6-53120. There is an effect of improving the resolution. The effect of improving the resolving power is described in detail in Japanese Patent Application Laid-Open No. Hei 6-53120, and a description thereof will be omitted.

【0033】次に、通常の照明法で露光を行う場合に
は、図2(a)の開口絞り6A又は6Bを図1のフライ
アイレンズ4の射出面に設定すると共に、回転駆動体2
1を介して部分偏光板10,10A,10Bを照明光I
Lの光路から退避させる。更に、偏光板14をも退避さ
せてもよい。これによって、通常の露光が行われる。な
お、上述の実施の形態において、部分偏光板10及び偏
光板14の代わりにそれぞれ偏光ビームスプリッタを使
用してもよい。部分偏光板10の円形の領域25の代わ
りに偏光ビームスプリッタを使用したときには、その周
囲の領域は例えば素通しの領域とすればよい。
Next, when exposure is performed by a normal illumination method, the aperture stop 6A or 6B shown in FIG. 2A is set on the exit surface of the fly-eye lens 4 shown in FIG.
1 illuminates the partial polarizers 10, 10A, 10B with illumination light I
Retreat from the optical path of L. Further, the polarizing plate 14 may also be retracted. Thereby, normal exposure is performed. In the above-described embodiment, a polarizing beam splitter may be used instead of the partial polarizing plate 10 and the polarizing plate 14. When a polarization beam splitter is used instead of the circular area 25 of the partial polarizing plate 10, the surrounding area may be, for example, a transparent area.

【0034】次に、本発明の投影露光装置の実施の形態
の他の例について、図4を参照して説明する。本例は、
実質的に中心遮光型の瞳フィルターを使用する場合に本
発明を適用したものであり、図4において図1に対応す
る部分には同一符号を付し、その詳細説明を省略する。
図4は、本例の投影露光装置の概略構成を示す斜視図を
示し、この図4において、レチクル12は図1の光源1
からコンデンサレンズ11までの照明光学系と同様の照
明光学系によって照明されている。但し、本例の照明光
学系(不図示)では図1中の部分偏光板10等は配置さ
れていない。即ち、図4のレチクル12はランダム偏光
の照明光ILによって照明されている。以下では簡単の
ため、投影光学系13を上部レンズ系13A、及び下部
レンズ系13Bに分けて説明する。この図4に示すよう
に、本例の投影光学系13の瞳面PS1の近傍に図1の
部分偏光板10と同様の部分偏光板10Cが設置されて
いる。レチクル12から上部レンズ系13Aに入射した
ランダム偏光の照明光ILは、部分偏光板10Cに入射
する。部分偏光板10Cは光軸AXを中心とする円形の
領域25Aが矢印で示す方向の直線偏光成分を通過させ
る偏光板となり、その周囲の輪帯状の領域26Aはラン
ダム偏光の光束をそのまま通過させる領域となってい
る。部分偏光板10Cに入射した照明光ILの内で、領
域25Aを通過した直線偏光成分と、領域26Aを通過
したランダム偏光の光束とは、下部レンズ系13Bを透
過し、部分偏光板10Cの領域25Aの偏光方向に直交
する直線偏光成分を通過させる偏光板14に入射する。
そして、偏光板14を通過した直線偏光成分によりレチ
クル12上のパターンの像がウエハ15上に転写され
る。なお、本例においても、部分偏光板10Cは光軸A
Xの周りに180°回転可能に構成されており、部分偏
光板10Cに同期して、且つ偏光方向が直交する状態を
保って偏光板14も回転駆動される。
Next, another embodiment of the projection exposure apparatus of the present invention will be described with reference to FIG. In this example,
The present invention is applied to a case where a pupil filter of a substantially central light shielding type is used. In FIG. 4, portions corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
FIG. 4 is a perspective view showing a schematic configuration of the projection exposure apparatus of the present embodiment. In FIG. 4, the reticle 12 is a light source 1 shown in FIG.
Illumination is performed by the same illumination optical system as the illumination optical system from to the condenser lens 11. However, in the illumination optical system (not shown) of this example, the partial polarizer 10 and the like in FIG. 1 are not provided. That is, the reticle 12 in FIG. 4 is illuminated by the randomly polarized illumination light IL. Hereinafter, for simplicity, the projection optical system 13 will be described by dividing it into an upper lens system 13A and a lower lens system 13B. As shown in FIG. 4, a partial polarizer 10C similar to the partial polarizer 10 of FIG. 1 is provided near the pupil plane PS1 of the projection optical system 13 of this example. The illumination light IL of random polarization incident on the upper lens system 13A from the reticle 12 is incident on the partial polarizer 10C. The partial polarizing plate 10C is a polarizing plate in which a circular region 25A centered on the optical axis AX passes a linearly polarized light component in the direction indicated by the arrow, and a ring-shaped region 26A around the circular region 25A allows a light beam of random polarization to pass as it is. It has become. Of the illumination light IL that has entered the partial polarizing plate 10C, the linearly polarized light component that has passed through the region 25A and the randomly polarized light beam that has passed through the region 26A are transmitted through the lower lens system 13B, and are in the region of the partial polarizing plate 10C. The light is incident on a polarizing plate 14 that passes a linearly polarized light component orthogonal to the polarization direction of 25A.
Then, the image of the pattern on the reticle 12 is transferred onto the wafer 15 by the linearly polarized light component that has passed through the polarizing plate 14. Note that, also in this example, the partial polarizing plate 10C has the optical axis A
The polarizing plate 14 is configured to be rotatable by 180 degrees around X, and the polarizing plate 14 is also driven to rotate in synchronization with the partial polarizing plate 10C and keeping the polarization directions orthogonal to each other.

【0035】本例によれば、投影光学系13に入射した
結像光束の内で、部分偏光板10Cの円形の領域25A
を通過するのは直線偏光成分のみであり、この直線偏光
成分は偏光板14で遮光される。従って、投影光学系1
3の瞳面PS1に輪帯状の開口部を有する瞳フィルター
を配置した場合と等価となり、高い解像度が得られる。
また、下部レンズ系13Bのレンズの中心部も直線偏光
成分により照射されるため、不均一な照度分布による投
影光学系13内の熱変形や屈折率の変化が抑えられ、結
果として投影光学系13の高次の収差変動成分が減少す
る。
According to the present embodiment, the circular area 25A of the partial polarizing plate 10C is included in the image forming light beam incident on the projection optical system 13.
Pass only the linearly polarized light component, and this linearly polarized light component is shielded by the polarizing plate 14. Therefore, the projection optical system 1
This is equivalent to a case where a pupil filter having a ring-shaped aperture is arranged on the third pupil plane PS1, and high resolution can be obtained.
In addition, since the central part of the lens of the lower lens system 13B is also irradiated with the linearly polarized light component, thermal deformation and change in the refractive index in the projection optical system 13 due to non-uniform illuminance distribution are suppressed. , The higher-order aberration fluctuation component decreases.

【0036】また、部分偏光板10C及び偏光板14は
180°回転可能で、且つ同期して同じ角度関係を保よ
うに駆動される構成を有するため、露光中に2つの偏光
板10C,14を例えば180°回転することにより、
レチクル12のパターンの周期方向に基づく線幅異常の
発生が抑えられる。なお、図1の実施の形態と同様に、
図4の偏光板14とウエハ15との間の光路上に1/4
波長板を設置し、偏光板14により直線偏光された光束
を円偏光に変換するようにすれば、部分偏光板10C及
び偏光板14を回転する機構を設けなくとも、パターン
の周期方向に起因する線幅異常は生じない。
Further, since the partial polarizers 10C and the polarizers 14 are rotatable by 180 ° and are driven so as to maintain the same angular relationship in synchronization with each other, the two polarizers 10C and 14 are moved during exposure. For example, by rotating 180 degrees,
The occurrence of abnormal line width based on the periodic direction of the pattern of the reticle 12 is suppressed. In addition, similarly to the embodiment of FIG.
1/4 on the optical path between the polarizing plate 14 and the wafer 15 in FIG.
If a wavelength plate is installed and the light beam linearly polarized by the polarizing plate 14 is converted into circularly polarized light, the light is caused by the periodic direction of the pattern without providing a mechanism for rotating the partial polarizing plate 10C and the polarizing plate 14. No line width abnormality occurs.

【0037】次に、上述の実施の形態において、投影光
学系13のレンズに対する照度分布が均一化され、高次
の収差変動が抑えられることを計算例に基づいて説明す
る。先ず、照明光の照射による上昇後の温度分布を計算
する。レンズを円筒形に近似して、レンズの側面から周
辺の空気を通して熱が流出せず、レンズの縁が金属と接
することにより、その縁からのみ熱が流出し、レンズに
おける吸収エネルギー密度分布が光軸AXの回りの角度
に対して一定であるとする。そのレンズの半径方向の距
離を表す変数をrとすれば、上昇後の温度分布は変数r
の関数T(r)となり、レンズの単位体積当たりの熱吸
収量及び熱伝導率をそれぞれ、ω(r)及びλとし、レ
ンズの外半径をaとすると、熱平衡状態での円筒座標系
での熱伝導方程式は、次式のように表せる。
Next, in the above-described embodiment, the fact that the illuminance distribution to the lens of the projection optical system 13 is made uniform and high-order aberration fluctuation is suppressed will be described based on a calculation example. First, the temperature distribution after the rise due to the illumination light irradiation is calculated. By approximating the lens to a cylindrical shape, heat does not flow out from the side of the lens through the surrounding air, and when the edge of the lens comes into contact with metal, heat flows out only from that edge and the absorbed energy density distribution in the lens changes to light. It is assumed that the angle is constant with respect to the angle around the axis AX. Assuming that a variable representing the radial distance of the lens is r, the temperature distribution after the rise is a variable r
Where T (r) is the heat absorption amount and thermal conductivity per unit volume of the lens, and a is the outer radius of the lens. In the cylindrical coordinate system in a thermal equilibrium state, The heat conduction equation can be expressed as the following equation.

【0038】[0038]

【数1】∂2 T/∂r2 +(1/r)∂T/∂r+ω
(r)/λ=0 この熱伝導方程式を解くと、次式のようになる。
2 T / ∂r 2 + (1 / r) ∂T / ∂r + ω
(R) / λ = 0 By solving this heat conduction equation, the following equation is obtained.

【0039】[0039]

【数2】 (Equation 2)

【0040】ここで、Jn(pi ・r)は第1種第n次
(n=0,1,2,…)のベッセル(Bessel)関数で、
i はJ1(pi ・a)=0を満たす数列である(i=
1,2,3,…)。また、係数Bi は次式により求めら
れる。
Here, J n (p i · r) is a Bessel function of the n-th order (n = 0, 1, 2,...) Of the first kind.
p i is a sequence satisfying J 1 (p i · a) = 0 (i =
1, 2, 3, ...). The coefficient B i is obtained by the following equation.

【0041】[0041]

【数3】 (Equation 3)

【0042】特に、熱吸収量ω(r)が照射径内で階段
状の関数で表されるとき、即ち或るj(1≦j≦N)に
おいて、変数rが、hj ≦r≦hj+1 を満たす区間にお
いて、熱吸収量ω(r)が一定値ωj をとるとき、次の
関係が成立する。
In particular, when the heat absorption ω (r) is represented by a step-like function within the irradiation diameter, that is, at a certain j (1 ≦ j ≦ N), the variable r becomes h j ≦ r ≦ h in the section that satisfies j + 1, when the heat absorption amount omega (r) takes a constant value omega j, the following relation is established.

【0043】[0043]

【数4】 (Equation 4)

【0044】従って、(数4)を(数3)に代入するこ
とにより係数Bi が求められ、この係数Bi を(数2)
に代入することにより、上昇後の温度分布T(r)が求
められる。次に、上昇後の温度分布T(r)により、ど
の次数の収差変動が多く現れるかを調べるために、上昇
後の温度分布T(r)を以下のように最小2乗法でr10
の項までベキ級数展開すると、次式のようになる。
[0044] Thus, equation (4) coefficient B i is obtained by substituting the (number 3), the coefficients B i (Equation 2)
To obtain the temperature distribution T (r) after the rise. Then, the increase after the temperature distribution T (r), r 10 to determine which order of aberration variation occurs more, the temperature distribution T after rise (r) with a minimum square method as follows
When the power series is expanded up to the term, the following equation is obtained.

【0045】[0045]

【数5】T(r)=T0 +C2 ・r2 +C4 ・r4 +C
6 ・r6 +C8 ・r8+C10・r10 この場合、上昇後の温度分布T(r)の単位は℃、変数
rの単位はmmである。また、T0 は、光軸AX、即ち
変数rが0の位置における上昇後の温度分布T(0)で
ある。
T (r) = T 0 + C 2 · r 2 + C 4 · r 4 + C
6 · r 6 + C 8 · r 8 + C 10 · r 10 In this case, the unit of the temperature distribution T (r) after the rise is ° C., and the unit of the variable r is mm. T 0 is the optical axis AX, that is, the temperature distribution T (0) after the rise at the position where the variable r is 0.

【0046】以下、実際の数値に基づく計算例について
説明する。投影光学系の入射側の開口数(NA)に対す
る照明光学系の出射側の開口数の比の値(コヒーレンス
ファクタ)をσ値とし、このσ値を0.75に設定す
る。そして、σ値が0.75の照明系によって外半径4
0mmの円筒形の石英からなるレンズが照明され、レン
ズ上の照射半径dが30mmであるような場合につい
て、(数2)〜(数4)の熱伝導方程式の解に基づいて
計算する。石英の熱伝導率を0.0138W/(cm・
℃)とし、ウエハ上のフォトレジストに感光性の照明光
に対するレンズの光エネルギーの吸収率を2%/cmと
する。
Hereinafter, a calculation example based on actual numerical values will be described. The value (coherence factor) of the ratio of the numerical aperture on the exit side of the illumination optical system to the numerical aperture (NA) on the entrance side of the projection optical system is defined as a σ value, and this σ value is set to 0.75. An outer radius of 4 is obtained by an illumination system having a σ value of 0.75.
In a case where a lens made of quartz having a cylindrical shape of 0 mm is illuminated and the irradiation radius d on the lens is 30 mm, calculation is performed based on the solutions of the heat conduction equations of (Equation 2) to (Equation 4). The thermal conductivity of quartz is 0.0138 W / (cm ·
° C), and the absorptivity of the light energy of the lens to the illumination light sensitive to the photoresist on the wafer is 2% / cm.

【0047】第1の計算例では、先ず比較のため、照明
光の全照射エネルギー量が1Wで、σ値が0.75の範
囲内でレンズが一様に照射されている場合について計算
する。図5(a)は、第1の計算例による上昇後の温度
分布T(r)を示し、横軸は変数r、縦軸は上昇後の温
度分布T(r)を表す。実線の曲線31Aに示すよう
に、上昇後の温度分布T(r)は原点、即ち光軸AXに
最大値TAを有し、光軸AXに関して軸対称な山型の変
化を示す。なお、参考として、照明光の照射エネルギー
密度分布P(r)を点線32Aにより示す。照射エネル
ギー密度分布P(r)は、変数rが0〜d(照射半径)
の間で一定の値P1となる。また、光軸AXでの温度分
布T0 、及び温度分布T(r)を(数5)によりベキ級
数に展開したときの係数C2 〜C10を表1に示す。
In the first calculation example, first, for comparison, calculation is performed for a case where the total irradiation energy of the illumination light is 1 W and the lens is uniformly irradiated within a range of σ of 0.75. FIG. 5A shows the temperature distribution T (r) after the rise according to the first calculation example, where the horizontal axis represents the variable r and the vertical axis represents the temperature distribution T (r) after the rise. As shown by the solid curve 31A, the temperature distribution T (r) after the rise has a maximum value TA at the origin, that is, the optical axis AX, and shows a mountain-shaped change that is axially symmetric with respect to the optical axis AX. For reference, the irradiation energy density distribution P (r) of the illumination light is indicated by a dotted line 32A. In the irradiation energy density distribution P (r), the variable r is 0 to d (irradiation radius).
Is constant P1. Further, Table 1 shows coefficients C 2 to C 10 when the temperature distribution T 0 on the optical axis AX and the temperature distribution T (r) are expanded into a power series by (Equation 5).

【0048】[0048]

【表1】 [Table 1]

【0049】次に、第2の計算例について説明する。こ
の計算例は輪帯照明又は瞳フィルターを用いた場合の例
であり、第1の計算例と同様に比較のための計算例であ
る。σ値は最大で0.75で、輪帯の内側のσ値は0.
5である。そのσ値が0.5〜0.75の間でレンズが
一様に照明され、全照射エネルギー量が1Wである場合
について上昇後の温度分布T(r)を計算したものであ
る。
Next, a second calculation example will be described. This calculation example is an example in the case where the annular illumination or the pupil filter is used, and is a calculation example for comparison as in the first calculation example. The σ value is 0.75 at the maximum, and the σ value inside the annular zone is 0.
5 The temperature distribution T (r) after the rise is calculated when the lens is uniformly illuminated when the σ value is in the range of 0.5 to 0.75 and the total irradiation energy amount is 1 W.

【0050】図5(b)は、第2の計算例による上昇後
の温度分布T(r)を示し、この図5(b)において、
実線の曲線31Bに示すように、上昇後の温度分布T
(r)は変数rがほぼ0〜eの間で一定の温度TBとな
る。点線32Bで示す照射エネルギー密度分布P(r)
は、変数rがe〜dの間で一定の値P2となり、変数r
が0〜eの間では0となっている。第1の計算例と同様
に、光軸AXでの上昇後の温度分布T0 、及び上昇後の
温度分布T(r)を(数5)によりベキ級数に展開した
ときの係数C2 〜C10を表2に示す。
FIG. 5B shows the temperature distribution T (r) after the rise according to the second calculation example.
As shown by the solid line curve 31B, the temperature distribution T
(R) is a constant temperature TB when the variable r is substantially between 0 and e. Irradiation energy density distribution P (r) indicated by dotted line 32B
Indicates that the variable r has a constant value P2 between e and d, and the variable r
Is 0 between 0 and e. Similarly to the first calculation example, the coefficients C 2 to C 2 when the temperature distribution T 0 after the rise on the optical axis AX and the temperature distribution T (r) after the rise are expanded into a power series by (Equation 5). Table 10 shows Table 10 .

【0051】[0051]

【表2】 [Table 2]

【0052】次に、第3の計算例について説明する。こ
の計算例は、図1及び図4に示す実施の形態のように、
部分偏光板10又は10Cを使用してレンズが照明され
ている場合の上昇後の温度分布T(r)を求めるもので
ある。この場合、σ値が0.75から0.5の範囲内で
は、ランダム偏光光により全照射エネルギー量が1Wで
レンズが一様に照明され、σ値が0.5から0.0の範
囲内においては、直線偏光成分での照明により、σ値が
0.75から0.5の範囲の2分の1の照射エネルギー
密度でレンズが照明されているものとする。
Next, a third calculation example will be described. This calculation example is similar to the embodiment shown in FIG. 1 and FIG.
The temperature distribution T (r) after the rise when the lens is illuminated using the partial polarizer 10 or 10C is determined. In this case, when the σ value is in the range of 0.75 to 0.5, the lens is uniformly illuminated by the randomly polarized light at a total irradiation energy of 1 W, and the σ value is in the range of 0.5 to 0.0. In, it is assumed that the lens is illuminated by the illumination with the linearly polarized light component at an irradiation energy density of 1/2 of the σ value in the range of 0.75 to 0.5.

【0053】図5(c)は、第3の計算例による上昇後
の温度分布T(r)を示し、この図5(c)において、
実線の曲線31Cに示すように、上昇後の温度分布T
(r)は原点、即ち光軸AXに最大値TCを有し、光軸
AXに関して軸対称な山型の変化を示す。また、照射エ
ネルギー密度分布P(r)は階段状に変化する点線32
Cに示すように、変数rがe〜dの間で一定の値P2と
なり、変数rが0〜eの間では一定の値P3(=(1/
2)・P2)となっている。また、光軸AXでの温度分
布T0 、及び温度分布T(r)を(数5)によりベキ級
数に展開したときの係数C2 〜C10を表3に示す。
FIG. 5C shows the temperature distribution T (r) after the rise according to the third calculation example.
As shown by the solid curve 31C, the temperature distribution T
(R) has a maximum value TC at the origin, that is, the optical axis AX, and shows a mountain-shaped change that is axially symmetric with respect to the optical axis AX. Further, the irradiation energy density distribution P (r) changes in a stepped manner with a dotted line 32.
C, the variable r takes a constant value P2 between e and d, and a constant value P3 (= (1/1 /
2) and P2). Table 3 shows coefficients C 2 to C 10 when the temperature distribution T 0 and the temperature distribution T (r) on the optical axis AX are expanded into a power series by (Equation 5).

【0054】[0054]

【表3】 [Table 3]

【0055】なお、第1及び第2の計算例においては、
全照射エネルギー量を1Wとし、第3の計算例において
は、σ値が0.75から0.5の範囲内における照射エ
ネルギー量を1Wとしている。この第3の計算例におい
ては、σ値が0.5〜0.0の範囲における照射エネル
ギー量を加えると、全照射エネルギー量は1Wを超え
る。これは、第1〜第3の計算例におけるウエハ13上
のフォトレジストに対する感光性の照明光の照射エネル
ギー量を等しくして、露光時間(スループット)が等し
くなるように設定したものである。
Note that in the first and second calculation examples,
The total irradiation energy amount is 1 W, and in the third calculation example, the irradiation energy amount is 1 W when the σ value is in the range of 0.75 to 0.5. In the third calculation example, the total irradiation energy exceeds 1 W when the irradiation energy in the range of 0.5 to 0.0 is added. In this case, the irradiation energy amounts of the photosensitive illumination light to the photoresist on the wafer 13 in the first to third calculation examples are set to be equal so that the exposure time (throughput) is equal.

【0056】第1の計算例に示す一様照明方式と、第2
の計算例に示す輪帯照明方式又は瞳フィルター方式(輪
帯照明方式等)とを比較した場合、表1及び表2で示す
ように、輪帯照明方式等の方が一様照明方式に比較し
て、光軸AXにおける温度が低い。それにもかかわら
ず、例えばベキ級数の係数C4 を比較すると、一様照明
方式の場合の係数C4 の値が、4.4000×10-8
対して、輪帯照明方式等の場合の係数C4 は、2.73
28×10-7と、輪帯照明方式等の方が大きくなってい
る。即ち、一様照明方式と輪帯照明方式等とを比較する
と、係数C2 以外のベキ級数の係数の絶対値は全て輪帯
照明方式等の方が大きくなっている。熱変形や屈折率変
化は上昇後の温度分布T(r)に比例するので、収差変
動も上昇後の温度分布T(r)に比例する。係数C2
り高次のベキ級数の係数が全て輪帯照明方式等の方が大
きいということは、輪帯照明方式等の方が高次の収差変
動が大きいことを意味する。
The uniform illumination method shown in the first calculation example and the second
As shown in Tables 1 and 2, when comparing the annular illumination method or the pupil filter method (such as the annular illumination method) shown in the calculation example, the annular illumination method or the like is compared with the uniform illumination method. Thus, the temperature at the optical axis AX is low. Nevertheless, for example when comparing the coefficient C 4 of the power series, the value of the coefficient C 4 in the case of uniform illumination scheme, relative to 4.4000 × 10 -8, the coefficient in the case of such annular illumination method C 4 is 2.73
It is 28 × 10 -7, which is larger for the ring illumination system and the like. That is, when comparing the uniform illumination method and the zonal illuminating method and the like, the absolute value of the coefficients of the power series other than the coefficient C 2 is better for all such annular illumination system is large. Since the thermal deformation and the change in the refractive index are proportional to the temperature distribution T (r) after the rise, the aberration fluctuation is also proportional to the temperature distribution T (r) after the rise. That the coefficient of the high-order power series from the coefficient C 2 is greater in all such annular illumination scheme means that people, such as annular illumination system is large higher order aberrations change.

【0057】ここで、図1及び図4に示す実施の形態の
露光方法を「部分偏光板方式」とすれば、この部分偏光
板方式により光軸近傍にも直線偏光成分を照射すると、
第3の計算例に示すように、全照射量が一様照明方式や
輪帯照明方式等よりも多いのにもかかわらず、表3及び
表2に示すように、係数C4 の値(=1.7624×1
-7)は、輪帯照明方式等での係数C4 の値(=2.7
328×10-7)よりも小さくなっている。更に、係数
6,C8,C10の絶対値を比較すると、何れの係数におい
ても部分偏光板方式の方が輪帯照明方式等よりも小さく
なっている。これは、部分偏光板方式により高次の収差
変動が小さくなることを意味する。
Here, if the exposure method of the embodiment shown in FIGS. 1 and 4 is a "partial polarizing plate system", the vicinity of the optical axis is irradiated with a linearly polarized light component by this partial polarizing plate system.
As shown in the third calculation example, in spite of more than the total dose is uniform illumination method and annular illumination method, and the like, as shown in Table 3 and Table 2, the value of the coefficient C 4 (= 1.7624 × 1
0 -7 ) is the value of the coefficient C 4 (= 2.7) in the annular illumination system or the like.
328 × 10 −7 ). Further, comparing the absolute values of the coefficients C 6 , C 8 , and C 10 , the partial polarizing plate method is smaller than the annular illumination method or the like in any of the coefficients. This means that high-order aberration fluctuation is reduced by the partial polarizing plate method.

【0058】また、第3の計算例においては、σ値が0
〜0.5の間における照射エネルギー密度を、σ値が
0.5〜0.75の間における密度分布の1/2とし
た。これに対して、σ値が0〜0.75の範囲において
全て一様な照射エネルギー分布により照射されるよう
に、例えば前述のようにNDフィルターを使用するか、
又は図3(b)及び図3(c)のように変形照明法を用
いて極在化した部分のみランダム偏光光を透過させ、そ
れ以外の部分で直線偏光成分を通過させる場合の温度分
布T(r)について計算し、図5(b)の輪帯照明方式
等の場合と比較してみる。この場合、図3(b)及び
(c)の極在化した部分を透過するランダム偏光光の全
照射量を1Wとする。
In the third calculation example, the σ value is 0
The irradiation energy density between 0.5 and 0.5 was の of the density distribution when the σ value was between 0.5 and 0.75. On the other hand, for example, an ND filter is used as described above so that the σ value is irradiated with a uniform irradiation energy distribution in the range of 0 to 0.75, or
Alternatively, as shown in FIGS. 3 (b) and 3 (c), the temperature distribution T when only randomly polarized light is transmitted using the modified illumination method and linearly polarized light components are transmitted in other portions. (R) is calculated and compared with the case of the annular illumination system shown in FIG. In this case, the total irradiation amount of the randomly polarized light transmitted through the poled portions in FIGS. 3B and 3C is set to 1 W.

【0059】この場合のレンズに照射される全照射量T
P(W)は次式により求められる。 TP=1W・0.752 /(0.752 −0.52 )=
1.8W 従って、図5(c)のような部分偏光板方式において、
σ値が0.5以内の範囲もその周囲の領域と等しい照射
エネルギー密度で照射する場合には、図5(a)の一様
照明方式において、照射エネルギー密度を1.8倍した
状態と等価である。従って、ベキ級数の係数も全て表1
の値を1.8倍したものとなるため、係数C4,C6,C8,
10はそれぞれ、7.9200×10-8,−1.782
1×10 -10 ,1.4937×10-13 ,−3.734
1×10-17 となる。これらの係数の値を表2のそれぞ
れの係数と比較した場合、光軸AX近傍の上昇後の温度
分布T0 が輪帯照明方式等の場合よりもかなり大きいに
もかかわらず、係数C4 〜C10までの係数は輪帯照明方
式等の場合より全て小さくなっている。即ち、部分偏光
板方式でσ値が0〜0.75の範囲内において、平坦な
照射エネルギー密度P2で照射した場合でも、輪帯照明
方式等の場合より高次の収差変動が少ないことを意味し
ている。
In this case, the total irradiation amount T applied to the lens
P (W) is obtained by the following equation. TP = 1W ・ 0.75Two /(0.75Two -0.5Two ) =
1.8W Therefore, in the partial polarizing plate method as shown in FIG.
Irradiation with a σ value within 0.5 is equal to the surrounding area
In the case of irradiation at the energy density, the uniformity shown in FIG.
In the illumination method, the irradiation energy density was 1.8 times
Equivalent to state. Therefore, all coefficients of the power series are shown in Table 1.
Is 1.8 times the value ofFour, C6, C8,
CTenAre 7.9200 × 10-8, -1.782
1 × 10 -Ten , 1.4937 × 10-13 , -3.734
1 × 10-17 Becomes Table 2 shows the values of these coefficients.
Temperature after the rise near the optical axis AX
Distribution T0 Is considerably larger than in the case of annular lighting
Nevertheless, the coefficient CFour ~ CTenThe factor up to is the ring illumination
All are smaller than in the case of formulas and the like. That is, partial polarization
When the σ value is in the range of 0 to 0.75 in the plate method,
Even when irradiating with irradiation energy density P2, annular illumination
Means that there is less variation in higher-order aberrations than
ing.

【0060】なお、本発明はステッパー型の投影露光装
置に限らず、レチクルのパターンの一部を投影光学系を
介してウエハ上に投影した状態で、レチクルとウエハと
を投影光学系に対して同期走査してレチクルのパターン
を順次ウエハ上の各ショット領域に転写露光するステッ
プ・アンド・スキャン方式等の走査露光型の投影露光装
置にも同様に適用できる。
The present invention is not limited to the stepper type projection exposure apparatus, and the reticle and the wafer are projected onto the projection optical system while a part of the reticle pattern is projected onto the wafer via the projection optical system. The present invention can be similarly applied to a scanning exposure type projection exposure apparatus such as a step-and-scan method in which a reticle pattern is sequentially transferred and exposed to each shot area on a wafer by synchronous scanning.

【0061】このように、本発明は上述の実施の形態に
限定されず、本発明の要旨を逸脱しない範囲で種々の構
成を取り得る。
As described above, the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention.

【0062】[0062]

【発明の効果】本発明の投影露光装置によれば、マスク
から傾斜して射出される光束又はマスクに対して傾斜し
て入射する光束以外の光束を第1偏光部材により所定方
向に偏光した後、その偏光した光束を第2偏光部材によ
り遮光するため、感光基板上に結像する光束はマスクか
ら傾斜して射出される光束、又はマスクに対して傾斜し
て入射する光束だけとなり、中心遮光型の瞳フィルター
を用いる方式、又は輪帯照明や変形照明を用いる場合と
ほぼ等価の高い解像度が得られる利点がある。また、第
1偏光部材と第2偏光部材との間を、有効な結像光束と
第1偏光部材により所定方向に偏光された光束とが通過
する。従って、第1偏光部材と第2偏光部材との間に配
置された投影光学系の瞳面近傍におけるレンズの照度分
布がほぼ均一になり、投影光学系内のレンズの高次の熱
変形や屈折率の変化が抑えられ、結果的に投影光学系の
高次の球面収差変動が抑えられる利点がある。
According to the projection exposure apparatus of the present invention, after the light flux other than the light flux emitted obliquely from the mask or the light flux obliquely incident on the mask is polarized in a predetermined direction by the first polarizing member. Since the polarized light beam is shielded by the second polarizing member, the light beam imaged on the photosensitive substrate is only a light beam emitted obliquely from the mask or a light beam obliquely incident on the mask. There is an advantage that a high resolution almost equivalent to the case of using a pupil filter of the type or using annular illumination or modified illumination can be obtained. Further, between the first polarizing member and the second polarizing member, an effective imaging light beam and a light beam polarized in a predetermined direction by the first polarizing member pass. Therefore, the illuminance distribution of the lens near the pupil plane of the projection optical system disposed between the first polarizing member and the second polarizing member becomes substantially uniform, and higher-order thermal deformation and refraction of the lens in the projection optical system. There is an advantage that a change in the rate is suppressed, and as a result, a higher-order spherical aberration fluctuation of the projection optical system is suppressed.

【0063】また、第1偏光部材が、光軸の周りの輪帯
状領域の内側の領域、又は光軸から偏心した複数の領域
を除く領域を通過する露光光の偏光方向を所定方向に設
定する場合には、有効な結像光束は光軸の周りの輪帯状
の領域、又は光軸から偏心した複数の領域を通過し、第
2偏光部材を通過して感光基板上に結像する。一方、有
効な結像光束以外の光束は、第2偏光部材により遮光さ
れ、感光基板上に結像しない。従って、その第1偏光部
材が投影光学系の瞳面と共役な面上にあるときには、輪
帯照明や変形照明を行った場合と等価になる。一方、そ
の第1偏光部材がその瞳面上にあり、光軸の周りの輪帯
状領域の内側の領域で直線偏光光を通過させるときに
は、中心遮光型の瞳フィルターを使用する場合と等価に
なる。
Further, the first polarizing member sets the polarization direction of the exposure light passing through a region inside the annular region around the optical axis or a region other than a plurality of regions decentered from the optical axis in a predetermined direction. In such a case, the effective imaging light flux passes through an annular zone around the optical axis or a plurality of areas decentered from the optical axis, passes through the second polarizing member, and forms an image on the photosensitive substrate. On the other hand, light beams other than the effective image forming light beam are shielded by the second polarizing member and do not form an image on the photosensitive substrate. Therefore, when the first polarizing member is on a plane conjugate with the pupil plane of the projection optical system, it becomes equivalent to the case where annular illumination or modified illumination is performed. On the other hand, when the first polarizing member is on the pupil plane and allows linearly polarized light to pass through a region inside the annular region around the optical axis, it is equivalent to using a central light blocking pupil filter. .

【0064】また、第1偏光部材と、第2偏光部材とを
一定の相対角度関係を保ってそれぞれ回転する駆動手段
を設ける場合には、第1及び第2偏光部材を露光中に回
転させることによって、感光基板に結像したパターンの
像の線幅がパターンの周期方向により変化する線幅異常
の発生が抑えられる利点がある。
In the case where drive means for rotating the first polarizing member and the second polarizing member while maintaining a constant relative angular relationship is provided, the first and second polarizing members are rotated during exposure. Accordingly, there is an advantage that occurrence of an abnormal line width in which the line width of the image of the pattern formed on the photosensitive substrate changes depending on the period direction of the pattern is suppressed.

【0065】また、第2偏光部材と感光基板との間に、
第2偏光部材を通過した露光光を円偏光に変換する第3
偏光部材を設ける場合には、第1及び第2偏光部材を回
転する駆動手段を設けることなく、パターンの周期方向
による線幅異常が抑えられる利点がある。
Further, between the second polarizing member and the photosensitive substrate,
Third, which converts the exposure light having passed through the second polarizing member into circularly polarized light.
When the polarizing member is provided, there is an advantage that abnormal line width due to the periodic direction of the pattern can be suppressed without providing a driving unit for rotating the first and second polarizing members.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の投影露光装置の実施の形態の一例を示
す一部を切り欠いた斜視図である。
FIG. 1 is a partially cutaway perspective view showing an example of an embodiment of a projection exposure apparatus of the present invention.

【図2】図1の照明光学系に設けられた各種の開口絞り
を示す平面図である。
FIG. 2 is a plan view showing various aperture stops provided in the illumination optical system of FIG. 1;

【図3】(a)は図1の部分偏光板10を示す平面図、
(b)は変形照明用の部分偏光板10Aを示す平面図、
(c)は部分偏光板の他の例を示す平面図である。
FIG. 3A is a plan view showing the partial polarizing plate 10 of FIG. 1,
(B) is a plan view showing a partial polarizing plate 10A for modified illumination,
(C) is a plan view showing another example of the partial polarizing plate.

【図4】本発明の投影露光装置の実施の形態の他の例の
要部を示す斜視図である。
FIG. 4 is a perspective view showing a main part of another example of the embodiment of the projection exposure apparatus of the present invention.

【図5】本発明の実施の形態において、照射エネルギー
による温度分布の計算例を説明するための図である。
FIG. 5 is a diagram for explaining an example of calculating a temperature distribution by irradiation energy in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 4 フライアイレンズ 6A〜6C 開口絞り 10,10A,10B,10C 部分偏光板 12 レチクル 13 投影光学系 13A 上部レンズ系 13B 下部レンズ系 PS1 瞳面 PS2 照明系瞳面 14 偏光板 15 ウエハ 16 ウエハステージ 17 1/4波長板 21,23 回転駆動体 22 回転角制御系 Reference Signs List 1 light source 4 fly-eye lens 6A to 6C aperture stop 10, 10A, 10B, 10C partial polarizing plate 12 reticle 13 projection optical system 13A upper lens system 13B lower lens system PS1 pupil plane PS2 illumination system pupil plane 14 polarizing plate 15 wafer 16 wafer Stage 17 Quarter-wave plate 21, 23 Rotation driver 22 Rotation angle control system

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 露光光のもとでマスク上のパターンの像
を感光基板上に投影する投影光学系を有し、 前記露光光の内で前記マスクから傾斜して射出される光
束、又は前記マスクに対して傾斜して入射する光束を有
効な結像光束として使用する投影露光装置であって、 前記投影光学系の瞳面と共役な面上で実質的に光軸を中
心とする円形の領域に一様に分布する光源からの前記露
光光を用いて前記マスクを照明する照明光学系と、 前記投影光学系の瞳面、又は該瞳面と共役な面上で、前
記有効な結像光束が通過する領域以外の領域を通過する
前記露光光の偏光方向を所定方向に設定する第1偏光部
材と、 前記投影光学系と前記感光基板との間に配置され前記投
影光学系を通過した前記露光光の内で前記所定方向に偏
光する光束を遮光する第2偏光部材と、を設けたことを
特徴とする投影露光装置。
1. A projection optical system for projecting an image of a pattern on a mask onto a photosensitive substrate under exposure light, wherein a light beam emitted from the mask at an angle out of the exposure light, or A projection exposure apparatus that uses a light beam obliquely incident on a mask as an effective imaging light beam, wherein the light beam substantially has a circular shape centered on an optical axis on a plane conjugate with a pupil plane of the projection optical system. An illumination optical system that illuminates the mask using the exposure light from a light source uniformly distributed in a region; and a pupil plane of the projection optical system, or a plane conjugate to the pupil plane, and the effective imaging. A first polarizing member for setting the polarization direction of the exposure light passing through a region other than the region through which the light beam passes in a predetermined direction, and being disposed between the projection optical system and the photosensitive substrate and passing through the projection optical system A second light-shielding part of the exposure light that blocks a light beam polarized in the predetermined direction; Projection exposure apparatus being characterized in that the optical member, the provided.
【請求項2】 請求項1記載の投影露光装置であって、 前記第1偏光部材は、前記光軸の周りの輪帯状領域の内
側の領域、又は前記光軸から偏心した複数の領域を除く
領域を通過する前記露光光の偏光方向を前記所定方向に
設定することを特徴とする投影露光装置。
2. The projection exposure apparatus according to claim 1, wherein the first polarizing member excludes a region inside a ring-shaped region around the optical axis or a plurality of regions decentered from the optical axis. A projection exposure apparatus, wherein a polarization direction of the exposure light passing through a region is set to the predetermined direction.
【請求項3】 請求項1、又は2記載の投影露光装置で
あって、 前記第1偏光部材と、前記第2偏光部材とを一定の相対
角度関係を保ってそれぞれ回転する駆動手段を設けたこ
とを特徴とする投影露光装置。
3. The projection exposure apparatus according to claim 1, further comprising a driving unit that rotates the first polarizing member and the second polarizing member while maintaining a constant relative angular relationship. A projection exposure apparatus characterized by the above-mentioned.
【請求項4】 請求項1、又は2記載の投影露光装置で
あって、 前記第2偏光部材と前記感光基板との間に、前記第2偏
光部材を通過した前記露光光を円偏光に変換する第3偏
光部材を設けたことを特徴とする投影露光装置。
4. The projection exposure apparatus according to claim 1, wherein the exposure light having passed through the second polarizing member is converted into circularly polarized light between the second polarizing member and the photosensitive substrate. A projection exposure apparatus, comprising a third polarizing member.
JP8234158A 1996-08-07 1996-09-04 Projection aligner Withdrawn JPH1079337A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8234158A JPH1079337A (en) 1996-09-04 1996-09-04 Projection aligner
EP19970113696 EP0823662A2 (en) 1996-08-07 1997-08-07 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8234158A JPH1079337A (en) 1996-09-04 1996-09-04 Projection aligner

Publications (1)

Publication Number Publication Date
JPH1079337A true JPH1079337A (en) 1998-03-24

Family

ID=16966571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8234158A Withdrawn JPH1079337A (en) 1996-08-07 1996-09-04 Projection aligner

Country Status (1)

Country Link
JP (1) JPH1079337A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332197A (en) * 2005-05-24 2006-12-07 Nikon Corp Method of detecting mirror cylinder, exposure apparatus and optical element, and method of manufacturing device
JP2008135742A (en) * 2006-11-27 2008-06-12 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and computer program product
JP2009010346A (en) * 2007-05-17 2009-01-15 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
JP2009088358A (en) * 2007-10-01 2009-04-23 Canon Inc Illumination optical system, exposure apparatus, and device-manufacturing method
JP2010010701A (en) * 2002-12-03 2010-01-14 Nikon Corp Illumination optical system, exposure apparatus, and exposure method
JP2010091839A (en) * 2008-10-09 2010-04-22 V Technology Co Ltd Proximity exposure apparatus
US7903234B2 (en) 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
JP2015065441A (en) * 2003-10-28 2015-04-09 株式会社ニコン Illumination optical device and projection exposure device
KR20150060992A (en) * 2005-01-21 2015-06-03 가부시키가이샤 니콘 Lighting optical system and exposure apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010701A (en) * 2002-12-03 2010-01-14 Nikon Corp Illumination optical system, exposure apparatus, and exposure method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2015065441A (en) * 2003-10-28 2015-04-09 株式会社ニコン Illumination optical device and projection exposure device
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
KR20150060992A (en) * 2005-01-21 2015-06-03 가부시키가이샤 니콘 Lighting optical system and exposure apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006332197A (en) * 2005-05-24 2006-12-07 Nikon Corp Method of detecting mirror cylinder, exposure apparatus and optical element, and method of manufacturing device
JP2008135742A (en) * 2006-11-27 2008-06-12 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and computer program product
US7903234B2 (en) 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
JP2009010346A (en) * 2007-05-17 2009-01-15 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2009088358A (en) * 2007-10-01 2009-04-23 Canon Inc Illumination optical system, exposure apparatus, and device-manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010091839A (en) * 2008-10-09 2010-04-22 V Technology Co Ltd Proximity exposure apparatus

Similar Documents

Publication Publication Date Title
JP6187574B2 (en) Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
JPH1079337A (en) Projection aligner
TWI276924B (en) Exposure apparatus and method
JP4497968B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP3646757B2 (en) Projection exposure method and apparatus
EP0823662A2 (en) Projection exposure apparatus
JP2007221114A (en) Lithographic projection apparatus and method of manufacturing device
JPH06120110A (en) Projection aligner and exposure method
KR100944506B1 (en) Lithographic apparatus, device manufacturing method and computer program product
JP2007180088A (en) Illumination optical apparatus and method of adjusting the same, exposure apparatus, and device manufacturing method
TW200809919A (en) Exposure apparatus
JP2004343079A (en) Device manufacturing method
JP3790833B2 (en) Projection exposure method and apparatus
JPH07122469A (en) Projection aligner
JPH06244082A (en) Projection exposure device
JP3647272B2 (en) Exposure method and exposure apparatus
JP2936190B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JPH0645217A (en) Projection aligner
JP2009010346A (en) Lithographic apparatus and method of manufacturing device
JP2000021762A (en) Method of exposure and aligner
JPH05234846A (en) Exposure method using projection optical system
JP3647271B2 (en) Exposure method and exposure apparatus
JP2001250761A (en) Method of correcting exposure aberration
JPH0757992A (en) Projection aligner
JPH06224106A (en) Projection exposure device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060921