JPH10295657A - Blood pressure measuring device - Google Patents

Blood pressure measuring device

Info

Publication number
JPH10295657A
JPH10295657A JP9107010A JP10701097A JPH10295657A JP H10295657 A JPH10295657 A JP H10295657A JP 9107010 A JP9107010 A JP 9107010A JP 10701097 A JP10701097 A JP 10701097A JP H10295657 A JPH10295657 A JP H10295657A
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
feature
measurement device
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9107010A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ogino
弘之 荻野
Yoshiaki Watanabe
義明 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9107010A priority Critical patent/JPH10295657A/en
Publication of JPH10295657A publication Critical patent/JPH10295657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a troublesome manipulation at measuring the blood pressure and enhance the easiness in handling the device by arranging it so that the blood pressure is calculated on the basis of the pulsation signal obtained through sensing, and therefore, only one sensor, a pulsation sensor, must be put on the body of a subject. SOLUTION: A blood pressure measuring device senses the pulsation generated by blood circulation in a human body using a pulsation sensing means 8, calculates the feature amount related to the blood pressure using a feature amount calculating means 11 on the basis of the pulsation signal obtained through sensing, and calculates the blood pressure using a blood pressure calculating means 18 on the basis of the obtained feature amount. According to this configuration where the blood pressure is determined on the basis of pulsation signals, only one sensor, a pulsation sensor, must be put on the body of a subject to lead to elimination of troublesomeness in manipulation at measuring the blood pressure and enhancement of the easiness in handling the device, and further because the blood pressure measurement is conducted through computation of the feature amount related to the blood pressure, accurate measurements can be obtained even with varying shape of pulsation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血圧測定装置に関
するもので、特にカフ(圧迫帯)を用いないで血圧を測
定する低拘束の血圧測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood pressure measuring device, and more particularly to a low-restraint blood pressure measuring device for measuring blood pressure without using a cuff (compression band).

【0002】[0002]

【従来の技術】従来のこの種の低拘束の血圧測定装置は
特開平8−140948号公報に記載されているような
ものが一般的であった。この血圧測定装置は図25に示
すように心電位電極1、2、心電位信号を処理する心電
処理手段3、指尖光電脈波センサ4、脈波信号を処理す
る脈波処理手段5、脈波信号を2次微分する2次微分手
段6、信号処理された心電位信号と脈波信号と脈波の2
次微分信号に基づき血圧を演算する演算手段7、及び演
算結果を表示する表示手段8から構成されている。心電
位電極1、2、指尖光電脈波センサ4は図25のように
人体の各部位に装着される。
2. Description of the Related Art A conventional low-restraint blood pressure measuring apparatus of this type is generally the one described in JP-A-8-140948. As shown in FIG. 25, the blood pressure measuring device includes cardiac potential electrodes 1 and 2, electrocardiographic processing means 3 for processing cardiac potential signals, fingertip photoelectric pulse wave sensor 4, pulse wave processing means 5 for processing pulse wave signals, Second-order differentiating means 6 for performing second-order differentiation of the pulse wave signal;
It comprises a calculating means 7 for calculating the blood pressure based on the next differential signal, and a display means 8 for displaying the calculation result. The cardiac potential electrodes 1 and 2 and the fingertip photoelectric pulse wave sensor 4 are attached to each part of the human body as shown in FIG.

【0003】そして図26に示すように上記演算手段7
が、心電位波形と脈波波形から脈波伝播時間PTTと脈
波インターバルPI、心拍数HR(=1/PI)を求め
るとともに、脈波の2次微分波形の正方向第1波高xと
負方向第1波高yの比y/xまたは脈波の正方向第1ピ
ークと正方向第2ピークの時間差Tbを求めてこれを血
管性状パラメータTPとし、式(1)に基づき血圧値
(最高血圧(SYS)、最低血圧(DIA))を演算す
るようにようになっていた。
[0003] As shown in FIG.
Calculates the pulse wave transit time PTT, the pulse wave interval PI, and the heart rate HR (= 1 / PI) from the cardiac potential waveform and the pulse wave waveform, as well as the positive first wave height x and negative of the second derivative waveform of the pulse wave. The ratio y / x of the first wave height y in the direction or the time difference Tb between the positive first peak and the positive second peak of the pulse wave is obtained as a vascular property parameter TP, and the blood pressure value (systolic blood pressure) is calculated based on the equation (1). (SYS), diastolic blood pressure (DIA)).

【0004】 SYS、DIA=c1*HR+c2*PTT+c3*TP+c4 式(1) ただし、c1、c2、c3、c4は統計的に得られた定
数であり、SYSとDIAでそれぞれ異なる。
SYS, DIA = c1 * HR + c2 * PTT + c3 * TP + c4 Equation (1) where c1, c2, c3, and c4 are constants obtained statistically, and are different between SYS and DIA.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の血圧測定装置では、血圧を演算するために脈波伝播時
間を求めなければならないので、図25のように心電位
と脈波を検出する多数のセンサを人体に装着しなくては
ならず、使用上の課題があった。特に心電位電極につい
ては精度よく心電位を検出するためには通常、導電性の
ペーストを人体につけて心電位測定用の電極皿を装着し
なくてはならず、血圧測定の際の操作が煩雑となり、使
い勝手が悪いという課題があった。
However, in the above-mentioned conventional blood pressure measuring device, the pulse wave transit time has to be obtained in order to calculate the blood pressure. Therefore, as shown in FIG. The sensor has to be worn on the human body, and there is a problem in use. Especially for the cardiac potential electrodes, in order to accurately detect the cardiac potential, it is usually necessary to attach a conductive paste to the human body and attach an electrode plate for measuring the cardiac potential, which makes the operation for blood pressure measurement complicated. And there was a problem that usability was poor.

【0006】さらにパラメータTPとして脈波の2次微
分波形の正方向第1波高xと負方向第1波高yの比y/
xまたは脈波の正方向第1ピークと正方向第2ピークの
時間差Tbを用いて血圧を演算しているが、例えば高血
圧や動脈硬化になると脈波形状が変わり、例えば正方向
のピークが1個所しか現れないことがあるため、Tbを
正確に求めることが出来ず正しく血圧が演算されないと
いった課題があった。
Further, as a parameter TP, a ratio y / of the positive first wave height x and the negative first wave height y of the second derivative waveform of the pulse wave is used.
The blood pressure is calculated using x or the time difference Tb between the positive first peak and the positive second peak of the pulse wave. For example, when hypertension or arteriosclerosis occurs, the pulse wave shape changes. There is a problem in that Tb cannot be obtained accurately, and blood pressure cannot be calculated correctly, because only a portion may appear.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、脈波検出手段が人体の血液循環により生じる
脈波を検出し、検出した脈波信号に基づき特徴量演算手
段が血圧に関連した特徴量を演算し、演算した特徴量に
基づき血圧演算手段が血圧を演算するものである。
According to the present invention, in order to solve the above-mentioned problems, a pulse wave detecting means detects a pulse wave generated by blood circulation of a human body, and a characteristic value calculating means detects a blood pressure based on the detected pulse wave signal. The related feature value is calculated, and the blood pressure calculating means calculates the blood pressure based on the calculated feature value.

【0008】上記発明によれば、検出した脈波信号に基
づき血圧を演算するため、人体に装着するセンサは脈波
センサのみでよく、血圧測定の際の操作の煩雑さがなく
なり使い勝手が向上するとともに、血圧に関連した特徴
量を演算して血圧を測定するため脈波形状が変わっても
精度よく血圧を測定できる。
According to the above invention, since the blood pressure is calculated based on the detected pulse wave signal, only a pulse wave sensor needs to be worn on the human body, and the operation for measuring the blood pressure is not complicated, and the usability is improved. At the same time, since the blood pressure is measured by calculating a characteristic amount related to the blood pressure, the blood pressure can be accurately measured even if the pulse wave shape changes.

【0009】[0009]

【発明の実施の形態】本発明の請求項1にかかる血圧測
定装置は、人体の血液循環により生じる脈波を検出する
脈波検出手段と、前記脈波検出手段から出力される脈波
信号に基づき血圧に関連した特徴量を演算する特徴量演
算手段と、前記特徴量演算手段から出力される特徴量信
号に基づき血圧を演算する血圧演算手段とを有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A blood pressure measuring apparatus according to a first aspect of the present invention includes a pulse wave detecting means for detecting a pulse wave generated by blood circulation in a human body, and a pulse wave signal output from the pulse wave detecting means. And a blood pressure calculating means for calculating a blood pressure based on a characteristic amount signal output from the characteristic amount calculating means.

【0010】そして検出した脈波信号から血圧に関連し
た特徴量を演算し、演算した特徴量に基づき血圧を演算
するため、人体に装着するセンサは脈波センサのみでよ
く、血圧測定の際の操作の煩雑さがなくなり、長時間の
連測定も可能となり、使い勝手を向上することができる
とともに、血圧に関連した特徴量を演算して血圧を測定
するため脈波形状が変わっても精度よく血圧を測定でき
る本発明の請求項2にかかる血圧測定装置は、脈波検出
手段が脈波間隔を演算し、脈波信号を前記脈波間隔で補
正する脈波補正部を有する。
[0010] Then, since a characteristic amount related to blood pressure is calculated from the detected pulse wave signal and the blood pressure is calculated based on the calculated characteristic amount, only a pulse wave sensor needs to be worn on the human body. Operational complexity is eliminated, continuous measurement for a long time is possible, and usability can be improved.In addition, since the blood pressure is measured by calculating the characteristic amount related to the blood pressure, the blood pressure can be accurately measured even if the pulse wave shape changes. The blood pressure measurement device according to claim 2 of the present invention includes a pulse wave correction unit for calculating a pulse wave interval by the pulse wave detecting means and correcting a pulse wave signal at the pulse wave interval.

【0011】そして、脈波補正部が脈波信号を脈波間隔
で補正するため、脈拍の大小にかかわらず精度よく血圧
を測定できる。
Since the pulse wave correction unit corrects the pulse wave signal at pulse wave intervals, the blood pressure can be measured accurately regardless of the magnitude of the pulse.

【0012】本発明の請求項3にかかる血圧測定装置
は、特徴量演算手段が脈波検出手段から出力される脈波
信号の各波高、前記各波高の比、脈波立上り点から前記
各波までの時間、前記各波相互の時間間隔、脈波の積分
値、脈拍数の少なくとも一つを脈波特徴量として演算す
る脈波特徴量演算部を有する。
According to a third aspect of the present invention, in the blood pressure measurement device, the characteristic amount calculating means may calculate each of the pulse heights of the pulse wave signal output from the pulse wave detecting means, the ratio of each of the pulse heights, and the pulse wave onset point. A pulse wave feature value calculation unit that calculates at least one of the time up to, the time interval between the waves, the integrated value of the pulse wave, and the pulse rate as the pulse wave feature value.

【0013】そして脈波特徴量演算部が脈波信号の各波
高、前記各波高の比、脈波立上り点から前記各波までの
時間、前記各波相互の時間間隔、脈波の積分値、脈拍数
の少なくとも一つを脈波特徴量として演算し、血圧演算
手段が脈波特徴量に基づき血圧を演算するため、高血圧
や動脈硬化になって脈波形状が変わっても精度よく血圧
を測定できる。
The pulse wave feature quantity calculation unit calculates each pulse height of the pulse wave signal, a ratio of each pulse height, a time from a pulse wave rising point to each wave, a time interval between the respective waves, an integral value of the pulse wave, Since at least one of the pulse rates is calculated as a pulse wave feature, and the blood pressure calculation means calculates the blood pressure based on the pulse wave feature, the blood pressure can be accurately measured even if the blood pressure changes due to high blood pressure or arteriosclerosis. it can.

【0014】本発明の請求項4にかかる血圧測定装置
は、特徴量演算手段が脈波検出手段から出力される脈波
信号に基づき脈波の1次微分である速度脈波を演算する
速度脈波演算部と、前記速度脈波演算部から出力される
速度脈波信号の各波高、前記各波高の比、前記速度脈波
立上り点から前記各波までの時間、前記各波相互の時間
間隔、前記速度脈波のゼロクロス間隔、の少なくとも一
つを速度脈波特徴量として演算する速度脈波特徴量演算
部を有する。
According to a fourth aspect of the present invention, there is provided a blood pressure measuring apparatus, wherein the characteristic amount calculating means calculates a velocity pulse wave which is a first derivative of the pulse wave based on the pulse wave signal outputted from the pulse wave detecting means. Wave calculating unit, each wave height of the speed pulse wave signal output from the speed pulse wave calculating unit, the ratio of each wave height, the time from the rising point of the speed pulse wave to each wave, the time interval between each wave A speed pulse wave feature value calculation unit that calculates at least one of the zero pulse intervals of the speed pulse wave as a speed pulse wave feature value.

【0015】そして速度脈波演算部が脈波の1次微分で
ある速度脈波を演算し、速度脈波特徴量演算部が速度脈
波信号の各波高、前記各波高の比、前記速度脈波立上り
点から前記各波までの時間、前記各波相互の時間間隔、
前記速度脈波のゼロクロス間隔の少なくとも一つを速度
脈波特徴量として演算し、血圧演算手段が速度脈波特徴
量に基づき血圧を演算するため、高血圧や動脈硬化にな
って脈波形状が変わっても精度よく血圧を測定できる。
The speed pulse wave calculating section calculates a speed pulse wave, which is a first derivative of the pulse wave, and the speed pulse wave feature quantity calculating section calculates each of the wave heights of the speed pulse wave signal, the ratio of the wave heights, and the speed pulse wave. Time from the wave rising point to each wave, time interval between each wave,
At least one of the zero-cross intervals of the velocity pulse wave is calculated as a velocity pulse wave characteristic amount, and the blood pressure computation means computes the blood pressure based on the velocity pulse wave characteristic amount. Even with this, blood pressure can be accurately measured.

【0016】本発明の請求項5にかかる血圧測定装置
は、特徴量演算手段が脈波検出手段から出力される脈波
信号に基づき脈波の2次微分である加速度脈波を演算す
る加速度脈波演算部と、前記加速度脈波演算部から出力
される加速度脈波信号の各波高、前記各波高の比、前記
各波相互の時間間隔の少なくとも一つを加速度脈波特徴
量として演算する加速度脈波特徴量演算部を有する。
According to a fifth aspect of the present invention, there is provided a blood pressure measuring device, wherein the characteristic amount calculating means calculates an acceleration pulse wave which is a second derivative of the pulse wave based on the pulse wave signal output from the pulse wave detecting means. A wave calculating unit, and an acceleration for calculating at least one of each wave height of the acceleration pulse wave signal output from the acceleration pulse wave calculating unit, a ratio of the wave heights, and a time interval between the waves as an acceleration pulse wave feature amount. It has a pulse wave feature value calculation unit.

【0017】そして加速度脈波演算部が脈波検出手段か
ら出力される脈波信号に基づき脈波の2次微分である加
速度脈波を演算し、加速度脈波特徴量演算部が加速度脈
波信号の各波高、前記各波高の比、前記各波相互の時間
間隔の少なくとも一つを加速度脈波特徴量として演算
し、血圧演算手段が加速度脈波特徴量に基づき血圧を演
算するため、高血圧や動脈硬化になって脈波形状が変わ
っても精度よく血圧を測定できる。
An acceleration pulse wave calculating section calculates an acceleration pulse wave which is a second derivative of the pulse wave based on the pulse wave signal output from the pulse wave detecting means. Each of the wave heights, the ratio of the wave heights, and at least one of the time intervals between the waves are calculated as the acceleration pulse wave feature amount, and the blood pressure calculation means calculates the blood pressure based on the acceleration pulse wave feature amount. Blood pressure can be accurately measured even if the pulse wave shape changes due to arteriosclerosis.

【0018】本発明の請求項6にかかる血圧測定装置
は、脈波検出手段が人体の相異なる部位の脈波を検出す
る複数の脈波検出部を有し、特徴量演算手段が前記脈波
検出部からの脈波信号に基づき脈波伝播時間、脈波伝播
速度の少なくとも一つを脈波伝播特徴量として演算する
脈波伝播特徴量演算部を有する。
According to a sixth aspect of the present invention, in the blood pressure measuring device, the pulse wave detecting means has a plurality of pulse wave detecting sections for detecting pulse waves at different parts of the human body, and the characteristic value calculating means includes the pulse wave detecting means. A pulse wave feature calculating unit that calculates at least one of a pulse wave propagation time and a pulse wave propagation speed as a pulse wave feature based on the pulse wave signal from the detection unit.

【0019】そして脈波検出部が人体の相異なる部位の
脈波を検出し、脈波伝播特徴量演算部が脈波信号に基づ
き脈波伝播時間、脈波伝播速度の少なくとも一つを脈波
伝播特徴量として演算し、血圧演算手段が脈波伝播特徴
量に基づき血圧を演算するため、心電位電極のような装
着の煩雑さがなく脈波伝播特徴量を演算することができ
使い勝手が向上するとともに、高血圧や動脈硬化になっ
て脈波形状が変わっても精度よく血圧を測定できる。
A pulse wave detecting unit detects pulse waves at different parts of the human body, and a pulse wave characteristic calculating unit calculates at least one of the pulse wave propagation time and the pulse wave propagation speed based on the pulse wave signal. The calculation is performed as the propagation characteristic amount, and the blood pressure calculation means calculates the blood pressure based on the pulse wave propagation characteristic amount, so that the pulse wave propagation characteristic amount can be calculated without the complicated mounting like the cardiac potential electrode, and the usability is improved. In addition, the blood pressure can be accurately measured even if the pulse wave shape changes due to high blood pressure or arteriosclerosis.

【0020】本発明の請求項7にかかる血圧測定装置
は、特徴量演算手段が人体の身長、体重、性別、年齢の
少なくとも一つを身体特徴量として入力可能な身体特徴
量入力部を有する。
The blood pressure measuring device according to claim 7 of the present invention has a body characteristic amount input unit capable of inputting at least one of the height, weight, sex, and age of a human body as a body characteristic amount.

【0021】そして血圧演算手段が身体特徴量入力部に
入力された身体特徴量に基づき血圧を演算するため、実
用性を高めることができる上、精度よく血圧を測定でき
る。
Since the blood pressure calculating means calculates the blood pressure based on the body characteristic amount input to the body characteristic amount input section, the practicality can be improved and the blood pressure can be measured with high accuracy.

【0022】本発明の請求項8にかかる血圧測定装置
は、血圧演算手段が脈波特徴量、速度脈波特徴量、加速
度脈波特徴量、脈波伝播特徴量、身体特徴量の少なくと
も一つに基づき血圧を演算する。
In the blood pressure measuring device according to claim 8 of the present invention, the blood pressure calculating means includes at least one of a pulse wave feature, a velocity pulse wave feature, an acceleration pulse wave feature, a pulse wave propagation feature, and a body feature. Calculate the blood pressure based on

【0023】そして血圧演算手段が脈波特徴量、速度脈
波特徴量、加速度脈波特徴量、脈波伝播特徴量、身体特
徴量の少なくとも一つに基づき血圧を演算するため、高
血圧や動脈硬化になって脈波形状が変わっても精度よく
血圧を測定できる。
The blood pressure calculating means calculates the blood pressure based on at least one of the pulse wave characteristic amount, the velocity pulse wave characteristic amount, the acceleration pulse wave characteristic amount, the pulse wave propagation characteristic amount, and the body characteristic amount. , The blood pressure can be measured accurately even if the pulse wave shape changes.

【0024】本発明の請求項9にかかる血圧測定装置
は、血圧演算手段が血圧の基準値を入力することが可能
な基準値入力部を有し、脈波特徴量、速度脈波特徴量、
加速度脈波特徴量、脈波伝播特徴量、身体特徴量の少な
くとも一つと演算する血圧との関係を補正できる。
According to a ninth aspect of the present invention, there is provided a blood pressure measuring device, wherein the blood pressure calculating means has a reference value input unit capable of inputting a reference value of blood pressure.
The relationship between at least one of the acceleration pulse wave feature, the pulse wave propagation feature, and the body feature and the blood pressure to be calculated can be corrected.

【0025】そして入力された基準値により脈波特徴
量、速度脈波特徴量、加速度脈波特徴量、脈波伝播特徴
量、身体特徴量の少なくとも一つと演算する血圧との関
係を補正できるため、例えば加齢や体質変化、運動、体
位変化等により使用者の血液循環動態の変化があったり
使用者が変わったりしても対応可能で、実用性を高める
ことができる上、精度よく血圧を測定できる。
The relationship between at least one of the pulse wave characteristic amount, the velocity pulse wave characteristic amount, the acceleration pulse wave characteristic amount, the pulse wave propagation characteristic amount, and the body characteristic amount and the calculated blood pressure can be corrected by the input reference value. For example, it is possible to cope with a change in the user's blood circulation dynamics or a change in the user due to aging, change in constitution, exercise, change in body position, etc. Can be measured.

【0026】本発明の請求項10にかかる血圧測定装置
は、血圧値演算手段が血圧の基準値を教師信号とし、脈
波特徴量、速度脈波特徴量、加速度脈波特徴量、脈波伝
播特徴量、身体特徴量の少なくとも一つと演算する血圧
との関係を学習する。
According to a tenth aspect of the present invention, in the blood pressure measurement device, the blood pressure value calculating means uses the reference value of the blood pressure as a teacher signal, and calculates a pulse wave characteristic amount, a velocity pulse wave characteristic amount, an acceleration pulse wave characteristic amount, and a pulse wave propagation. The relationship between at least one of the feature amount and the body feature amount and the calculated blood pressure is learned.

【0027】そして特徴量演算手段からの特徴量信号か
ら得られる特徴量情報と基準値入力部からの血圧の基準
値信号との関係を現場で徐々に学習し、最終的には基準
値の入力による補正なしでも特徴量演算手段からの特徴
量情報に対応した血圧を出力するようになるので、血圧
測定の精度が向上する。
The relationship between the feature value information obtained from the feature value signal from the feature value calculating means and the blood pressure reference value signal from the reference value input unit is gradually learned on site, and finally the reference value is input. Since the blood pressure corresponding to the characteristic amount information from the characteristic amount calculating means is output without the correction by the above, the accuracy of the blood pressure measurement is improved.

【0028】本発明の請求項11にかかる血圧測定装置
は、脈波検出手段が手の指先、耳朶、足の指先、上腕、
手首、頚部、胸部の少なくとも一つの部位に装着可能で
あり、前記部位の脈波を検出する。
[0028] In the blood pressure measuring device according to claim 11 of the present invention, the pulse wave detecting means may include a fingertip of a hand, an earlobe, a fingertip of a foot, an upper arm,
It can be attached to at least one site of the wrist, neck, and chest, and detects a pulse wave at the site.

【0029】そしていずれの部位でも脈波検出手段によ
り脈波を容易に検出できるので、使い勝手を向上でき
る。
Since the pulse wave can be easily detected at any part by the pulse wave detecting means, the usability can be improved.

【0030】本発明の請求項12にかかる血圧測定装置
は、脈波検出手段が手の指先から脈波を検出する第1の
脈波検出部と、第1の脈波検出部と隣接して設置され前
記指先以外の部位から脈波を検出する第2の脈波検出部
とを有する。
[0030] In a blood pressure measuring apparatus according to a twelfth aspect of the present invention, the pulse wave detecting means detects a pulse wave from a fingertip of a hand, and is adjacent to the first pulse wave detecting unit. A second pulse wave detector that is installed and detects a pulse wave from a part other than the fingertip.

【0031】そして第1の脈波検出部と第2の脈波検出
部とが隣接しているため、小型化が図れ携帯に便利であ
る。
Since the first pulse wave detecting section and the second pulse wave detecting section are adjacent to each other, the size can be reduced and the apparatus is portable.

【0032】本発明の請求項13にかかる血圧測定装置
は、第1の脈波検出部と第2の脈波検出部がそれぞれ光
電脈波方式で脈波を検出するための発光部と受光部とを
有し、双方の発光部は共有されたものである。
According to a thirteenth aspect of the present invention, there is provided a blood pressure measuring device, wherein the first pulse wave detecting section and the second pulse wave detecting section each detect a pulse wave by a photoelectric pulse wave method and a light receiving section. And both light emitting units are shared.

【0033】そして双方の発光部は共有されているた
め、部品の削減ができ実用性が高い。本発明の請求項1
4にかかる血圧測定装置は、第2の脈波検出部が脈圧を
検出する圧力センサからなる。
Since both light-emitting portions are shared, the number of components can be reduced and the practicability is high. Claim 1 of the present invention
The blood pressure measurement device according to 4 includes a pressure sensor in which the second pulse wave detector detects a pulse pressure.

【0034】そして頚部や胸部から圧脈波を検出し心臓
に近い位置で脈波を検出できるので脈波伝播時間及び脈
波伝播速度の演算精度を向上することができる。
Since the pressure pulse wave is detected from the neck and chest and the pulse wave can be detected at a position close to the heart, the calculation accuracy of the pulse wave propagation time and the pulse wave propagation speed can be improved.

【0035】本発明の請求項15にかかる血圧測定装置
は、第2の脈波検出部が心音を検出するマイクからな
る。
In a blood pressure measuring device according to a fifteenth aspect of the present invention, the second pulse wave detector comprises a microphone for detecting a heart sound.

【0036】そして心臓の鼓動による振動や心音を検出
するので脈波伝播時間及び脈波伝播速度の演算精度を向
上することができる。
Since the vibration and heart sound due to the heartbeat are detected, the calculation accuracy of the pulse wave propagation time and pulse wave propagation speed can be improved.

【0037】本発明の請求項16にかかる血圧測定装置
は、血圧値演算手段が演算された血圧を記憶する記憶部
を有する。
The blood pressure measurement device according to claim 16 of the present invention has a storage unit for storing the blood pressure calculated by the blood pressure value calculation means.

【0038】そして記憶された値は血圧演算手段により
いつでも再生できるので、過去からの判定値のトレンド
等が判り使い勝手がよい。
Since the stored value can be reproduced at any time by the blood pressure calculating means, the trend of the judgment value from the past and the like can be understood and the usability is good.

【0039】本発明の請求項17にかかる血圧測定装置
は、血圧値演算手段が演算された血圧を表示する表示部
を有する。
A blood pressure measuring device according to a seventeenth aspect of the present invention has a display unit for displaying the blood pressure calculated by the blood pressure value calculating means.

【0040】そしてリアルタイムの表示や記憶された過
去のデータをいつでも表示することができ使い勝手がよ
い。
In addition, real-time display and stored past data can be displayed at any time, so that it is convenient.

【0041】本発明の請求項18にかかる血圧測定装置
は、血圧値演算手段が演算された血圧が予め設定された
正常範囲を逸脱した場合に警報を発生する警報発生部を
有する。
The blood pressure measurement device according to the eighteenth aspect of the present invention has an alarm generation unit that generates an alarm when the blood pressure calculated by the blood pressure value calculation means deviates from a preset normal range.

【0042】そして演算された血圧が正常範囲を逸脱し
た場合に警報発生部が警報を発生するため、例えば就寝
中や作業中の身体の異常をチェックでき健康管理に役立
つ。
When the calculated blood pressure deviates from the normal range, the alarm generation unit generates an alarm, so that it is possible to check, for example, abnormalities in the body while sleeping or working, which is useful for health management.

【0043】本発明の請求項19にかかる血圧測定装置
は、血圧値演算手段が外部媒体との通信を行うための通
信用端子部を有する。
The blood pressure measuring device according to the nineteenth aspect of the present invention has a communication terminal for the blood pressure value calculating means to communicate with an external medium.

【0044】そして通信用端子部を介して外部媒体との
通信を行うため、外部媒体での集中健康管理や必要情報
の更新ができ使い勝手を向上することができる。
Since communication with an external medium is performed through the communication terminal unit, intensive health management and necessary information can be updated on the external medium, and usability can be improved.

【0045】以下、本発明の実施例について図面を用い
て説明する。 (実施例1)図1は本発明の実施例1の血圧測定装置の
ブロック図、図2は同装置の外観図である。本実施例は
指尖部で血圧を測定する場合のものである。図1におい
て、8は人体の血液循環により生じる指尖部の脈波を検
出する脈波検出手段で、光電型の脈波検出部9と脈波検
出部9から出力される脈波信号から脈波間隔を演算する
とともに脈波信号を脈波間隔で補正する脈波補正部10
を有している。11は脈波検出手段8から出力される脈
波信号に基づき血圧に関連した特徴量を演算する特徴量
演算手段で、脈波信号そのものから脈波特徴量を演算す
る脈波特徴量演算部12、脈波信号の1次微分である速
度脈波を演算する速度脈波演算部13、速度脈波から速
度脈波特徴量を演算する速度脈波特徴量演算部14、脈
波信号の2次微分である加速度脈波を演算する加速度脈
波演算部15、加速度脈波から加速度脈波特徴量を演算
する加速度脈波特徴量演算部16、身体特徴量を入力可
能な身体特徴量入力部17を有している。18は特徴量
演算手段11から出力される特徴量信号に基づき血圧を
演算する血圧演算手段で、脈波特徴量、速度脈波特徴
量、加速度脈波特徴量、脈波伝播特徴量、身体特徴量の
少なくとも一つに基づき血圧を演算する血圧演算部1
9、血圧の基準値を入力することが可能な基準値入力部
20、演算された血圧を記憶する記憶部21、演算され
た血圧を表示する表示部22、演算された血圧が予め設
定された正常範囲を逸脱した場合に警報を発生する警報
発生部23を有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a block diagram of a blood pressure measuring apparatus according to Embodiment 1 of the present invention, and FIG. 2 is an external view of the apparatus. In this embodiment, the blood pressure is measured at the fingertip. In FIG. 1, reference numeral 8 denotes pulse wave detecting means for detecting a pulse wave at a fingertip generated by blood circulation of a human body. The pulse wave detecting unit 9 is of a photoelectric type and a pulse wave signal is output from a pulse wave signal output from the pulse wave detecting unit 9. A pulse wave correction unit 10 that calculates a wave interval and corrects a pulse wave signal at a pulse wave interval.
have. Reference numeral 11 denotes a feature value calculating unit that calculates a feature value related to blood pressure based on the pulse wave signal output from the pulse wave detecting unit 8, and a pulse wave feature value calculating unit 12 that calculates a pulse wave feature value from the pulse wave signal itself. A speed pulse wave calculating unit 13 for calculating a speed pulse wave which is a first derivative of the pulse wave signal; a speed pulse wave feature amount calculating unit 14 for calculating a speed pulse wave feature amount from the speed pulse wave; An acceleration pulse wave calculator 15 for calculating an acceleration pulse wave as a derivative, an acceleration pulse wave feature calculator 16 for calculating an acceleration pulse wave feature from an acceleration pulse wave, and a body feature input unit 17 capable of inputting a body feature. have. Reference numeral 18 denotes a blood pressure calculation unit that calculates a blood pressure based on the characteristic amount signal output from the characteristic amount calculation unit 11, and includes a pulse wave characteristic amount, a velocity pulse wave characteristic amount, an acceleration pulse wave characteristic amount, a pulse wave propagation characteristic amount, and a body characteristic. Blood pressure calculation unit 1 that calculates blood pressure based on at least one of the amounts
9, a reference value input unit 20 capable of inputting a reference value of blood pressure, a storage unit 21 for storing the calculated blood pressure, a display unit 22 for displaying the calculated blood pressure, and the calculated blood pressure is preset. It has an alarm generation unit 23 that generates an alarm when it deviates from the normal range.

【0046】図2において、24は本実施例の血圧測定
装置の本体で、本体24は脈波検出手段8と信号処理ユ
ニット25とから構成されている。脈波検出手段8と信
号処理ユニット25とは本体を指に装着した時の指の寸
法や指関節の屈曲等に対応できるように屈曲および伸縮
自在な接続部26により接続されている。27は指尖脈
波を測定する際に指先を挿入するための挿入部で、指の
太さに応じて伸縮可能な伸縮部28を有し、指の第1関
節までが十分挿入できるよう設計されている。挿入部2
7には脈波検出部9としての第1の発光部29と第1の
受光部30が装着されている。第1の発光部29と第1
の受光部30は光電容積脈波を測定する際に一般的に用
いられるものを使用しているが、発光ダイオードとフォ
トトランジスタを用いたり、好ましくは第1の発光部2
9にはヘモグロビンの吸光帯である5000〜8000
オングストロームの波長をもつランプを使用し、第1の
受光部30にはセレン加硫化カドミウムの光電管素子を
使用する。挿入部27は例えば伸縮部28を使って折り
たたみ可能な構成としてもよい。尚、上記では第1の発
光部29と第1の受光部30とを正対させて、挿入した
指先を透過する光の量により脈波を検出する構成である
が、第1の発光部29と第1の受光部30とを隣接させ
て挿入された指先からの反射光を検出して脈波を検出す
る構成としてもよい。信号処理ユニット25は特徴量演
算手段11と血圧演算手段18を有しており、身体特徴
量入力部17、基準値入力部20、表示部22、警報発
生部23が表面に設置されている。31は本体24と外
部媒体との通信を行うための通信用端子部である。本体
24の駆動は本体内部に内蔵してある電池を電源として
行うが、通信用端子部31の端子を介して外部から電源
を供給してもよい。
In FIG. 2, reference numeral 24 denotes a main body of the blood pressure measuring apparatus according to the present embodiment, and the main body 24 comprises the pulse wave detecting means 8 and the signal processing unit 25. The pulse wave detecting means 8 and the signal processing unit 25 are connected by a connecting portion 26 which can be flexibly extended and contracted so as to correspond to the dimensions of the finger when the main body is attached to the finger and the flexion of the finger joint. Reference numeral 27 denotes an insertion portion for inserting a fingertip when measuring a finger pulse wave, which has an expansion and contraction portion 28 which can expand and contract according to the thickness of the finger, and is designed so that the first joint of the finger can be sufficiently inserted. Have been. Insertion part 2
A first light emitting unit 29 and a first light receiving unit 30 as the pulse wave detecting unit 9 are mounted on 7. The first light emitting section 29 and the first
Although the light receiving section 30 of the type generally used when measuring a photoelectric volume pulse wave is used, a light emitting diode and a phototransistor may be used, or the first light emitting section 2 may be preferably used.
Reference numeral 9 denotes 5000 to 8000, which is the absorption band of hemoglobin.
A lamp having a wavelength of Angstroms is used, and a selenium sulfide cadmium photoelectric tube element is used for the first light receiving section 30. The insertion portion 27 may be configured to be foldable by using, for example, the expansion and contraction portion 28. In the above description, the first light emitting unit 29 and the first light receiving unit 30 face each other, and the pulse wave is detected based on the amount of light transmitted through the inserted fingertip. A configuration may also be adopted in which a pulse wave is detected by detecting reflected light from a fingertip inserted with the fingertip and the first light receiving unit 30 adjacent to each other. The signal processing unit 25 has the feature value calculation means 11 and the blood pressure calculation means 18, and the body feature value input unit 17, the reference value input unit 20, the display unit 22, and the alarm generation unit 23 are installed on the surface. Reference numeral 31 denotes a communication terminal unit for performing communication between the main body 24 and an external medium. The main body 24 is driven using a battery built in the main body as a power source, but power may be supplied from the outside via a terminal of the communication terminal portion 31.

【0047】次に動作、作用について説明する。指先を
挿入部27に挿入し、図3のように本体24を手の指先
に装着して血圧の測定を開始する。図4は血圧測定の際
のフローチャートである。まずST1で脈波を検出す
る。ここでは脈波検出部9(第1の発光部29、第1の
受光部30)が指尖脈波を検出する。検出された脈波の
一般的な形状を図5(a)および図6(b)に示す。図
5(a)は主に血圧の正常な若年者に見られ正常後隆波
と呼ばれる脈波波形である。図6(a)は高血圧者や高
齢者に見られ前隆波と呼ばれる脈波波形である。脈波検
出部9が検出した脈波信号は身体の動き等により基線の
動揺が生じる場合があるため、脈波補正部10が脈波信
号から一拍毎の脈波波形を複数個抽出して基線を合わせ
て平均し、平均的な脈波波形を求める。そしてこの波形
を基に必要に応じて脈波補正部10が脈波間隔Piを求
め(ST2)、元の脈波波形の時間軸を補正する。(S
T3)これは脈拍数には個人差があり後述する脈波波形
の特徴量のうち時間的要素については個人差を補正する
必要があるためである。補正式については例えば(数
1)で示されるBazzet(Bazzet,H,C.,1920年)の式
を用いる。
Next, the operation and operation will be described. The fingertip is inserted into the insertion section 27, and the main body 24 is attached to the fingertip of the hand as shown in FIG. FIG. 4 is a flowchart at the time of blood pressure measurement. First, a pulse wave is detected in ST1. Here, the pulse wave detector 9 (the first light emitting unit 29 and the first light receiving unit 30) detects a fingertip pulse wave. The general shape of the detected pulse wave is shown in FIGS. 5 (a) and 6 (b). FIG. 5A shows a pulse waveform called a post-normal ridge which is mainly observed in a young person with normal blood pressure. FIG. 6A shows a pulse wave waveform called a prominent ridge which is seen in hypertensive and elderly people. The pulse wave signal detected by the pulse wave detection unit 9 may cause the base line to sway due to movement of the body or the like. Therefore, the pulse wave correction unit 10 extracts a plurality of pulse wave waveforms for each beat from the pulse wave signal. The baseline is adjusted and averaged to obtain an average pulse waveform. Then, based on this waveform, the pulse wave correction unit 10 determines the pulse wave interval Pi as needed (ST2), and corrects the time axis of the original pulse wave waveform. (S
T3) This is because there is an individual difference in the pulse rate, and it is necessary to correct the individual difference in the temporal element of the characteristic amount of the pulse waveform described later. As the correction equation, for example, the equation of Bazzet (Bazzet, H, C., 1920) shown in (Equation 1) is used.

【0048】[0048]

【数1】 (Equation 1)

【0049】次にST4で特徴量演算手段11が脈波補
正部10からの脈波信号に基づき特徴量を演算する。図
5〜図7を用いて特徴量の求め方を説明する。図5、図
6において(b)は脈波を1次微分した速度脈波の波形
で速度脈波演算部13で演算される。また(c)は脈波
を2次微分した加速度脈波の波形で加速度脈波演算部1
5で演算される。図5(a)、図6(a)において、S
は脈波の立ち上り点、Pは縮期王峰、Tは潮浪波、Cは
切痕、Dは弛緩峰、Aは前隆点と呼ばれる。
Next, in ST4, the characteristic amount calculating means 11 calculates the characteristic amount based on the pulse wave signal from the pulse wave correcting section 10. A method for obtaining the feature amount will be described with reference to FIGS. 5 and 6, (b) shows a waveform of a velocity pulse wave obtained by first-order differentiation of the pulse wave, which is computed by the velocity pulse wave computing unit 13. (C) is a waveform of the acceleration pulse wave obtained by secondarily differentiating the pulse wave, and is an acceleration pulse wave calculating unit 1.
5 is calculated. In FIGS. 5A and 6A, S
Is the rising point of the pulse wave, P is the peak of systole, T is the tidal wave, C is the notch, D is the relaxation peak, and A is the anterior ridge.

【0050】脈波特徴量演算部12において、Pは波形
の最大点として求められる。T、C、Dについては図5
(a)では明確なピークとして現れているため、速度脈
波のゼロクロス点として求めることができる。図6
(a)のようにA、C、Dが明確なピークとして現れな
い場合は、図7のようにしてA、C、Dを求める。まず
Aについては加速度脈波のゼロクロス点から垂線l1、
l2を引き、l1、l2と脈波曲線との交点p1、p2
において接線l3、l4を引く。ここでl2を引く際、
図7(c)のように加速度脈波の点pc近傍でゼロクロ
ス点がない場合は極大点pγからl2を引いている。そ
してl3、l4の交点p3から基線に垂線l5を引き、
l5と脈波曲線との交点をAとする。Cについては加速
度脈波のゼロクロス点から垂線l6、l7を引き、l
6、l7と脈波曲線との交点p4、p5において接線l
8、l9を引く。そしてl8、l9の交点p6から基線
に垂線l10を引き、l10と脈波曲線との交点をCと
する。Dについては加速度脈波のゼロクロス点から垂線
l11を引き、l11と脈波曲線との交点p7において
接線l12を引く。そしてl9、l12の交点p8から
基線に垂線l13を引き、l13と脈波曲線との交点を
Dとする。このようにしてP、T、C、D、Aを求める
が、波形のパターン認識等の手法を用いて求めても良
い。脈波特徴量演算部12では上記のようにしてP、
T、C、D、Aを求めた後、P、T、C、D、Aの各波
高、前記各波高の比、脈波立上り点から前記各波までの
時間、前記各波相互の時間間隔、脈波の積分値、脈拍数
の少なくとも一つを演算する。このうち例えば図5
(a)、図6(a)に示すように波高として正常後隆波
の場合はP、T、C、Dの振幅をそれぞれα、β、γ、
δ、前隆波の場合はA、P、C、Dの振幅をそれぞれ
α、β、γ、δ、最大波高をH(正常後隆波の場合は
α、前隆波の場合はβ)として求める。波高の比として
α/βをEI、γ/HをDIとして求める。脈波立上り
点から各波までの時間としてS〜P、S〜Cをそれぞれ
Tu、Teとして求める。各波相互の時間間隔としてP
〜CをTr、脈波の積分値としてS〜Pまでの積分値を
Isp、脈拍数60/PiをHRとして求める。尚、脈
波の立ち上り点Sは図7(a)に示すように接線l3と
基線との交点S′として求めたり、脈波曲線と接線l3
との分岐点(基線側)S″としても良い。またA、Cに
ついてもそれぞれ脈波曲線と接線l3との分岐点(縮期
王峰P側)、接線l8との分岐点(基線側)として求め
てもよい。
In the pulse wave feature quantity calculating section 12, P is obtained as the maximum point of the waveform. Fig. 5 for T, C and D
In (a), since it appears as a clear peak, it can be obtained as the zero cross point of the velocity pulse wave. FIG.
When A, C, and D do not appear as clear peaks as in (a), A, C, and D are obtained as shown in FIG. First, for A, a perpendicular l1 from the zero cross point of the acceleration pulse wave,
l2 is subtracted, and intersection points p1 and p2 between l1 and l2 and the pulse wave curve are obtained.
At, tangent lines l3 and l4 are drawn. When subtracting l2 here,
As shown in FIG. 7C, when there is no zero cross point near the point pc of the acceleration pulse wave, l2 is subtracted from the maximum point pγ. Then, a perpendicular 15 is drawn from the intersection p3 of l3 and l4 to the base line,
Let A be the intersection of 15 with the pulse wave curve. For C, perpendicular lines 16 and 17 are drawn from the zero cross point of the acceleration pulse wave, and l
At the intersections p4 and p5 of the pulse wave curve with the ligature l
Subtract 8,19. Then, a perpendicular 110 is drawn from the intersection p6 of l8 and l9 to the base line, and the intersection of l10 and the pulse wave curve is defined as C. For D, a perpendicular line l11 is drawn from the zero cross point of the acceleration pulse wave, and a tangent line l12 is drawn at the intersection p7 of the pulse wave curve with l11. Then, a perpendicular line l13 is drawn from the intersection p8 of l9 and l12 to the base line, and the intersection of l13 and the pulse wave curve is set to D. Although P, T, C, D, and A are obtained in this manner, they may be obtained using a technique such as waveform pattern recognition. In the pulse wave feature value calculation unit 12, P,
After obtaining T, C, D, and A, the wave heights of P, T, C, D, and A, the ratio of the wave heights, the time from the rising edge of the pulse wave to the waves, and the time interval between the waves , And at least one of an integrated value of a pulse wave and a pulse rate. For example, FIG.
(A), as shown in FIG. 6 (a), the amplitude of P, T, C, and D is α, β, γ,
δ, the amplitudes of A, P, C, and D are α, β, γ, and δ, respectively, and the maximum wave height is H (α for a normal rear ridge, β for a front ridge). Ask. Α / β is determined as EI and γ / H is determined as DI as the wave height ratio. S to P and S to C are obtained as Tu and Te, respectively, as the time from the pulse wave rising point to each wave. The time interval between each wave is P
To C are Tr, the integrated value of the pulse wave is Isp, and the pulse rate 60 / Pi is HR. The rising point S of the pulse wave is obtained as an intersection S 'between the tangent line 13 and the base line as shown in FIG.
("Base point side"), and A and C may be defined as a branch point between the pulse wave curve and the tangent line 13 (systole king P side) and a branch point with the tangent line 18 (base line side), respectively. You may ask.

【0051】速度脈波特徴量演算部12では速度脈波演
算部13から出力される速度脈波信号の各波高、前記各
波高の比、前記速度脈波立上り点から前記各波までの時
間、前記各波相互の時間間隔、前記速度脈波のゼロクロ
ス間隔の少なくとも一つを速度脈波特徴量として演算す
る。このうち例えば図5(b)、図6(b)に示すよう
に波高としては速度脈波の最大波高vを求め、各波相互
の時間間隔としては速度脈波が正である期間Tuを求め
る。
The velocity pulse wave feature quantity calculating section 12 calculates each pulse height of the velocity pulse wave signal output from the velocity pulse wave computing section 13, the ratio of each pulse height, the time from the rising point of the velocity pulse wave to each wave, At least one of a time interval between the waves and a zero-cross interval of the velocity pulse wave is calculated as a velocity pulse wave feature value. Among them, for example, as shown in FIGS. 5 (b) and 6 (b), the maximum wave height v of the velocity pulse wave is obtained as the wave height, and the period Tu in which the velocity pulse wave is positive is obtained as the time interval between the waves. .

【0052】加速度脈波特徴量演算部16では加速度脈
波演算部15から出力される加速度脈波信号の各波高、
前記各波高の比、前記各波相互の時間間隔の少なくとも
一つを加速度脈波特徴量として演算する。このうち例え
ば図5(c)、図6(c)に示すように波高としては波
形の極大点及び極小点の振幅a、b、c、d、eを求め
る。ここで、a、b、c、d、eは各極大点、極小点が
基線より上であれば正の値を、基線より下であれば負の
値とする。各波高の比としてはb/a、c/a、d/
a、e/aを演算し、それぞれRb、Rc、Rd、Re
とする。
The acceleration pulse wave feature quantity calculation unit 16 calculates the pulse height of the acceleration pulse wave signal output from the acceleration pulse wave calculation unit 15,
At least one of the ratio of the wave heights and the time interval between the waves is calculated as an acceleration pulse wave feature value. Among them, for example, as shown in FIGS. 5C and 6C, the amplitudes a, b, c, d, and e of the maximum point and the minimum point of the waveform are obtained. Here, a, b, c, d, and e are positive values when the local maximum points and local minimum points are above the base line, and negative values when the local points are below the base line. The ratio of each wave height is b / a, c / a, d /
a, e / a are calculated, and Rb, Rc, Rd, Re
And

【0053】身体特徴量入力部17からは必要に応じて
使用者の身長、体重、性別、年齢の少なくとも一つを身
体特徴量として入力することが可能である。
It is possible to input at least one of the user's height, weight, sex, and age from the body characteristic amount input section 17 as necessary.

【0054】上記のようにして特徴量演算手段11は血
圧に関連した特徴量を演算するが、例えば脈波でδ/γ
を求めたり、加速度脈波で波形の立ち上りから振幅cま
での時間を求める等、上記で示さなかった他の指標を演
算したり、さらに高次微分波形を演算して各波高、前記
各波高の比、前記各波間隔の少なくとも一つを特徴量と
して演算したりしてもよい。
The feature value calculating means 11 calculates the feature value related to the blood pressure as described above.
Or calculate the other index not shown above, such as obtaining the time from the rise of the waveform to the amplitude c in the acceleration pulse wave, or further calculate the higher-order differential waveform, each wave height, of each of the wave height At least one of the ratio and each of the wave intervals may be calculated as a feature amount.

【0055】ST5では予め設定した判定ラインから血
圧演算手段18が血圧を演算する。図8〜図13を用い
てこの判定ラインと演算手順を説明する。図8は特徴量
としてEIとDIを用いて血圧BPを演算する場合の判
定ラインL1、L2を示したものである。ここでL1は
最大血圧用、L2は最低血圧用である。EIは動脈管壁
の弾性と関連し、EIが小さいと血圧は高くなる傾向に
ある。DIは動脈管の口径すなわち動脈管の緊張度合い
と関連し、DIが大きいと血圧は高くなる傾向にある。
血圧演算部19では図8に基づきEI0とDIから最高
血圧BP1、最低血圧BP2が演算される。図9は特徴
量としてTuとTeを用いて血圧BPを演算する場合の
判定ラインL3、L4を示したものである。ここでL3
は最大血圧用、L4は最低血圧用である。Tuは大動脈
弁が開放後心収縮力が最大値に達するまでの時間に関連
し、Tuが大きいと血圧は高くなる傾向にある。またT
eは大動脈弁が開放している時間に関連し、Teが大き
いと血圧は高くなる傾向にある。血圧演算部19では図
9に基づきTu0とTeから最高血圧BP3、最低血圧
BP4が演算される。図10は特徴量としてTu0とv
を用いて血圧BPを演算する場合の判定ラインL5、L
6を示したものである。ここでL5は最大血圧用、L6
は最低血圧用である。Tuは前述に加え、末梢に血液が
スムーズに送り込まれていると脈波速度は正でその時間
も短いため、血管抵抗の大きさに関連し、前述のように
Tuが大きいと血圧は高くなる傾向にある。vは脈波の
立ち上りの速さに関連し、vが小さいと血圧は高くなる
傾向にある。血圧演算部19では図10に基づきTu0
とvから最高血圧BP5、最低血圧BP6が演算され
る。図11は特徴量としてRbとRdを用いて血圧BP
を演算する場合の判定ラインL7、L8を示したもので
ある。ここでL7は最大血圧用、L8は最低血圧用であ
る。Rbは心臓の拍出量に関連し、Rbの負の値が小さ
いと血圧は高くなる傾向にある。Rdは心臓の負担の大
きさに関連し、Rdの負の値が大きいと血圧は高くなる
傾向にある。血圧演算部19では図11に基づきRbと
Rdから最高血圧BP7、最低血圧BP8が演算され
る。図12は特徴量としてEI0と年齢を用いて血圧B
Pを演算する場合の判定ラインL9、L10を示したも
のである。ここでL9は最大血圧用、L10は最低血圧
用である。EIは前述の通りで、年齢が高くなるにつれ
血圧は高くなる傾向にある。血圧演算部19では図12
に基づきEI0と年齢から最高血圧BP9、最低血圧B
P10が演算される。図13は特徴量としてTu0とR
dを用いて血圧BPを演算する場合の判定ラインL1
1、L12を示したものである。ここでL11は最大血
圧用、L12は最低血圧用である。Tu0とRdについ
ては前述の通りである。血圧演算部19では図13に基
づきTu0とRdから最高血圧BP11、最低血圧BP
12が演算される。
In ST5, the blood pressure calculating means 18 calculates the blood pressure from the preset judgment line. The determination line and the calculation procedure will be described with reference to FIGS. FIG. 8 shows the determination lines L1 and L2 when the blood pressure BP is calculated using EI and DI as the feature amounts. Here, L1 is for maximal blood pressure, and L2 is for diastolic blood pressure. The EI is related to the elasticity of the arterial vascular wall, and the smaller the EI, the higher the blood pressure tends to be. DI is related to the caliber of the arterial tract, that is, the degree of arterial tract tension, and the larger the DI, the higher the blood pressure tends to be.
The blood pressure calculation unit 19 calculates the systolic blood pressure BP1 and the diastolic blood pressure BP2 from EI0 and DI based on FIG. FIG. 9 shows the determination lines L3 and L4 when the blood pressure BP is calculated using Tu and Te as the feature amounts. Where L3
Is for maximal blood pressure and L4 is for diastolic blood pressure. Tu is related to the time required for the systolic force to reach the maximum value after the aortic valve is opened, and when Tu is large, the blood pressure tends to increase. Also T
e is related to the time during which the aortic valve is open, and when Te is large, the blood pressure tends to increase. The blood pressure calculation unit 19 calculates the systolic blood pressure BP3 and the diastolic blood pressure BP4 from Tu0 and Te based on FIG. FIG. 10 shows Tu0 and v
Determination lines L5, L5 when calculating blood pressure BP using
6 is shown. Where L5 is for maximal blood pressure, L6
Is for diastolic blood pressure. In addition to the above, Tu is related to the magnitude of vascular resistance because the pulse wave velocity is positive and the time is short when blood is smoothly pumped to the periphery. As described above, blood pressure increases when Tu is large as described above. There is a tendency. v is related to the rising speed of the pulse wave, and when v is small, the blood pressure tends to increase. The blood pressure calculator 19 calculates Tu0 based on FIG.
And v, a systolic blood pressure BP5 and a diastolic blood pressure BP6 are calculated. FIG. 11 shows a blood pressure BP using Rb and Rd as feature amounts.
Are judgment lines L7 and L8 in the case of calculating. Here, L7 is for maximum blood pressure and L8 is for minimum blood pressure. Rb is related to the cardiac output, and the smaller the negative value of Rb, the higher the blood pressure tends to be. Rd is related to the magnitude of the burden on the heart, and a large negative value of Rd tends to increase blood pressure. The blood pressure calculation unit 19 calculates a systolic blood pressure BP7 and a diastolic blood pressure BP8 from Rb and Rd based on FIG. FIG. 12 shows the blood pressure B using EI0 and age as the feature amounts.
FIG. 9 shows determination lines L9 and L10 when P is calculated. Here, L9 is for maximum blood pressure, and L10 is for minimum blood pressure. The EI is as described above, and the blood pressure tends to increase as the age increases. FIG.
Based on EI0 and age, systolic blood pressure BP9, diastolic blood pressure B
P10 is calculated. FIG. 13 shows Tu0 and R as features.
Determination line L1 when calculating blood pressure BP using d
1, L12. Here, L11 is for maximum blood pressure, and L12 is for minimum blood pressure. Tu0 and Rd are as described above. The blood pressure calculation unit 19 calculates the systolic blood pressure BP11 and the diastolic blood pressure BP from Tu0 and Rd based on FIG.
12 is calculated.

【0056】ST6では基準値入力部20に血圧の基準
値が入力されるとST7で判定ラインの補正が行われ
る。補正の具体的手順を図14を例に説明する。図14
は図8に示したEIとDIに基づき血圧BPを演算する
判定ラインL1、L2を補正するためのものである。
尚、説明を簡単にするためにDIは固定しているものと
する。EI0′測定中に同時にカフ式の血圧計により血
圧BP1′、BP2′を測定してこれらの値を基準値と
して基準値入力部20から入力する。ST7では入力さ
れた基準値に基づき血圧演算部19が判定ラインL1、
L2の補正を行う。すなわち図14より基準値EI
0′、BP1′、BP2′により点p8、p9が求まる
とp8、p9を通るよう判定ラインL1、L2を平行移
動させ、新たにできた判定ラインをL1′、L2′とす
る。以降、血圧演算部20は判定ラインL1′、L2′
を用いてEI0からBP1、BP2を求める。尚、ST
6で基準値の入力がない場合、血圧演算部20は判定ラ
インの補正を行わない。
In ST6, when the reference value of the blood pressure is inputted to the reference value input section 20, the judgment line is corrected in ST7. The specific procedure of the correction will be described with reference to FIG. FIG.
Is for correcting the determination lines L1 and L2 for calculating the blood pressure BP based on EI and DI shown in FIG.
It is assumed that DI is fixed for the sake of simplicity. During the measurement of EI0 ', blood pressures BP1' and BP2 'are simultaneously measured by a cuff-type sphygmomanometer, and these values are input from reference value input unit 20 as reference values. In ST7, based on the input reference value, the blood pressure calculation unit 19 determines the determination line L1,
L2 is corrected. That is, the reference value EI is obtained from FIG.
When the points p8 and p9 are obtained from 0 ', BP1' and BP2 ', the judgment lines L1 and L2 are translated so as to pass through p8 and p9, and the newly formed judgment lines are defined as L1' and L2 '. Thereafter, the blood pressure calculation unit 20 determines the determination lines L1 ', L2'
Are used to determine BP1 and BP2 from EI0. Note that ST
When there is no input of the reference value in Step 6, the blood pressure calculation unit 20 does not correct the determination line.

【0057】ST8ではこのようにして求められた血圧
を記憶部21に記憶し、ST9では血圧を表示部22に
表示する。記憶部21に記憶された値はいつでも再生で
き、表示部22に表示可能である。演算された血圧が予
め設定した正常範囲を逸脱した場合にはST10および
ST11で警報発生部23が警報を発生する。警報の発
生は有線または無線で使用者から離れたところに居る第
3者に報知するようにしてもよい。演算され記憶された
血圧値は通信用端子部31を介して外部モニタや集中管
理装置、パソコン、携帯電話等の外部媒体へ通信するこ
とができる。また、外部媒体から通信用端子部31を介
して特徴量や基準値の入力、判定ラインや警報発生のた
めの正常範囲の更新等を行うことも可能である。
In ST8, the blood pressure thus obtained is stored in the storage unit 21, and in ST9, the blood pressure is displayed on the display unit 22. The value stored in the storage unit 21 can be reproduced at any time and can be displayed on the display unit 22. When the calculated blood pressure deviates from the preset normal range, the alarm generation unit 23 generates an alarm in ST10 and ST11. The generation of the alarm may be notified to a third person located away from the user by wire or wirelessly. The calculated and stored blood pressure value can be communicated to an external medium such as an external monitor, a centralized management device, a personal computer, a mobile phone, or the like via the communication terminal unit 31. It is also possible to input a feature value and a reference value from an external medium via the communication terminal unit 31, update a determination line and a normal range for generating an alarm, and the like.

【0058】上記の判定ラインは例えば被験者実験等に
より選られた結果を統計的な手法により処理して求める
ことが出来る。また、判定ラインを求める際の特徴量は
上記実施例の範囲に限定されるものではなく、特徴量演
算手段11で演算される他の特徴量、例えばα〜δ、H
R、Pi、δ/γ、Isp、a〜e、Rc、Re、加速
度脈波各波間隔、脈波の4次以上の微分波形から選られ
る特徴量、身長、体重、性別等の少なくとも一つから判
定ラインを求めても良い。また、上記実施例では少なく
とも2つの特徴量から血圧を演算したが、3つ以上の特
徴量から血圧を演算しても良い。
The above-mentioned judgment line can be obtained by, for example, processing a result selected by a subject experiment or the like by a statistical method. In addition, the feature amount when obtaining the determination line is not limited to the range of the above embodiment, and other feature amounts calculated by the feature amount calculating unit 11, for example, α to δ, H
R, Pi, δ / γ, Isp, a to e, Rc, Re, acceleration pulse wave interval, at least one of feature quantities, height, weight, gender, etc. selected from fourth or higher differential waveform of pulse wave May be used to determine the determination line. Further, in the above embodiment, the blood pressure is calculated from at least two characteristic amounts, but the blood pressure may be calculated from three or more characteristic amounts.

【0059】また本実施例では図2及び図3に示したよ
うに指先の脈波を検出する構成であったが、耳朶や足の
指先から光電脈波を検出する構成や、上腕、手首、頚
部、胸部から主要動脈の圧脈波を検出する構成としても
よい。この場合、光電脈波を検出する構成としては、上
記実施例で示したような第1の発光部29及び第1の受
光部30を検出部位に応じて用いる。また圧脈波を検出
する構成としては、例えば圧力センサや加速度センサを
使用し、好ましくはフィルム状の可撓性の高分子圧電セ
ンサや歪みゲージ等のセンサを検出部位に応じて用いる
とよい。
In this embodiment, the pulse wave at the fingertip is detected as shown in FIG. 2 and FIG. 3. However, the structure to detect the photoelectric pulse wave from the earlobe or the fingertip of the toe, the upper arm, the wrist, A configuration in which a pressure pulse wave of a main artery is detected from the neck and chest may be adopted. In this case, as a configuration for detecting the photoelectric pulse wave, the first light emitting unit 29 and the first light receiving unit 30 as described in the above embodiment are used in accordance with the detection site. As a configuration for detecting a pressure pulse wave, for example, a pressure sensor or an acceleration sensor is used, and preferably, a sensor such as a film-shaped flexible polymer piezoelectric sensor or a strain gauge is used according to a detection portion.

【0060】本発明の実施例1によれば、検出した脈波
信号から血圧に関連した特徴量を演算し、演算した特徴
量に基づき血圧を演算するため、人体に装着するセンサ
は脈波センサのみでよく、血圧測定の際の操作の煩雑さ
がなくなり、長時間の連測定も可能となり、使い勝手が
向上することができるとともに、血圧に関連した特徴量
を演算して血圧を測定するため脈波形状が変わっても精
度よく血圧を測定できる。
According to the first embodiment of the present invention, a characteristic value related to blood pressure is calculated from the detected pulse wave signal, and the blood pressure is calculated based on the calculated characteristic value. It is only necessary to perform the measurement for blood pressure, which eliminates the complexity of the operation, enables continuous measurement for a long time, improves the usability, and measures the blood pressure by calculating the characteristic amount related to the blood pressure. Blood pressure can be measured accurately even if the wave shape changes.

【0061】また、脈波補正部が脈波信号を脈波間隔で
補正するため、脈拍の大小にかかわらず精度よく血圧を
演算できる。
Further, since the pulse wave correction unit corrects the pulse wave signal at pulse wave intervals, the blood pressure can be accurately calculated regardless of the magnitude of the pulse.

【0062】また、波特徴量演算部が脈波信号の各波
高、前記各波高の比、脈波立上り点から前記各波までの
時間、前記各波相互の時間間隔、脈波の積分値、脈拍数
の少なくとも一つを脈波特徴量として演算し、血圧演算
手段が脈波特徴量に基づき血圧を演算するため、高血圧
や動脈硬化になって脈波形状が変わっても精度よく血圧
を測定できる。
Further, the wave feature quantity calculation unit calculates each pulse height of the pulse wave signal, the ratio of each pulse height, the time from the rising point of the pulse wave to each wave, the time interval between each wave, the integral value of the pulse wave, Since at least one of the pulse rates is calculated as a pulse wave feature, and the blood pressure calculation means calculates the blood pressure based on the pulse wave feature, the blood pressure can be accurately measured even if the blood pressure changes due to high blood pressure or arteriosclerosis. it can.

【0063】また、速度脈波演算部が脈波の1次微分で
ある速度脈波を演算し、速度脈波特徴量演算部が速度脈
波信号の各波高、前記各波高の比、前記速度脈波立上り
点から前記各波までの時間、前記各波相互の時間間隔、
前記速度脈波のゼロクロス間隔の少なくとも一つを速度
脈波特徴量として演算し、血圧演算手段が速度脈波特徴
量に基づき血圧を演算するため、高血圧や動脈硬化にな
って脈波形状が変わっても精度よく血圧を測定できる。
The speed pulse wave calculating section calculates a speed pulse wave, which is the first derivative of the pulse wave, and the speed pulse wave feature quantity calculating section calculates each wave height of the speed pulse wave signal, the ratio of each wave height, and the speed. Time from the pulse wave rising point to each wave, time interval between each wave,
At least one of the zero-cross intervals of the velocity pulse wave is calculated as a velocity pulse wave characteristic amount, and the blood pressure computation means computes the blood pressure based on the velocity pulse wave characteristic amount. Even with this, blood pressure can be accurately measured.

【0064】また、加速度脈波演算部が脈波検出手段か
ら出力される脈波信号に基づき脈波の2次微分である加
速度脈波を演算し、加速度脈波特徴量演算部が加速度脈
波信号の各波高、前記各波高の比、前記各波相互の時間
間隔の少なくとも一つを加速度脈波特徴量として演算
し、血圧演算手段が加速度脈波特徴量に基づき血圧を演
算するため、高血圧や動脈硬化になって脈波形状が変わ
っても精度よく血圧を測定できる。
The acceleration pulse wave calculating section calculates an acceleration pulse wave which is a second derivative of the pulse wave based on the pulse wave signal output from the pulse wave detecting means. At least one of each wave height of the signal, the ratio of each wave height, and the time interval between each wave is calculated as an acceleration pulse wave feature value, and the blood pressure calculation means calculates blood pressure based on the acceleration pulse wave feature value. Blood pressure can be accurately measured even if the pulse wave shape changes due to arteriosclerosis.

【0065】また、血圧演算手段が身体特徴量入力部に
入力された身体特徴量に基づき血圧を演算するため、実
用性を高めることができる上、精度よく血圧を測定でき
る。
Further, since the blood pressure calculating means calculates the blood pressure based on the body characteristic amount input to the body characteristic amount input section, the practicality can be improved and the blood pressure can be measured with high accuracy.

【0066】また、入力された基準値により脈波特徴
量、速度脈波特徴量、加速度脈波特徴量、身体特徴量の
少なくとも一つと演算する血圧との関係を補正できるた
め、例えば加齢や体質変化、運動、体位変化等により使
用者の血液循環動態の変化があったり使用者が変わった
りしても対応可能で、実用性を高めることができる上、
精度よく血圧を測定できる。
In addition, since the relationship between at least one of the pulse wave characteristic amount, the velocity pulse wave characteristic amount, the acceleration pulse wave characteristic amount, and the body characteristic amount and the blood pressure to be calculated can be corrected by the input reference value. It is possible to respond to changes in the user's blood circulation dynamics or changes in users due to changes in constitution, exercise, changes in body position, etc.
Blood pressure can be measured accurately.

【0067】また、血圧演算手段が演算された血圧をを
記憶する記憶部を有し、記憶された値は血圧演算手段に
よりいつでも再生できるので、過去からの判定値のトレ
ンド等が判り使い勝手がよい。
Further, the blood pressure calculating means has a storage unit for storing the calculated blood pressure, and the stored value can be reproduced at any time by the blood pressure calculating means. .

【0068】また血圧値演算手段が演算された血圧を表
示する表示部を有しているため、リアルタイムの表示や
記憶された過去のデータをいつでも表示することができ
使い勝手がよい。
Further, since the blood pressure value calculating means has a display for displaying the calculated blood pressure, real-time display and stored past data can be displayed at any time, which is convenient.

【0069】また、演算された血圧が正常範囲を逸脱し
た場合に警報発生部が警報を発生するため、例えば就寝
中や作業中の身体の異常をチェックでき健康管理に役立
つ。
Further, when the calculated blood pressure deviates from the normal range, the alarm generation unit generates an alarm, so that it is possible to check, for example, abnormalities in the body while sleeping or working, which is useful for health management.

【0070】さらに、血圧値演算手段が外部媒体との通
信を行うための通信用端子部を有し、外部媒体との通信
を行うため、外部媒体での集中健康管理や必要情報の更
新ができ使い勝手を向上することができる。
Further, since the blood pressure value calculating means has a communication terminal for communicating with an external medium and communicates with the external medium, it is possible to perform centralized health management and update necessary information on the external medium. Usability can be improved.

【0071】(実施例2)図15は本発明の実施例2の
血圧測定装置を示すブロック図、図16、図17は同装
置の外観図である。
(Embodiment 2) FIG. 15 is a block diagram showing a blood pressure measurement apparatus according to Embodiment 2 of the present invention, and FIGS. 16 and 17 are external views of the apparatus.

【0072】本実施例2において、実施例1と異なる点
は脈波検出手段8が人体の相異なる部位の脈波を検出す
る複数の脈波検出部9a〜9nを有し、特徴量演算手段
11が脈波検出部9a〜9nからの脈波信号に基づき脈
波伝播時間、脈波伝播速度の少なくとも一つを脈波伝播
特徴量として演算する脈波伝播特徴量演算部32を有
し、血圧演算手段18が脈波特徴量、速度脈波特徴量、
加速度脈波特徴量、脈波伝播特徴量、身体特徴量の少な
くとも一つに基づき血圧を演算するとともに、血圧の基
準値を教師信号とし、脈波特徴量、速度脈波特徴量、加
速度脈波特徴量、脈波伝播特徴量、身体特徴量の少なく
とも一つと演算する血圧との関係を学習する点である。
図16及び図17は指先と他の部位の2個所の脈波を検
出する場合の本体24の外観図である。図16は実施例
1の挿入部27を上側にくるようにして見た図で、本実
施例では挿入部27の指先を挿入する側とは反対の側に
第2の発光部33と第2の受光部34が装着されてい
る。第2の発光部33と第2の受光部34は指先以外の
部位での脈波を検出するよう構成され、例えば第1の発
光部29及び第1の受光部30と同じ構造を有してい
る。ここでは第1の発光部29及び第1の受光部30が
第1の脈波検出部9a′、第2の発光部33と第2の受
光部34が第2の脈波検出部9b′となる。尚、第1の
発光部29と第2の発光部33とを同一のものとして兼
用する構成としてもよい。図17は図16で第1の発光
部29及び第1の受光部30が装着してあるのと同じ場
所に第2の脈波検出部9b′としての圧力センサ35が
装着された実施例である。圧力センサ35は指先以外の
部位での脈拍による皮膚表面での圧力変化(圧脈波)や
心臓の鼓動による振動を検出するもので、例えばフィル
ム状の可撓性高分子圧電センサや歪みゲージで構成され
る。また第2の脈波検出部9b′は心音を検出するマイ
クで構成してもよい。
The second embodiment differs from the first embodiment in that the pulse wave detector 8 has a plurality of pulse wave detectors 9a to 9n for detecting pulse waves at different parts of the human body. 11 has a pulse wave propagation feature amount calculation unit 32 that calculates at least one of a pulse wave propagation time and a pulse wave propagation speed as a pulse wave propagation feature amount based on the pulse wave signals from the pulse wave detection units 9a to 9n; The blood pressure calculating means 18 calculates the pulse wave feature amount, the speed pulse wave feature amount,
The blood pressure is calculated based on at least one of the acceleration pulse wave feature amount, the pulse wave propagation feature amount, and the body feature amount, and the reference value of the blood pressure is used as a teacher signal, and the pulse wave feature amount, the velocity pulse wave feature amount, the acceleration pulse wave are calculated. The point is to learn the relationship between at least one of the feature amount, the pulse wave propagation feature amount, and the body feature amount and the blood pressure to be calculated.
FIG. 16 and FIG. 17 are external views of the main body 24 when detecting pulse waves at two places, that is, a fingertip and another part. FIG. 16 is a view in which the insertion portion 27 of the first embodiment is viewed upward, and in the present embodiment, the second light emitting portion 33 and the second light emitting portion 33 are located on the side opposite to the side where the fingertip of the insertion portion 27 is inserted. Are mounted. The second light emitting unit 33 and the second light receiving unit 34 are configured to detect a pulse wave at a part other than the fingertip, and have, for example, the same structure as the first light emitting unit 29 and the first light receiving unit 30. I have. Here, the first light emitting section 29 and the first light receiving section 30 correspond to the first pulse wave detecting section 9a ', and the second light emitting section 33 and the second light receiving section 34 correspond to the second pulse wave detecting section 9b'. Become. Note that the first light emitting unit 29 and the second light emitting unit 33 may be configured to be the same as the same light emitting unit. FIG. 17 shows an embodiment in which the pressure sensor 35 as the second pulse wave detector 9b 'is mounted at the same place where the first light emitting unit 29 and the first light receiving unit 30 are mounted in FIG. is there. The pressure sensor 35 detects a pressure change (pressure pulse wave) on the skin surface due to a pulse at a part other than the fingertip and a vibration due to a heartbeat. For example, a film-like flexible polymer piezoelectric sensor or a strain gauge is used. Be composed. Further, the second pulse wave detector 9b 'may be constituted by a microphone for detecting heart sounds.

【0073】尚、実施例1と同一符号のものは同一構造
を有し、説明は省略する。次に動作、作用を説明する。
指先を挿入部27の脈波検出部9a′に挿入し、図18
のように本体24を指先に装着するとともに、脈波検出
部9b′を耳朶、頚部、胸部のいずれか1つの部位に接
触させて血圧の測定を開始する。以下は耳朶に接触させ
た場合として説明を進める。血圧測定の際のフローチャ
ートは図4と同様であるので、ここでは図4を用いてS
T4及びST5での詳細手順について説明する。ST1
〜ST3で脈波が検出され、必要に応じて脈波が補正さ
れると、ST4で特徴量演算手段11が脈波補正部10
からの脈波信号に基づき特徴量を演算する。脈波特徴
量、速度脈波特徴量、加速度脈波特徴量、身体特徴量の
演算については第1の実施例で述べた通りである。ここ
では図19、図20を用い脈波伝播特徴量演算部32で
脈波伝播特徴量としての脈波伝播時間及び脈波伝播速度
を演算する手順について説明する。図19(a)、
(b)はそれぞれ指先と耳朶で検出した脈波信号を示し
たものである。耳朶からの脈波は図16の第2の脈波検
出部9b′を耳朶に接触させて検出する。図19より脈
波伝播時間はそれぞれの脈波の立ち上り点S1、S2の
時間差Tcとして求められる。また予め身体特徴量入力
部17から使用者の身長、体重、性別、年齢等が入力さ
れていれば、入力された身体特徴量に基づき脈波伝播特
徴量演算部32で耳朶と指先それぞれの心臓からの血液
循環経路の長さが演算され、双方の長さの差でTcを割
ることにより脈波伝播速度に相当する特徴量が得られ
る。
The components having the same reference numerals as in the first embodiment have the same structure, and the description is omitted. Next, the operation and operation will be described.
The fingertip is inserted into the pulse wave detection section 9a 'of the insertion section 27, and FIG.
As described above, the main body 24 is attached to the fingertip, and the pulse wave detector 9b 'is brought into contact with any one of the earlobe, neck, and chest to start measuring the blood pressure. The following description will be made on the assumption that the earlobe is brought into contact with the earlobe. Since the flowchart at the time of blood pressure measurement is the same as that in FIG.
The detailed procedure in T4 and ST5 will be described. ST1
When the pulse wave is detected in ST3 to ST3 and the pulse wave is corrected as necessary, the feature value calculating means 11
The feature amount is calculated based on the pulse wave signal from. The calculation of the pulse wave feature, the velocity pulse wave feature, the acceleration pulse wave feature, and the body feature are the same as described in the first embodiment. Here, the procedure of calculating the pulse wave propagation time and the pulse wave propagation velocity as the pulse wave propagation characteristic amount in the pulse wave propagation characteristic amount calculation unit 32 will be described with reference to FIGS. FIG. 19 (a),
(B) shows pulse wave signals detected at the fingertip and the earlobe, respectively. The pulse wave from the earlobe is detected by bringing the second pulse wave detector 9b 'in FIG. 16 into contact with the earlobe. From FIG. 19, the pulse wave propagation time is obtained as the time difference Tc between the rising points S1 and S2 of each pulse wave. If the user's height, weight, gender, age, and the like have been input in advance from the body feature input unit 17, the pulse wave propagation feature calculation unit 32 based on the input body feature inputs the heart of each of the earlobe and fingertip. Is calculated, and Tc is divided by the difference between the two lengths to obtain a feature amount corresponding to the pulse wave propagation velocity.

【0074】ST5では予め設定した判定ラインから血
圧演算手段18が血圧を演算する。図20は特徴量とし
てTu0とTcを用いて血圧BPを演算する場合の判定
ラインL13、L14を示したものである。ここでL1
3は最大血圧用、L14は最低血圧用である。Tu0に
ついては前述した通りである。Tcは動脈管の抵抗度合
いと関連し、Tcが小さいと血圧は高くなる傾向にあ
る。血圧演算部19では図20に基づきTu0とTcか
ら最高血圧BP13、最低血圧BP14が演算される。
At ST5, the blood pressure calculating means 18 calculates the blood pressure from the preset judgment line. FIG. 20 shows the determination lines L13 and L14 when the blood pressure BP is calculated using Tu0 and Tc as the feature amounts. Where L1
3 is for maximum blood pressure, and L14 is for minimum blood pressure. Tu0 is as described above. Tc is related to the degree of resistance of the arterial duct, and when Tc is small, blood pressure tends to increase. The blood pressure calculation unit 19 calculates the systolic blood pressure BP13 and the diastolic blood pressure BP14 from Tu0 and Tc based on FIG.

【0075】尚、上記実施例では図16に示す本体24
を用いて指先と耳朶から光電脈波を検出したが、図17
に示す本体24を用いて図18のように第2の脈波検出
部9b′を頚部や胸部に接触させることにより、指先か
らは光電脈波を検出し、頚部や胸部からは圧脈波を検出
して、圧脈波と手の指先の脈波から脈波伝播時間や脈波
伝播速度を演算してもよい。また脈波に準じるものとし
てマイクで心音を検出し、心音と指先の脈波から脈波伝
播時間や脈波伝播速度を演算してもよく、双方とも耳朶
より心臓に近い位置で圧脈波や心音を検出できるので脈
波伝播時間及び脈波伝播速度の演算精度が向上する。
In the above embodiment, the main body 24 shown in FIG.
17 was used to detect the photoelectric pulse wave from the fingertip and the earlobe.
As shown in FIG. 18, the second pulse wave detector 9b 'is brought into contact with the cervix and the chest using the main body 24 shown in FIG. 18 to detect the photoelectric pulse wave from the fingertip and to detect the pressure pulse wave from the neck and the chest. The pulse wave propagation time and the pulse wave propagation speed may be calculated from the detected pulse wave and the pulse wave at the fingertip of the hand. In addition, a heart sound may be detected by a microphone as a pulse wave, and a pulse wave propagation time or a pulse wave propagation velocity may be calculated from the heart sound and the pulse wave at the fingertip. Since the heart sound can be detected, the calculation accuracy of the pulse wave propagation time and the pulse wave propagation velocity is improved.

【0076】次にST6では基準値入力部20に血圧の
基準値が入力されるとST7で判定ラインの補正が行わ
れる。この場合、実施例1と同様な手順で血圧の基準値
を入力し、脈波特徴量、速度脈波特徴量、加速度脈波特
徴量、脈波伝播特徴量、身体特徴量の少なくとも一つと
演算する血圧との関係を補正するようにしてもよいが、
ここではさらに血圧値演算部19が入力された血圧の基
準値を教師信号とし、脈波特徴量、速度脈波特徴量、加
速度脈波特徴量、脈波伝播特徴量、身体特徴量の少なく
とも一つと演算する血圧との関係を学習することにより
判定ラインの補正が行われる。学習を行う血圧値演算部
19の構成手段として、神経回路網を模した学習手法を
用いる。今入力データは特徴量演算手段11からの脈波
特徴量、速度脈波特徴量、加速度脈波特徴量、脈波伝播
特徴量、身体特徴量の少なくとも一つ、出力データは記
憶部21及び表示部22への血圧信号であるとし、また
望ましい出力(すなわち教師信号)は基準値入力部20
からの出力信号であると考える。基準値はカフ式の血圧
計により測定された血圧の値とする。神経回路網模式手
段としては、文献1(PDPモデル、D.E.ラメルハ
ート他2名、甘利俊一監訳、1989年)、文献2(ニ
ューロコンピュータの基礎、p102、中野馨他7名、
1990年)、特公昭63−55106などに示された
ものがある。
Next, in ST6, when the reference value of the blood pressure is inputted to the reference value input section 20, the judgment line is corrected in ST7. In this case, a reference value of blood pressure is input in the same procedure as in the first embodiment, and is calculated with at least one of a pulse wave feature, a velocity pulse wave feature, an acceleration pulse wave feature, a pulse wave propagation feature, and a body feature. Although the relationship with the blood pressure to be performed may be corrected,
Here, the blood pressure value calculation unit 19 further uses the input reference value of the blood pressure as a teacher signal, and sets at least one of the pulse wave feature amount, the speed pulse wave feature amount, the acceleration pulse wave feature amount, the pulse wave propagation feature amount, and the body feature amount. The determination line is corrected by learning the relationship between the blood pressure and the calculated blood pressure. A learning method that imitates a neural network is used as a component of the blood pressure value calculation unit 19 that performs learning. The input data is at least one of the pulse wave characteristic amount, the velocity pulse wave characteristic amount, the acceleration pulse wave characteristic amount, the pulse wave propagation characteristic amount, and the body characteristic amount from the characteristic amount calculating means 11, and the output data is the storage unit 21 and the display. It is assumed that the signal is a blood pressure signal to the unit 22, and a desired output (that is, a teacher signal) is a reference value input unit 20.
Output signal from The reference value is a value of the blood pressure measured by the cuff type sphygmomanometer. Examples of the neural network schematic means include Document 1 (PDP model, DE Ramelhart et al., 2 persons, translated by Shunichi Amari, 1989), Document 2 (Basic of neurocomputer, p102, Kaoru Nakano et al., 7 persons,
1990), and JP-B-63-55106.

【0077】以下、文献1に記載された最もよく知られ
た学習アルゴリズムとして誤差逆伝搬法を用いた多層パ
ーセプトロンを例にとり、具体的な神経回路網模式手段
の構成及び動作について説明する。
Hereinafter, the configuration and operation of a specific neural network model will be described with reference to a multilayer perceptron using an error back propagation method as an example of the most well-known learning algorithm described in Document 1.

【0078】図21は、神経回路網模式手段の構成単位
となる神経素子の概念図である。図21において、40
1〜40Nは神経のシナプス結合を模式する疑似シナプ
ス結合変換器であり、40aは疑似シナプス結合変換器
401〜40Nからの出力を加算する加算器であり、4
0bは設定された非線形関数、たとえば、しきい値をh
とするシグモイド関数、
FIG. 21 is a conceptual diagram of a neural element which is a structural unit of the neural network model. In FIG. 21, 40
Numerals 1 to 40N are pseudo-synaptic coupling converters that schematically represent synaptic connections of nerves, and reference numeral 40a is an adder that adds outputs from the pseudo-synaptic coupling converters 401 to 40N.
0b is a set nonlinear function, for example, the threshold is h
Sigmoid function,

【0079】[0079]

【数2】 (Equation 2)

【0080】によって加算器40aの出力を非線形変換
する非線形変換器である。なお、図面が煩雑になるので
省略したが、修正手段からの修正信号を受ける入力線が
疑似シナプス結合変換器401〜40Nと非線形変換器
40bにつながっている。また、疑似シナプス結合変換
器401〜40Nが神経回路網模式手段の結合重み係数
となる。この神経素子には、信号処理モードと学習モー
ドの2つの種類の動作モードがある。
Is a nonlinear converter for nonlinearly converting the output of the adder 40a. Although not shown for simplicity of the drawing, an input line for receiving a correction signal from the correction means is connected to the pseudo-synaptic coupling converters 401 to 40N and the non-linear converter 40b. Further, the pseudo synapse connection converters 401 to 40N serve as connection weight coefficients of the neural network model. This neural element has two types of operation modes, a signal processing mode and a learning mode.

【0081】以下、図21に基づいて神経素子のそれぞ
れのモードの動作について説明する。まず、信号処理モ
ードの動作の説明をする。神経素子はN個の入力X1〜
Xnを受けて1つの出力を出す。i番目の入力信号Xi
は、四角で示されたi番目の疑似シナプス結合変換器4
0iにおいてWi・Xiに変換される。疑似シナプス結
合変換器401〜40Nで変換されたN個の信号W1・
X1〜Wn・Xnは加算器40aに入り、加算結果yが
非線形変換器40bに送られ、最終出力f(y、h)と
なる。つぎに、学習モードの動作について説明する。学
習モードでは、疑似シナプス結合変換器401〜40N
と非線形変換器40bの変換パラメータW1〜Wnとh
を、修正手段からの変換パラメータの修正量ΔW1〜Δ
WnとΔhを表す修正信号を受けて、
Hereinafter, the operation of each mode of the neural element will be described with reference to FIG. First, the operation in the signal processing mode will be described. The neural element has N inputs X1 to X1.
Receives Xn and produces one output. i-th input signal Xi
Is the i-th pseudo-synaptic coupling converter 4 indicated by a square.
At 0i, it is converted to Wi · Xi. N signals W1 · 1 converted by the pseudo-synaptic connection converters 401 to 40N
X1 to Wn · Xn enter the adder 40a, and the addition result y is sent to the non-linear converter 40b to be the final output f (y, h). Next, the operation in the learning mode will be described. In the learning mode, the pseudo synapse connection converters 401 to 40N
And conversion parameters W1 to Wn and h of the nonlinear converter 40b.
Are corrected by the correction amounts ΔW1 to ΔW1 of the conversion parameters from the correction means.
Upon receiving the correction signals representing Wn and Δh,

【0082】[0082]

【数3】 (Equation 3)

【0083】と修正する。図22は上記神経素子を4つ
並列につないで構成した信号変換手段の概念図である。
いうまでもなく、以下の説明は、この信号変換手段を構
成する神経素子の個数を4個に特定するものではない。
図22において、511〜544は疑似シナプス結合変
換器であり、501〜504は、図21で説明した加算
器40aと非線形変換器40bをまとめた加算非線形変
換器である。図22において、図21と同様に図面が煩
雑になるので省略したが、修正手段からの修正信号を受
ける入力線が疑似シナプス結合変換器511〜544と
加算非線形変換器501〜504につながっている。疑
似シナプス結合変換器511〜544も結合重み係数と
なる。この信号変換手段の動作については、図21で説
明した神経素子の動作が並列してなされるものである。
The above is corrected. FIG. 22 is a conceptual diagram of a signal conversion unit in which four of the above neural elements are connected in parallel.
Needless to say, the following description does not specify the number of neural elements constituting the signal conversion means as four.
In FIG. 22, reference numerals 511 to 544 denote pseudo-synaptic coupling converters, and reference numerals 501 to 504 denote add-nonlinear converters that combine the adder 40a and the non-linear converter 40b described in FIG. In FIG. 22, the illustration is omitted as in FIG. 21 because the drawing becomes complicated, but the input lines for receiving the correction signals from the correction means are connected to the pseudo-synaptic coupling converters 511 to 544 and the addition nonlinear converters 501 to 504. . The pseudo synapse connection converters 511 to 544 also become connection weight coefficients. Regarding the operation of this signal conversion means, the operation of the neural element described in FIG. 21 is performed in parallel.

【0084】図23は、学習アルゴリズムとして誤差逆
伝搬法を採用した場合の信号処理手段の構成を示したブ
ロック図で、61は上述の信号変換手段である。ただ
し、ここではN個の入力を受ける神経素子がM個並列に
並べられたものである。62は学習モードにおける信号
変換手段61の修正量を算出する修正手段である。以
下、図23に基づいて信号処理手段の学習を行う場合の
動作について説明する。信号変換手段61はN個の入力
Sin(X)を受け、M個の出力Sout(X)を出力す
る。修正手段62は、入力信号Sin(X)と出力信号S
out(X)とを受け、誤差計算手段または後段の信号変
換手段からのM個の誤差信号δj(X)の入力があるま
で待機する。誤差信号δj(X)が入力され修正量を
FIG. 23 is a block diagram showing the structure of the signal processing means when the error backpropagation method is employed as a learning algorithm. Reference numeral 61 denotes the above-described signal conversion means. However, here, M neural elements receiving N inputs are arranged in parallel. Reference numeral 62 denotes a correction unit that calculates a correction amount of the signal conversion unit 61 in the learning mode. Hereinafter, the operation in the case of learning the signal processing means will be described with reference to FIG. The signal conversion means 61 receives N inputs Sin (X) and outputs M outputs Sout (X). The correction means 62 includes an input signal Sin (X) and an output signal S
out (X), and waits until M error signals δj (X) are input from the error calculation means or the signal conversion means at the subsequent stage. The error signal δj (X) is input and the correction amount is

【0085】[0085]

【数4】 (Equation 4)

【0086】と計算し、修正信号を信号変換手段61に
送る。信号変換手段61は、内部の神経素子の変換パラ
メータを上で説明した学習モードにしたがって修正す
る。
The correction signal is sent to the signal conversion means 61. The signal conversion means 61 corrects the conversion parameters of the internal nerve elements according to the learning mode described above.

【0087】図24は、神経回路網模式手段を用いた多
層パーセプトロンの構成を示すブロック図であり、71
X、71Y、71ZはそれぞれK個、L個、M個の神経
素子からなる信号変換手段であり、72X、72Y、7
2Zは修正手段であり、73は誤差計算手段である。以
上のように構成された多層パーセプトロンについて、図
24を参照しながらその動作を説明する。信号処理手段
70Xにおいて、信号変換手段71Xは、入力Siin
(X)(i=1〜N)を受け、出力Sjout(X)(j=
1〜K)を出力する。修正手段72Xは、信号Siin
(X)と信号Sjout(X)を受け、誤差信号δj(X)
(j=1〜K)が入力されるまで待機する。以下同様の
処理が、信号処理手段70Y、70Zにおいて行われ、
信号変換手段71Zより最終出力Shout(Z)(h=1
〜M)が出力される。最終出力Shout(Z)は、誤差計
算手段73にも送られる。誤差計算手段73において
は、2乗誤差の評価関数COST下記に示す(式5)に
基づいて理想的な出力T(T1、・・・・・、TM)との
誤差が計算され、誤差信号δh(Z)が修正手段72Z
に送られる。
FIG. 24 is a block diagram showing the configuration of a multilayer perceptron using a neural network model.
X, 71Y, and 71Z are signal conversion means composed of K, L, and M neural elements, respectively.
2Z is a correction means, and 73 is an error calculation means. The operation of the multilayer perceptron configured as described above will be described with reference to FIG. In the signal processing means 70X, the signal conversion means 71X has the input Siin
(X) (i = 1 to N), and outputs Sjout (X) (j =
1 to K). The correcting means 72X outputs the signal Siin
(X) and the signal Sjout (X), and an error signal δj (X)
It waits until (j = 1 to K) is input. Hereinafter, the same processing is performed in the signal processing means 70Y and 70Z,
The final output Shout (Z) (h = 1
To M) are output. The final output Shout (Z) is also sent to the error calculation means 73. In the error calculating means 73, an error from the ideal output T (T1,..., TM) is calculated based on a square error evaluation function COST (Equation 5) shown below, and an error signal δh (Z) is the correction means 72Z
Sent to

【0088】[0088]

【数5】 (Equation 5)

【0089】ただし、μは多層パーセプトロンの学習速
度を定めるパラメータである。つぎに、評価関数を2乗
誤差とした場合には誤差信号は、
Here, μ is a parameter that determines the learning speed of the multilayer perceptron. Next, if the evaluation function is a square error, the error signal is

【0090】[0090]

【数6】 (Equation 6)

【0091】となる。修正手段72Zは、上で説明した
手続きにしたがって、信号変換手段71Zの変換パラメ
ータの修正量ΔW(Z)を計算し、修正手段72Yに送
る誤差信号を(式7)に基づき計算し、修正信号ΔW
(Z)を信号変換手段71Zに送り、誤差信号δ(Y)
を修正手段72Yに送る。信号変換手段71Zは、修正
信号ΔW(Z)に基づいて内部のパラメータを修正す
る。なお、誤差信号δ(Y)は(式7)で与えられる。
Is obtained. The correction unit 72Z calculates the correction amount ΔW (Z) of the conversion parameter of the signal conversion unit 71Z according to the procedure described above, calculates an error signal to be sent to the correction unit 72Y based on (Equation 7), and calculates the correction signal. ΔW
(Z) is sent to the signal conversion means 71Z, and the error signal δ (Y)
To the correction means 72Y. The signal conversion means 71Z corrects internal parameters based on the correction signal ΔW (Z). Note that the error signal δ (Y) is given by (Equation 7).

【0092】[0092]

【数7】 (Equation 7)

【0093】ここで、wij(Z)は信号変換手段71Z
の疑似シナプス結合変換器の変換パラメータである。以
下、同様の処理が信号処理手段70X、70Yにおいて
行われる。学習と呼ばれる以上の手続きを繰り返し行う
ことにより、多層パーセプトロンは入力が与えられると
理想出力Tをよく近似する出力を出すようになる。な
お、上記の説明においては、3段の多層パーセプトロン
を用いたが、これは何段であってもよい。また、文献1
にある信号変換手段のなかの非線形変換手段の変換パラ
メータhの修正法についてと慣性項として知られる学習
高速化の方法については、説明の簡略化のため省略した
が、この省略は本発明を拘束するものではない。
Here, wij (Z) is the signal converting means 71Z
Is a conversion parameter of the pseudo-synaptic coupling converter. Hereinafter, similar processing is performed in the signal processing units 70X and 70Y. By repeatedly performing the above procedure called learning, the multilayer perceptron, when given an input, outputs an output that approximates the ideal output T well. In the above description, a three-stage multilayer perceptron is used, but the number of stages may be any. Reference 1
The method for correcting the conversion parameter h of the non-linear conversion means in the signal conversion means and the method for speeding up learning, which is known as an inertia term, are omitted for simplicity of description, but this omission restricts the present invention. It does not do.

【0094】このように神経回路網模式手段を有した血
圧演算部19は、特徴量演算手段11からの脈波特徴
量、速度脈波特徴量、加速度脈波特徴量、脈波伝播特徴
量、身体特徴量等の特徴量信号及び基準値入力部20の
出力信号から得られる情報を用いてどのような演算が好
ましいかということを簡単なルールで記述することが容
易でない場合にも、過去の経験を元に学習によって自然
な形で表現することができる。
As described above, the blood pressure calculating section 19 having the neural network model means receives the pulse wave feature quantity, velocity pulse wave feature quantity, acceleration pulse wave feature quantity, pulse wave propagation feature quantity, Even if it is not easy to describe what operation is preferable by using simple rules using information obtained from a feature amount signal such as a body feature amount and an output signal of the reference value input unit 20, the past It can be expressed in a natural way by learning based on experience.

【0095】言い換えると血圧演算部19は、特徴量演
算手段11からの特徴量信号から得られる特徴量情報と
基準値入力部20からの血圧の基準値信号との関係を現
場で徐々に学習することによって、最終的には基準値の
入力による補正なしでも特徴量演算手段11からの特徴
量情報に対応した血圧を出力するようになる。さらに同
一の使用者でも測定時の体位が変わったり、体型が違う
他の使用者が使用したり、運動中に測定した場合、その
使用者が新たに基準値入力部20を用いて演算された血
圧を訂正すれば、血圧演算部19も学習によりこれに追
従するのである。
In other words, the blood pressure calculating section 19 gradually learns the relationship between the characteristic amount information obtained from the characteristic amount signal from the characteristic amount calculating section 11 and the blood pressure reference value signal from the reference value input section 20 on site. As a result, the blood pressure corresponding to the feature amount information from the feature amount calculating unit 11 is finally output without correction by inputting the reference value. Furthermore, when the same user changes his or her body position at the time of measurement, uses another user with a different body type, or measures during exercise, the user is newly calculated using the reference value input unit 20. If the blood pressure is corrected, the blood pressure calculation unit 19 follows this by learning.

【0096】ところで学習を行う血圧演算部19の構成
手段としては、誤差逆伝搬法でなく追加学習に適した競
合パターン分類型のベクトル量子化学習法などを用いて
もよい。また神経回路網を模した学習手法を用いず、適
当なルールに基づいたテーブルルックアップ法や人工知
能、遺伝的アルゴリズムなどの手法を用いてもよい。
Incidentally, as a component of the blood pressure calculating section 19 for performing learning, a vector quantization learning method of a competitive pattern classification type suitable for additional learning may be used instead of the error back propagation method. Instead of using a learning method imitating a neural network, a method such as a table lookup method based on an appropriate rule, artificial intelligence, or a genetic algorithm may be used.

【0097】本発明の実施例2によれば、脈波検出部が
人体の相異なる部位の脈波を検出し、脈波伝播特徴量演
算部が脈波信号に基づき脈波伝播時間、脈波伝播速度の
少なくとも一つを脈波伝播特徴量として演算し、血圧演
算手段が脈波伝播特徴量に基づき血圧を演算するため、
心電位電極のような装着の煩雑さがなく脈波伝播特徴量
を演算することができ使い勝手が向上するとともに、高
血圧や動脈硬化になって脈波形状が変わっても精度よく
血圧を測定できる。
According to the second embodiment of the present invention, the pulse wave detecting section detects pulse waves at different parts of the human body, and the pulse wave propagation characteristic amount calculating section calculates the pulse wave propagation time and the pulse wave based on the pulse wave signal. At least one of the propagation speeds is calculated as a pulse wave propagation feature, and the blood pressure calculation means calculates the blood pressure based on the pulse wave propagation feature,
The pulse wave propagation characteristic amount can be calculated without the complicated arrangement of the cardiac potential electrodes and the usability can be improved, and the blood pressure can be accurately measured even if the pulse wave shape changes due to hypertension or arteriosclerosis.

【0098】また、血圧演算手段が脈波特徴量、速度脈
波特徴量、加速度脈波特徴量、脈波伝播特徴量、身体特
徴量の少なくとも一つに基づき血圧を演算するため、高
血圧や動脈硬化になって脈波形状が変わっても精度よく
血圧を測定できる。
Further, the blood pressure calculating means calculates the blood pressure based on at least one of the pulse wave characteristic amount, the velocity pulse wave characteristic amount, the acceleration pulse wave characteristic amount, the pulse wave propagation characteristic amount, and the body characteristic amount. Blood pressure can be accurately measured even if the pulse wave shape changes due to curing.

【0099】また、特徴量演算手段からの特徴量信号か
ら得られる特徴量情報と基準値入力部からの血圧の基準
値信号との関係を現場で徐々に学習し、最終的には基準
値の入力による補正なしでも特徴量演算手段からの特徴
量情報に対応した血圧を出力するようになるので、実施
例1よりも血圧測定の精度が格段に向上するといった効
果がある。
Further, the relation between the characteristic amount information obtained from the characteristic amount signal from the characteristic amount calculating means and the blood pressure reference value signal from the reference value input unit is gradually learned on site, and finally the reference value Since the blood pressure corresponding to the characteristic amount information from the characteristic amount calculating means is output even without correction by input, there is an effect that the accuracy of blood pressure measurement is significantly improved as compared with the first embodiment.

【0100】また、脈波検出手段が手の指先から脈波を
検出する第1の脈波検出部と、第1の脈波検出部と隣接
して設置され前記指先以外の部位から脈波を検出する第
2の脈波検出部とを有しているため、小型化が図れ携帯
に便利である。
Further, the pulse wave detecting means detects a pulse wave from a fingertip of the hand, and a pulse wave is installed from the portion other than the fingertip and installed adjacent to the first pulse wave detecting portion. Since it has the second pulse wave detecting unit for detection, it is possible to reduce the size and to carry it easily.

【0101】また、第1の脈波検出部と第2の脈波検出
部はそれぞれ光電脈波方式で脈波を検出するための発光
部と受光部とを有し、双方の発光部は共有されているた
め、部品の削減ができ実用性が高い。
The first pulse wave detecting section and the second pulse wave detecting section each have a light emitting section and a light receiving section for detecting a pulse wave by the photoelectric pulse wave method, and both light emitting sections are shared. As a result, the number of parts can be reduced and the utility is high.

【0102】また、第2の脈波検出部は脈圧を検出する
圧力センサからなり、頚部や胸部から圧脈波を検出し心
臓に近い位置で脈波を検出できるので脈波伝播時間及び
脈波伝播速度の演算精度を向上することができる。
The second pulse wave detector comprises a pressure sensor for detecting a pulse pressure. The second pulse wave detector detects a pressure pulse wave from the neck and chest and can detect a pulse wave at a position close to the heart. The calculation accuracy of the wave propagation speed can be improved.

【0103】さらに、第2の脈波検出部は心音を検出す
るマイクとしてもよく、心臓の鼓動による振動や心音を
検出するので脈波伝播時間及び脈波伝播速度の演算精度
を向上することができる。
Further, the second pulse wave detecting section may be a microphone for detecting a heart sound. Since the second pulse wave detecting section detects a vibration or a heart sound due to the heartbeat, it is possible to improve the calculation accuracy of the pulse wave propagation time and the pulse wave propagation speed. it can.

【0104】尚、実施例1及び2で述べたように演算さ
れた各々の特徴量は血圧に関連したものであるととも
に、例えばEIは動脈管壁の弾性と関連し、DIは動脈
管の口径すなわち動脈管の緊張度合いと関連するといっ
たように、各々の特徴量から血圧以外の人体の血液循環
動態の善し悪しを判定することもできる。この場合、単
にある時点での各々の特徴量から人体の血液循環動態を
判定してもよいが、各々の特徴量の時間的変動に基づい
て人体の血液循環動態を判定してもよく、例えば各々の
特徴量の時系列データのトレンド、時系列データの周波
数分析結果、ゆらぎの程度、カオス性等に基づき人体の
血液循環動態を判定してもよい。このようにすれば、各
々の特徴量に基づき血圧を演算するとともに、例えば動
脈硬化度といったような人体の血液循環動態を判定し、
判定結果を血圧と同時に表示することができ、人体の循
環系を総合的に評価することができ健康管理等に役立
つ。
Each of the characteristic quantities calculated as described in the first and second embodiments is related to the blood pressure. For example, EI is related to the elasticity of the arterial tract wall, and DI is the caliber of the arterial tract. That is, it is also possible to determine whether the blood circulation dynamics of the human body other than the blood pressure is good or bad, based on the respective characteristic amounts, as in relation to the degree of arterial tract tension. In this case, the blood circulation dynamics of the human body may be determined simply from the respective characteristic amounts at a certain time, or the blood circulation dynamics of the human body may be determined based on the temporal variation of each characteristic amount, for example, The blood circulation dynamics of the human body may be determined based on the trend of the time-series data of each feature amount, the frequency analysis result of the time-series data, the degree of fluctuation, the chaos, and the like. In this way, while calculating the blood pressure based on each feature amount, for example, determine the blood circulation dynamics of the human body, such as the degree of arteriosclerosis,
The judgment result can be displayed simultaneously with the blood pressure, and the circulatory system of the human body can be comprehensively evaluated, which is useful for health management and the like.

【0105】[0105]

【発明の効果】以上説明したように本発明の請求項1に
かかる血圧測定装置は検出した脈波信号から血圧に関連
した特徴量を演算し、演算した特徴量に基づき血圧を演
算するため、人体に装着するセンサは脈波センサのみで
よく、血圧測定の際の操作の煩雑さがなくなり、長時間
の連測定も可能となり、使い勝手を向上することができ
るとともに、血圧に関連した特徴量を演算して血圧を測
定するため脈波形状が変わっても精度よく血圧を測定で
きるという効果がある。
As described above, the blood pressure measurement device according to the first aspect of the present invention calculates a characteristic amount related to blood pressure from a detected pulse wave signal, and calculates a blood pressure based on the calculated characteristic amount. The sensor to be worn on the human body only needs to be a pulse wave sensor, which eliminates the complexity of operation when measuring blood pressure, enables continuous measurement for a long time, improves usability, and reduces the characteristic amount related to blood pressure. Since the blood pressure is measured by calculation, there is an effect that the blood pressure can be accurately measured even if the pulse wave shape changes.

【0106】また、請求項2にかかる血圧測定装置は脈
波補正部が脈波信号を脈波間隔で補正するため、脈拍の
大小にかかわらず精度よく血圧を測定できるという効果
がある。
Further, in the blood pressure measurement device according to the second aspect, since the pulse wave correction unit corrects the pulse wave signal at the pulse wave interval, there is an effect that the blood pressure can be accurately measured regardless of the magnitude of the pulse.

【0107】また、請求項3にかかる血圧測定装置は脈
波特徴量演算部が脈波信号の各波高、前記各波高の比、
脈波立上り点から前記各波までの時間、前記各波相互の
時間間隔、脈波の積分値、脈拍数の少なくとも一つを脈
波特徴量として演算し、血圧演算手段が脈波特徴量に基
づき血圧を演算するため、高血圧や動脈硬化になって脈
波形状が変わっても精度よく血圧を測定できるという効
果がある。
According to a third aspect of the present invention, in the blood pressure measurement device, the pulse wave characteristic quantity calculating section includes a pulse wave signal, a pulse wave signal ratio, and a pulse wave ratio.
At least one of the time from the pulse wave rising point to each of the waves, the time interval between each of the waves, the integral value of the pulse wave, and the pulse rate is calculated as a pulse wave feature value, and the blood pressure calculation means calculates the pulse wave feature value. Since the blood pressure is calculated based on the blood pressure, the blood pressure can be accurately measured even if the pulse wave shape changes due to high blood pressure or arteriosclerosis.

【0108】また、請求項4にかかる血圧測定装置は速
度脈波演算部が脈波の1次微分である速度脈波を演算
し、速度脈波特徴量演算部が速度脈波信号の各波高、前
記各波高の比、前記速度脈波立上り点から前記各波まで
の時間、前記各波相互の時間間隔、前記速度脈波のゼロ
クロス間隔の少なくとも一つを速度脈波特徴量として演
算し、血圧演算手段が速度脈波特徴量に基づき血圧を演
算するため、高血圧や動脈硬化になって脈波形状が変わ
っても精度よく血圧を測定できるという効果がある。
Further, in the blood pressure measuring device according to the fourth aspect, the velocity pulse wave calculating section calculates a velocity pulse wave which is a first derivative of the pulse wave, and the velocity pulse wave feature quantity computing section calculates each pulse height of the velocity pulse wave signal. The ratio of each wave height, the time from the rising point of the speed pulse wave to each wave, the time interval between the waves, at least one of the zero cross interval of the speed pulse wave is calculated as a speed pulse wave feature amount, Since the blood pressure calculating means calculates the blood pressure based on the velocity pulse wave feature quantity, there is an effect that the blood pressure can be measured accurately even if the pulse wave shape changes due to hypertension or arteriosclerosis.

【0109】また請求項5にかかる血圧測定装置は加速
度脈波演算部が脈波検出手段から出力される脈波信号に
基づき脈波の2次微分である加速度脈波を演算し、加速
度脈波特徴量演算部が加速度脈波信号の各波高、前記各
波高の比、前記各波相互の時間間隔の少なくとも一つを
加速度脈波特徴量として演算し、血圧演算手段が加速度
脈波特徴量に基づき血圧を演算するため、高血圧や動脈
硬化になって脈波形状が変わっても精度よく血圧を測定
できるという効果がある。
According to a fifth aspect of the present invention, in the blood pressure measurement device, the acceleration pulse wave calculating section calculates an acceleration pulse wave, which is a second derivative of the pulse wave, based on the pulse wave signal output from the pulse wave detecting means. The feature amount calculation unit calculates at least one of each wave height of the acceleration pulse wave signal, the ratio of each wave height, and the time interval between the waves as an acceleration pulse wave feature amount, and the blood pressure calculation unit calculates the acceleration pulse wave feature amount. Since the blood pressure is calculated based on the blood pressure, the blood pressure can be accurately measured even if the pulse wave shape changes due to high blood pressure or arteriosclerosis.

【0110】また請求項6にかかる血圧測定装置は脈波
検出部が人体の相異なる部位の脈波を検出し、脈波伝播
特徴量演算部が脈波信号に基づき脈波伝播時間、脈波伝
播速度の少なくとも一つを脈波伝播特徴量として演算
し、血圧演算手段が脈波伝播特徴量に基づき血圧を演算
するため、心電位電極のような装着の煩雑さがなく脈波
伝播特徴量を演算することができ使い勝手が向上すると
ともに、高血圧や動脈硬化になって脈波形状が変わって
も精度よく血圧を測定できるという効果がある。
Further, in the blood pressure measuring device according to the present invention, the pulse wave detecting section detects a pulse wave in a different part of the human body, and the pulse wave propagation characteristic quantity calculating section calculates the pulse wave propagation time and the pulse wave based on the pulse wave signal. Since at least one of the propagation velocities is calculated as a pulse wave propagation characteristic amount, and the blood pressure calculation means calculates the blood pressure based on the pulse wave propagation characteristic amount, the pulse wave propagation characteristic amount does not have to be worn like a cardiac potential electrode. Can be calculated, the usability is improved, and the blood pressure can be accurately measured even if the pulse wave shape changes due to hypertension or arteriosclerosis.

【0111】また請求項7にかかる血圧測定装置は血圧
演算手段が身体特徴量入力部に入力された身体特徴量に
基づき血圧を演算するため、実用性を高めることができ
る上、精度よく血圧を測定できるという効果がある。
Further, in the blood pressure measuring device according to claim 7, since the blood pressure calculating means calculates the blood pressure based on the body characteristic amount inputted to the body characteristic amount input section, the practicality can be improved and the blood pressure can be accurately measured. It has the effect of being measurable.

【0112】また請求項8にかかる血圧測定装置は血圧
演算手段が脈波特徴量、速度脈波特徴量、加速度脈波特
徴量、脈波伝播特徴量、身体特徴量の少なくとも一つに
基づき血圧を演算するため、高血圧や動脈硬化になって
脈波形状が変わっても精度よく血圧を測定できるという
効果がある。
In the blood pressure measuring apparatus according to the present invention, the blood pressure calculating means may be configured to determine the blood pressure based on at least one of a pulse wave feature, a velocity pulse wave feature, an acceleration pulse wave feature, a pulse wave propagation feature, and a body feature. Is calculated, the blood pressure can be accurately measured even if the pulse wave shape changes due to high blood pressure or arteriosclerosis.

【0113】また請求項9にかかる血圧測定装置は入力
された基準値により脈波特徴量、速度脈波特徴量、加速
度脈波特徴量、脈波伝播特徴量、身体特徴量の少なくと
も一つと演算する血圧との関係を補正できるため、例え
ば加齢や体質変化、運動、体位変化等により使用者の血
液循環動態の変化があったり使用者が変わったりしても
対応可能で、実用性を高めることができる上、精度よく
血圧を測定できるという効果がある。
Further, the blood pressure measurement device according to the ninth aspect calculates at least one of a pulse wave characteristic amount, a velocity pulse wave characteristic amount, an acceleration pulse wave characteristic amount, a pulse wave propagation characteristic amount, and a body characteristic amount based on the input reference value. Since the relationship with blood pressure can be corrected, it is possible to cope with a change in the user's blood circulation dynamics or a change in the user due to, for example, aging, change in constitution, exercise, change in body position, etc. In addition, the blood pressure can be accurately measured.

【0114】また請求項10にかかる血圧測定装置は特
徴量演算手段からの特徴量信号から得られる特徴量情報
と基準値入力部からの血圧の基準値信号との関係を現場
で徐々に学習し、最終的には基準値の入力による補正な
しでも特徴量演算手段からの特徴量情報に対応した血圧
を出力するようになるので、血圧測定の精度が向上する
という効果がある。
The blood pressure measurement device according to the tenth aspect gradually learns on-site the relationship between the characteristic amount information obtained from the characteristic amount signal from the characteristic amount calculation means and the blood pressure reference value signal from the reference value input unit. Finally, since the blood pressure corresponding to the feature amount information from the feature amount calculating means is output even without correction by inputting the reference value, there is an effect that blood pressure measurement accuracy is improved.

【0115】また請求項11にかかる血圧測定装置は脈
波検出手段が手の指先、耳朶、足の指先、上腕、手首、
頚部、胸部の少なくとも一つの部位に装着可能であり、
いずれの部位でも脈波を容易に検出できるので、使い勝
手を向上できるという効果がある。
In the blood pressure measuring apparatus according to the eleventh aspect, the pulse wave detecting means may include a fingertip of a hand, an earlobe, a fingertip of a foot, an upper arm, a wrist,
Neck, can be attached to at least one part of the chest,
Since the pulse wave can be easily detected at any part, there is an effect that usability can be improved.

【0116】また請求項12にかかる血圧測定装置は第
1の脈波検出部と第2の脈波検出部とが隣接しているた
め、小型化が図れ携帯に便利であるという効果がある。
Further, the blood pressure measurement device according to the twelfth aspect has an effect that the first pulse wave detection unit and the second pulse wave detection unit are adjacent to each other, so that the size can be reduced and the device is portable.

【0117】また請求項13にかかる血圧測定装置は双
方の発光部が共有されているため、部品の削減ができ実
用性が高いという効果がある。
Further, the blood pressure measurement device according to the thirteenth aspect has an effect that the number of parts can be reduced and the practicability is high because both light emitting parts are shared.

【0118】また請求項14にかかる血圧測定装置は圧
力センサより頚部や胸部から圧脈波を検出し心臓に近い
位置で脈波を検出できるので脈波伝播時間及び脈波伝播
速度の演算精度を向上することができるという効果があ
る。
The blood pressure measuring device according to claim 14 can detect a pressure pulse wave from the neck and chest from the pressure sensor and detect a pulse wave at a position close to the heart, so that the calculation accuracy of the pulse wave propagation time and the pulse wave propagation speed can be improved. There is an effect that it can be improved.

【0119】また請求項15にかかる血圧測定装置はマ
イクにより心臓の鼓動による振動や心音を検出するので
脈波伝播時間及び脈波伝播速度の演算精度を向上するこ
とができるという効果がある。
Further, the blood pressure measuring device according to the fifteenth aspect has the effect of improving the calculation accuracy of the pulse wave propagation time and the pulse wave propagation speed because the microphone detects the vibration and heart sound caused by the beating of the heart with the microphone.

【0120】また請求項16にかかる血圧測定装置は記
憶された値は血圧演算手段によりいつでも再生できるの
で、過去からの判定値のトレンド等が判り使い勝手がよ
いという効果がある。
Further, in the blood pressure measuring device according to the sixteenth aspect, the stored value can be reproduced at any time by the blood pressure calculating means, so that there is an effect that the trend of the judgment value from the past can be recognized and the usability is good.

【0121】また請求項17にかかる血圧測定装置はリ
アルタイムの表示や記憶された過去のデータをいつでも
表示することができ使い勝手がよいという効果がある。
Further, the blood pressure measurement device according to the seventeenth aspect has an effect that the real-time display and the stored past data can be displayed at any time, and the usability is good.

【0122】また請求項18にかかる血圧測定装置は演
算された血圧が正常範囲を逸脱した場合に警報発生部が
警報を発生するため、例えば就寝中や作業中の身体の異
常をチェックでき健康管理に役立つという効果がある。
In the blood pressure measuring device according to the eighteenth aspect, when the calculated blood pressure deviates from the normal range, the alarm generating unit generates an alarm, so that it is possible to check for abnormalities in the body while sleeping or working, for example, and to manage health. Has the effect of helping.

【0123】さらに請求項19にかかる血圧測定装置は
通信用端子部を介して外部媒体との通信を行うため、外
部媒体での集中健康管理や必要情報の更新ができ使い勝
手を向上することができるという効果がある。
Further, since the blood pressure measurement device according to the nineteenth aspect communicates with an external medium via the communication terminal unit, it is possible to perform intensive health management and update necessary information with the external medium, thereby improving usability. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の血圧測定装置のブロック図FIG. 1 is a block diagram of a blood pressure measurement device according to a first embodiment of the present invention.

【図2】同血圧測定装置の外観図FIG. 2 is an external view of the blood pressure measurement device.

【図3】同血圧測定装置の人体への装着部位を示した図FIG. 3 is a diagram showing a site where the blood pressure measurement device is attached to a human body.

【図4】同血圧測定装置の血圧測定手順を示すフローチ
ャート
FIG. 4 is a flowchart showing a blood pressure measurement procedure of the blood pressure measurement device.

【図5】(a)同血圧測定装置における正常後隆波を示
す波形特性図 (b)同速度脈波を示す波形特性図 (c)同加速度脈波を示す特性図
FIG. 5A is a waveform characteristic diagram showing a post-normal ridge wave in the blood pressure measurement device. FIG. 5B is a waveform characteristic diagram showing a same-speed pulse wave. FIG. 5C is a characteristic diagram showing the same acceleration pulse wave.

【図6】(a)前隆波の脈波を示す波形特性図 (b)同速度脈波を示す波形特性図 (c)同加速度脈波を示す波形特性図FIG. 6A is a waveform characteristic diagram showing a pulse wave of a front ridge wave. FIG. 6B is a waveform characteristic diagram showing a pulse wave of the same velocity.

【図7】(a)同血圧測定装置における前隆波の特徴量
を求める手順を示す特性図 (b)同前隆波の特徴量を求める手順を示す特性図 (c)同前隆波の特徴量を求める手順を示す特性図
7A is a characteristic diagram showing a procedure for obtaining a feature amount of a frontal ridge in the same blood pressure measurement device. FIG. 7B is a characteristic diagram showing a procedure for obtaining a feature amount of the frontal ridge. Characteristic diagram showing the procedure for obtaining feature values

【図8】同血圧測定装置における血圧とEI、DIとの
関係を示す特性図
FIG. 8 is a characteristic diagram showing a relationship between blood pressure and EI and DI in the blood pressure measurement device.

【図9】同血圧測定装置における血圧とTu、Teとの
関係を示す特性図
FIG. 9 is a characteristic diagram showing a relationship between blood pressure and Tu and Te in the blood pressure measurement device.

【図10】同血圧測定装置における血圧とTu、vとの
関係を示す特性図
FIG. 10 is a characteristic diagram showing a relationship between blood pressure and Tu, v in the blood pressure measurement device.

【図11】同血圧測定装置における血圧とRb、Rdと
の関係を示す特性図
FIG. 11 is a characteristic diagram showing a relationship between blood pressure and Rb and Rd in the blood pressure measurement device.

【図12】同血圧測定装置における血圧とEI、年齢と
の関係を示す特性図
FIG. 12 is a characteristic diagram showing a relationship between blood pressure, EI, and age in the blood pressure measurement device.

【図13】同血圧測定装置における血圧とTu、Rdと
の関係を示す特性図
FIG. 13 is a characteristic diagram showing a relationship between blood pressure and Tu and Rd in the blood pressure measurement device.

【図14】同血圧測定装置における血圧の判定ラインを
基準値で補正する手順を示す特性図
FIG. 14 is a characteristic diagram showing a procedure for correcting a blood pressure determination line with a reference value in the blood pressure measurement device.

【図15】本発明の実施例2における血圧測定装置のブ
ロック図
FIG. 15 is a block diagram of a blood pressure measurement device according to a second embodiment of the present invention.

【図16】同血圧測定装置の外観図FIG. 16 is an external view of the blood pressure measurement device.

【図17】同血圧測定装置の外観図FIG. 17 is an external view of the blood pressure measurement device.

【図18】同血圧測定装置の人体への装着部位を示した
FIG. 18 is a diagram showing a site where the blood pressure measurement device is attached to a human body.

【図19】(a)同血圧測定装置におけるTcを求める
手順を示す特性図 (b)同TCを求める手順を示す特性図
FIG. 19A is a characteristic diagram showing a procedure for obtaining Tc in the blood pressure measurement device. FIG. 19B is a characteristic diagram showing a procedure for obtaining the TC.

【図20】同血圧測定装置における血圧とTu、Tcと
の関係を示す特性図
FIG. 20 is a characteristic diagram showing a relationship between blood pressure and Tu and Tc in the blood pressure measurement device.

【図21】同血圧測定装置の神経回路網模式手段の構成
単位となる神経素子の概念図
FIG. 21 is a conceptual diagram of a neural element which is a structural unit of a neural network schematic unit of the blood pressure measurement device.

【図22】同血圧測定装置の神経素子を4つ並列につな
いで構成した信号変換手段の概念図
FIG. 22 is a conceptual diagram of a signal conversion unit in which four neural elements of the blood pressure measurement device are connected in parallel.

【図23】同血圧測定装置の学習アルゴリズムとして誤
差逆伝搬法を採用した場合の信号処理手段の構成を示す
ブロック図
FIG. 23 is a block diagram illustrating a configuration of a signal processing unit when an error back propagation method is employed as a learning algorithm of the blood pressure measurement device.

【図24】同血圧測定装置の神経回路網模式手段を用い
た多層パーセプトロンの構成を示すブロック図
FIG. 24 is a block diagram showing a configuration of a multilayer perceptron using a neural network model of the blood pressure measurement device.

【図25】従来の血圧測定装置のブロック図FIG. 25 is a block diagram of a conventional blood pressure measurement device.

【図26】同従来の血圧測定装置におけるPTT、P
I、Tb、x、yを求める手順を示す特性図
FIG. 26 shows PTT and P in the conventional blood pressure measurement device.
A characteristic diagram showing a procedure for obtaining I, Tb, x, and y.

【符号の説明】[Explanation of symbols]

8 脈波検出手段 9 脈波検出部 9a〜9n 脈波検出部 9a′ 第1の脈波検出部 9b′ 第2の脈波検出部 10 脈波補正部 11 特徴量演算手段 12 脈波特徴量演算部 13 速度脈波演算部 14 速度脈波特徴量演算部 15 加速度脈波演算部 16 加速度脈波特徴量演算部 17 身体特徴量入力部 18 血圧演算手段 20 基準値入力部 21 記憶部 22 表示部 23 警報発生部 29 第1の発光部 30 第1の受光部 31 通信用端子部 32 脈波伝播特徴量演算部 33 第2の発光部 34 第2の受光部 35 圧力センサ Reference Signs List 8 pulse wave detecting means 9 pulse wave detecting section 9a to 9n pulse wave detecting section 9a 'first pulse wave detecting section 9b' second pulse wave detecting section 10 pulse wave correcting section 11 feature amount calculating means 12 pulse wave feature amount Calculation part 13 Velocity pulse wave calculation part 14 Velocity pulse wave feature quantity calculation part 15 Acceleration pulse wave calculation part 16 Acceleration pulse wave feature quantity calculation part 17 Body feature quantity input part 18 Blood pressure calculation means 20 Reference value input part 21 Storage part 22 Display Unit 23 alarm generating unit 29 first light emitting unit 30 first light receiving unit 31 communication terminal unit 32 pulse wave propagation feature quantity calculating unit 33 second light emitting unit 34 second light receiving unit 35 pressure sensor

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】人体の血液循環により生じる脈波を検出す
る脈波検出手段と、前記脈波検出手段から出力される脈
波信号に基づき血圧に関連した特徴量を演算する特徴量
演算手段と、前記特徴量演算手段から出力される特徴量
信号に基づき血圧を演算する血圧演算手段とからなる血
圧測定装置。
1. A pulse wave detecting means for detecting a pulse wave generated by blood circulation of a human body, and a characteristic amount calculating means for calculating a characteristic amount related to blood pressure based on a pulse wave signal output from the pulse wave detecting means. A blood pressure calculating means for calculating a blood pressure based on the characteristic amount signal output from the characteristic amount calculating means.
【請求項2】脈波検出手段は脈波間隔を演算し、脈波信
号を前記脈波間隔で補正する脈波補正部を有した請求項
1記載の血圧測定装置。
2. The blood pressure measurement device according to claim 1, wherein the pulse wave detecting means has a pulse wave correction unit for calculating a pulse wave interval and correcting a pulse wave signal at the pulse wave interval.
【請求項3】特徴量演算手段は脈波検出手段から出力さ
れる脈波信号の各波高、前記各波高の比、脈波立上り点
から前記各波までの時間、前記各波相互の時間間隔、脈
波の積分値、脈拍数の少なくとも一つを脈波特徴量とし
て演算する脈波特徴量演算部を有した請求項1または2
記載の血圧測定装置。
3. The characteristic value calculating means includes means for calculating each pulse height of the pulse wave signal output from the pulse wave detecting means, a ratio of each of the pulse heights, a time from a pulse wave rising point to each of the waves, and a time interval between the waves. 3. A pulse wave feature value calculation unit for calculating at least one of an integrated value of a pulse wave and a pulse rate as a pulse wave feature value.
The blood pressure measurement device according to any one of the preceding claims.
【請求項4】特徴量演算手段は脈波検出手段から出力さ
れる脈波信号に基づき脈波の1次微分である速度脈波を
演算する速度脈波演算部と、前記速度脈波演算部から出
力される速度脈波信号の各波高、前記各波高の比、前記
速度脈波立上り点から前記各波までの時間、前記各波相
互の時間間隔、前記速度脈波のゼロクロス間隔の少なく
とも一つを速度脈波特徴量として演算する速度脈波特徴
量演算部を有した請求項1ないし3のいずれか1項記載
の血圧測定装置。
4. A speed pulse wave calculating section for calculating a speed pulse wave which is a first derivative of the pulse wave based on a pulse wave signal output from the pulse wave detecting means, and a speed pulse wave calculating section. At least one of the wave height of the speed pulse wave signal output from the vehicle, the ratio of the wave heights, the time from the rising point of the speed pulse wave to the waves, the time interval between the waves, and the zero-cross interval of the speed pulse wave. The blood pressure measurement device according to any one of claims 1 to 3, further comprising a speed pulse wave feature value calculation unit that calculates one as a speed pulse wave feature value.
【請求項5】特徴量演算手段は脈波検出手段から出力さ
れる脈波信号に基づき脈波の2次微分である加速度脈波
を演算する加速度脈波演算部と、前記加速度脈波演算部
から出力される加速度脈波信号の各波高、前記各波高の
比、前記各波相互の時間間隔の少なくとも一つを加速度
脈波特徴量として演算する加速度脈波特徴量演算部を有
した請求項1ないし4のいずれか1項記載の血圧測定装
置。
5. An acceleration pulse wave calculating section for calculating an acceleration pulse wave, which is a second derivative of the pulse wave, based on a pulse wave signal output from the pulse wave detecting means; An acceleration pulse wave feature value calculation unit that calculates at least one of each wave height of the acceleration pulse wave signal output from the unit, a ratio of the wave heights, and a time interval between the waves as an acceleration pulse wave feature amount. The blood pressure measurement device according to any one of claims 1 to 4.
【請求項6】脈波検出手段は人体の相異なる部位の脈波
を検出する複数の脈波検出部を有し、特徴量演算手段は
前記脈波検出部からの脈波信号に基づき脈波伝播時間、
脈波伝播速度の少なくとも一つを脈波伝播特徴量として
演算する脈波伝播特徴量演算部を有した請求項1ないし
5のいずれか1項記載の血圧測定装置。
6. The pulse wave detecting means has a plurality of pulse wave detecting sections for detecting pulse waves at different parts of a human body, and the characteristic amount calculating means is based on a pulse wave signal from the pulse wave detecting section. Propagation time,
The blood pressure measurement device according to any one of claims 1 to 5, further comprising a pulse wave propagation feature value calculation unit that calculates at least one of the pulse wave propagation speeds as a pulse wave propagation feature value.
【請求項7】特徴量演算手段は人体の身長、体重、性
別、年齢の少なくとも一つを身体特徴量として入力可能
な身体特徴量入力部を有した請求項1ないし6のいずれ
か1項記載の血圧測定装置。
7. The feature calculating means according to claim 1, wherein said feature calculating means has a body feature input unit capable of inputting at least one of a height, a weight, a sex, and an age of a human body as a body feature. Blood pressure measuring device.
【請求項8】血圧演算手段は脈波特徴量、速度脈波特徴
量、加速度脈波特徴量、脈波伝播特徴量、身体特徴量の
少なくとも一つに基づき血圧を演算する請求項3ないし
7のいずれか1項記載の血圧測定装置。
8. The blood pressure calculation means calculates a blood pressure based on at least one of a pulse wave feature, a velocity pulse wave feature, an acceleration pulse wave feature, a pulse wave propagation feature, and a body feature. The blood pressure measurement device according to any one of claims 1 to 7.
【請求項9】血圧演算手段は血圧の基準値を入力するこ
とが可能な基準値入力部を有し、脈波特徴量、速度脈波
特徴量、加速度脈波特徴量、脈波伝播特徴量、身体特徴
量の少なくとも一つと演算する血圧との関係を補正でき
る請求項3ないし8のいずれか1項記載の血圧測定装
置。
9. The blood pressure calculation means has a reference value input unit capable of inputting a reference value of blood pressure, and includes a pulse wave characteristic amount, a velocity pulse wave characteristic amount, an acceleration pulse wave characteristic amount, and a pulse wave propagation characteristic amount. The blood pressure measurement device according to any one of claims 3 to 8, wherein a relationship between at least one of the body characteristic amounts and the calculated blood pressure can be corrected.
【請求項10】血圧値演算手段は血圧の基準値を教師信
号とし、脈波特徴量、速度脈波特徴量、加速度脈波特徴
量、脈波伝播特徴量、身体特徴量の少なくとも一つと演
算する血圧との関係を学習する請求項3ないし9のいず
れか1項記載の血圧測定装置。
10. A blood pressure value calculating means calculates a reference value of blood pressure as a teacher signal and calculates at least one of a pulse wave characteristic amount, a velocity pulse wave characteristic amount, an acceleration pulse wave characteristic amount, a pulse wave propagation characteristic amount, and a body characteristic amount. The blood pressure measurement device according to any one of claims 3 to 9, wherein the blood pressure measurement device learns a relationship with the blood pressure to be performed.
【請求項11】脈波検出手段は手の指先、耳朶、足の指
先、上腕、手首、頚部、胸部の少なくとも一つの部位に
装着可能であり、前記部位の脈波を検出する請求項1な
いし10のいずれか1項記載の血圧測定装置。
11. The pulse wave detecting means can be attached to at least one of a fingertip, an earlobe, a toe fingertip, an upper arm, a wrist, a neck, and a chest, and detects a pulse wave at said portion. The blood pressure measurement device according to any one of claims 10 to 13.
【請求項12】脈波検出手段は手の指先から脈波を検出
する第1の脈波検出部と、第1の脈波検出部と隣接して
設置され前記指先以外の部位から脈波を検出する第2の
脈波検出部とを有する請求項11記載の血圧測定装置。
12. A pulse wave detecting means for detecting a pulse wave from a fingertip of a hand, and a pulse wave detecting means installed adjacent to the first pulse wave detecting unit to detect a pulse wave from a part other than the fingertip. The blood pressure measurement device according to claim 11, further comprising a second pulse wave detection unit that detects the pulse wave.
【請求項13】第1の脈波検出部と第2の脈波検出部は
それぞれ光電脈波方式で脈波を検出するための発光部と
受光部とを有し、双方の発光部は共有された請求項12
記載の血圧測定装置。
13. A first pulse wave detecting section and a second pulse wave detecting section each have a light emitting section and a light receiving section for detecting a pulse wave by a photoelectric pulse wave method, and both light emitting sections are shared. Claim 12
The blood pressure measurement device according to any one of the preceding claims.
【請求項14】第2の脈波検出部は脈圧を検出する圧力
センサからなる請求項12記載の血圧測定装置。
14. The blood pressure measurement device according to claim 12, wherein the second pulse wave detector comprises a pressure sensor for detecting a pulse pressure.
【請求項15】第2の脈波検出部は心音を検出するマイ
クからなる請求項12記載の血圧測定装置。
15. The blood pressure measurement device according to claim 12, wherein the second pulse wave detector comprises a microphone for detecting a heart sound.
【請求項16】血圧値演算手段は演算された血圧を記憶
する記憶部を有した請求項1ないし15のいずれか1項
記載の血圧測定装置。
16. The blood pressure measurement device according to claim 1, wherein the blood pressure value calculation means has a storage unit for storing the calculated blood pressure.
【請求項17】血圧値演算手段は演算された血圧を表示
する表示部を有した請求項1ないし15のいずれか1項
記載の血圧測定装置。
17. The blood pressure measurement device according to claim 1, wherein the blood pressure value calculation means has a display for displaying the calculated blood pressure.
【請求項18】血圧値演算手段は演算された血圧が予め
設定された正常範囲を逸脱した場合に警報を発生する警
報発生部を有した請求項1ないし15のいずれか1項記
載の血圧測定装置。
18. The blood pressure measurement device according to claim 1, wherein the blood pressure value calculation means has an alarm generation unit that generates an alarm when the calculated blood pressure deviates from a predetermined normal range. apparatus.
【請求項19】血圧値演算手段は外部媒体との通信を行
うための通信用端子部を有した請求項1ないし15のい
ずれか1項記載の血圧測定装置。
19. The blood pressure measurement device according to claim 1, wherein the blood pressure value calculation means has a communication terminal for communicating with an external medium.
JP9107010A 1997-04-24 1997-04-24 Blood pressure measuring device Pending JPH10295657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9107010A JPH10295657A (en) 1997-04-24 1997-04-24 Blood pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9107010A JPH10295657A (en) 1997-04-24 1997-04-24 Blood pressure measuring device

Publications (1)

Publication Number Publication Date
JPH10295657A true JPH10295657A (en) 1998-11-10

Family

ID=14448221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9107010A Pending JPH10295657A (en) 1997-04-24 1997-04-24 Blood pressure measuring device

Country Status (1)

Country Link
JP (1) JPH10295657A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device
WO2000049943A1 (en) * 1999-02-22 2000-08-31 Seiko Epson Corporation Blood pressure measuring device and pulse wave detecting device
JP2001224564A (en) * 2000-02-18 2001-08-21 Nippon Colin Co Ltd Cardiac sound detector and pulse wave propagating speed information measuring instrument using it
JP2002224065A (en) * 2001-02-07 2002-08-13 Nippon Colin Co Ltd Cardiac sound detecting device and cardiac sound detecting method
JP2006006897A (en) * 2004-05-21 2006-01-12 Sony Corp Method and apparatus for measurement of blood pressure
JP2006026210A (en) * 2004-07-20 2006-02-02 Sharp Corp Portable type health care apparatus
US7022084B2 (en) 2001-02-07 2006-04-04 Colin Medical Technology Corporation Heart-sound detecting apparatus and heart-sound detecting method
JP2006263354A (en) * 2005-03-25 2006-10-05 Denso Corp Apparatus for acquiring individual information of human body, sphygmomanometer, and pulse wave analyzer
JP2007007077A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure monitoring apparatus
JP2007007076A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure monitoring apparatus
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JPWO2005048832A1 (en) * 2003-11-18 2007-06-07 ソニー株式会社 INPUT DEVICE, INPUT METHOD, AND ELECTRONIC DEVICE
JP2008302127A (en) * 2007-06-11 2008-12-18 Denso Corp Blood pressure measuring apparatus, program, and recording medium
JP2009089829A (en) * 2007-10-05 2009-04-30 Denso Corp Biological state estimating device, program, and recording medium
JP2009125316A (en) * 2007-11-22 2009-06-11 A & D Co Ltd Blood pressure monitor system
JP2009125317A (en) * 2007-11-22 2009-06-11 A & D Co Ltd Blood pressure monitor system
JP2009539445A (en) * 2006-06-07 2009-11-19 ガンブロ・ルンディア・エービー Prediction of rapid symptomatic blood pressure drop
JP2012065707A (en) * 2010-09-21 2012-04-05 Rohm Co Ltd Measuring system
WO2013180085A1 (en) * 2012-05-29 2013-12-05 国立大学法人信州大学 Sphygmomanometer device
US8870782B2 (en) 2010-09-29 2014-10-28 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
WO2015159692A1 (en) * 2014-04-14 2015-10-22 株式会社村田製作所 Pulse wave propagation time measurement device and biological state estimation device
JP2016016295A (en) * 2014-07-11 2016-02-01 株式会社デンソー Blood pressure estimation apparatus
JP2016150131A (en) * 2015-02-18 2016-08-22 株式会社メガチップス Blood pressure measuring device
JP2017018595A (en) * 2015-07-08 2017-01-26 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for analyzing biosignal
JPWO2015098977A1 (en) * 2013-12-25 2017-03-23 旭化成株式会社 Pulse wave measuring device, portable device, medical device system, and biological information communication system
JP6213943B1 (en) * 2016-05-19 2017-10-18 パナソニックIpマネジメント株式会社 Blood pressure estimation device, blood pressure estimation method, and computer program
WO2017199631A1 (en) * 2016-05-19 2017-11-23 パナソニックIpマネジメント株式会社 Blood pressure estimating device, blood pressure estimating method, and computer program
JP2018500949A (en) * 2014-08-22 2018-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for measuring blood pressure using acoustic signals
WO2018168809A1 (en) * 2017-03-14 2018-09-20 オムロンヘルスケア株式会社 Blood pressure data processing device, blood pressure data processing method, and program
WO2018168807A1 (en) * 2017-03-15 2018-09-20 オムロンヘルスケア株式会社 Blood pressure measurement device, method, and program
WO2018168800A1 (en) * 2017-03-14 2018-09-20 オムロン株式会社 Device and method for managing blood pressure-related information
WO2018168808A1 (en) * 2017-03-14 2018-09-20 オムロンヘルスケア株式会社 Blood pressure data processing device, blood pressure data processing method, and program
WO2018198637A1 (en) * 2017-04-24 2018-11-01 ヘルスセンシング株式会社 Blood pressure calculation method and device
JP2019072494A (en) * 2017-10-18 2019-05-16 三星電子株式会社Samsung Electronics Co.,Ltd. Blood pressure estimating apparatus and method, and wearable device
KR20190088784A (en) * 2018-01-19 2019-07-29 한국과학기술원 piezo-electric based blood pressure measuring apparatus using piezo-electric pulse device
US10390712B2 (en) 2014-02-13 2019-08-27 Nec Corporation Blood pressure measurement device, blood pressure measurement method, and non-transitory recording medium
JP2019530560A (en) * 2016-11-22 2019-10-24 浙江脉聯医療設備有限公司 Correction method of pulse wave propagation time for arterial blood pressure
KR20200019427A (en) * 2018-08-14 2020-02-24 제주대학교병원 Method and system for computation of start time of wave-free period for calculation of iFR for determination of treatment of intermediate coronary artery stenosis
JP2020517322A (en) * 2017-04-19 2020-06-18 ヴァイタル コネクト, インコーポレイテッドVital Connect, Inc. Non-invasive blood pressure measurement and monitoring
JP2020092738A (en) * 2018-12-10 2020-06-18 株式会社アルム Blood pressure estimation device, blood pressure estimation system, and blood pressure estimation program
JP2020189077A (en) * 2019-02-28 2020-11-26 株式会社東芝 Blood pressure measuring device and blood pressure measuring method
JP2022042920A (en) * 2020-09-03 2022-03-15 Ssst株式会社 Biological information calculation system
JP7121893B1 (en) * 2021-02-16 2022-08-19 ヘルスセンシング株式会社 Signal processing device, signal processing system and signal processing program
WO2022176221A1 (en) * 2021-02-16 2022-08-25 ヘルスセンシング株式会社 Signal processing device, signal processing system, and signal processing program
KR20230078290A (en) * 2021-11-26 2023-06-02 한국세라믹기술원 Micro ultrasonics wave transducer array and biosensor patch using the same

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device
WO2000049943A1 (en) * 1999-02-22 2000-08-31 Seiko Epson Corporation Blood pressure measuring device and pulse wave detecting device
EP1074216A1 (en) * 1999-02-22 2001-02-07 Seiko Epson Corporation Blood pressure measuring device and pulse wave detecting device
US6432060B1 (en) 1999-02-22 2002-08-13 Seiko Epson Corporation Blood pressure monitor and pulse wave detection apparatus
EP1074216A4 (en) * 1999-02-22 2004-09-08 Seiko Epson Corp Blood pressure measuring device and pulse wave detecting device
JP3873625B2 (en) * 1999-02-22 2007-01-24 セイコーエプソン株式会社 Blood pressure measurement device
JP2001224564A (en) * 2000-02-18 2001-08-21 Nippon Colin Co Ltd Cardiac sound detector and pulse wave propagating speed information measuring instrument using it
JP2002224065A (en) * 2001-02-07 2002-08-13 Nippon Colin Co Ltd Cardiac sound detecting device and cardiac sound detecting method
US7022084B2 (en) 2001-02-07 2006-04-04 Colin Medical Technology Corporation Heart-sound detecting apparatus and heart-sound detecting method
JP4857770B2 (en) * 2003-11-18 2012-01-18 ソニー株式会社 INPUT DEVICE, INPUT METHOD, AND ELECTRONIC DEVICE
JPWO2005048832A1 (en) * 2003-11-18 2007-06-07 ソニー株式会社 INPUT DEVICE, INPUT METHOD, AND ELECTRONIC DEVICE
JP2006006897A (en) * 2004-05-21 2006-01-12 Sony Corp Method and apparatus for measurement of blood pressure
JP2006026210A (en) * 2004-07-20 2006-02-02 Sharp Corp Portable type health care apparatus
JP2006263354A (en) * 2005-03-25 2006-10-05 Denso Corp Apparatus for acquiring individual information of human body, sphygmomanometer, and pulse wave analyzer
JP2007007077A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure monitoring apparatus
JP2007007076A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure monitoring apparatus
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2009539445A (en) * 2006-06-07 2009-11-19 ガンブロ・ルンディア・エービー Prediction of rapid symptomatic blood pressure drop
JP2008302127A (en) * 2007-06-11 2008-12-18 Denso Corp Blood pressure measuring apparatus, program, and recording medium
JP2009089829A (en) * 2007-10-05 2009-04-30 Denso Corp Biological state estimating device, program, and recording medium
JP2009125316A (en) * 2007-11-22 2009-06-11 A & D Co Ltd Blood pressure monitor system
JP2009125317A (en) * 2007-11-22 2009-06-11 A & D Co Ltd Blood pressure monitor system
JP2012065707A (en) * 2010-09-21 2012-04-05 Rohm Co Ltd Measuring system
US8870782B2 (en) 2010-09-29 2014-10-28 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
WO2013180085A1 (en) * 2012-05-29 2013-12-05 国立大学法人信州大学 Sphygmomanometer device
JPWO2015098977A1 (en) * 2013-12-25 2017-03-23 旭化成株式会社 Pulse wave measuring device, portable device, medical device system, and biological information communication system
US10624586B2 (en) 2013-12-25 2020-04-21 Asahi Kasei Kabushiki Kaisha Pulse wave measuring device, mobile device, medical equipment system and biological information communication system
US10390712B2 (en) 2014-02-13 2019-08-27 Nec Corporation Blood pressure measurement device, blood pressure measurement method, and non-transitory recording medium
JPWO2015159692A1 (en) * 2014-04-14 2017-04-13 株式会社村田製作所 Pulse wave propagation time measurement device and biological state estimation device
CN106231995B (en) * 2014-04-14 2020-07-03 株式会社村田制作所 Pulse wave propagation time measuring device and living body state estimating device
US10390716B2 (en) 2014-04-14 2019-08-27 Murata Manufacturing Co., Ltd. Pulse transmission time measuring apparatus and biological state estimating apparatus
CN106231995A (en) * 2014-04-14 2016-12-14 株式会社村田制作所 Pulse wave propagation time measurement apparatus and life entity condition estimating device
WO2015159692A1 (en) * 2014-04-14 2015-10-22 株式会社村田製作所 Pulse wave propagation time measurement device and biological state estimation device
JP2016016295A (en) * 2014-07-11 2016-02-01 株式会社デンソー Blood pressure estimation apparatus
JP2018500949A (en) * 2014-08-22 2018-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for measuring blood pressure using acoustic signals
WO2016132632A1 (en) * 2015-02-18 2016-08-25 株式会社メガチップス Blood pressure measuring device
JP2016150131A (en) * 2015-02-18 2016-08-22 株式会社メガチップス Blood pressure measuring device
US10602990B2 (en) 2015-02-18 2020-03-31 Megachips Corporation Blood pressure measurement apparatus and blood pressure measurement method
JP2017018595A (en) * 2015-07-08 2017-01-26 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for analyzing biosignal
JP6213943B1 (en) * 2016-05-19 2017-10-18 パナソニックIpマネジメント株式会社 Blood pressure estimation device, blood pressure estimation method, and computer program
WO2017199631A1 (en) * 2016-05-19 2017-11-23 パナソニックIpマネジメント株式会社 Blood pressure estimating device, blood pressure estimating method, and computer program
JP2019530560A (en) * 2016-11-22 2019-10-24 浙江脉聯医療設備有限公司 Correction method of pulse wave propagation time for arterial blood pressure
JP2018149186A (en) * 2017-03-14 2018-09-27 オムロンヘルスケア株式会社 Blood pressure data processing device, blood pressure data processing method, and program
JP2018149188A (en) * 2017-03-14 2018-09-27 オムロンヘルスケア株式会社 Blood pressure data processing device, blood pressure data processing method, and program
WO2018168808A1 (en) * 2017-03-14 2018-09-20 オムロンヘルスケア株式会社 Blood pressure data processing device, blood pressure data processing method, and program
WO2018168800A1 (en) * 2017-03-14 2018-09-20 オムロン株式会社 Device and method for managing blood pressure-related information
WO2018168809A1 (en) * 2017-03-14 2018-09-20 オムロンヘルスケア株式会社 Blood pressure data processing device, blood pressure data processing method, and program
CN110418601A (en) * 2017-03-14 2019-11-05 欧姆龙健康医疗事业株式会社 Blood pressure data processing unit, blood pressure data processing method and program
WO2018168807A1 (en) * 2017-03-15 2018-09-20 オムロンヘルスケア株式会社 Blood pressure measurement device, method, and program
JP2020517322A (en) * 2017-04-19 2020-06-18 ヴァイタル コネクト, インコーポレイテッドVital Connect, Inc. Non-invasive blood pressure measurement and monitoring
WO2018198637A1 (en) * 2017-04-24 2018-11-01 ヘルスセンシング株式会社 Blood pressure calculation method and device
US11627884B2 (en) 2017-04-24 2023-04-18 Health Sensing Co., Ltd. Blood pressure calculation method and device
JPWO2018198637A1 (en) * 2017-04-24 2020-04-23 ヘルスセンシング株式会社 Blood pressure calculation method and device
JP2019072494A (en) * 2017-10-18 2019-05-16 三星電子株式会社Samsung Electronics Co.,Ltd. Blood pressure estimating apparatus and method, and wearable device
KR20190088784A (en) * 2018-01-19 2019-07-29 한국과학기술원 piezo-electric based blood pressure measuring apparatus using piezo-electric pulse device
KR20200019427A (en) * 2018-08-14 2020-02-24 제주대학교병원 Method and system for computation of start time of wave-free period for calculation of iFR for determination of treatment of intermediate coronary artery stenosis
JP2020092738A (en) * 2018-12-10 2020-06-18 株式会社アルム Blood pressure estimation device, blood pressure estimation system, and blood pressure estimation program
JP2020189077A (en) * 2019-02-28 2020-11-26 株式会社東芝 Blood pressure measuring device and blood pressure measuring method
JP2022042920A (en) * 2020-09-03 2022-03-15 Ssst株式会社 Biological information calculation system
WO2022176221A1 (en) * 2021-02-16 2022-08-25 ヘルスセンシング株式会社 Signal processing device, signal processing system, and signal processing program
JP2022169643A (en) * 2021-02-16 2022-11-09 ヘルスセンシング株式会社 Signal processing device, signal processing system, and signal processing program
JP7121893B1 (en) * 2021-02-16 2022-08-19 ヘルスセンシング株式会社 Signal processing device, signal processing system and signal processing program
US11730397B2 (en) 2021-02-16 2023-08-22 Health Sensing Co., Ltd. Signal processing apparatus, signal processing system, and signal processing program
KR20230078290A (en) * 2021-11-26 2023-06-02 한국세라믹기술원 Micro ultrasonics wave transducer array and biosensor patch using the same

Similar Documents

Publication Publication Date Title
JPH10295657A (en) Blood pressure measuring device
EP3773155B1 (en) System and method for non-invasive determination of blood pressure dip based on trained prediction models
JPH11155826A (en) Blood pressure measurement device
Naeini et al. A real-time PPG quality assessment approach for healthcare Internet-of-Things
US20180228383A1 (en) Blood pressure measuring device, blood pressure measurement method and blood pressure measurement program
US20230218178A1 (en) Construction method and application of digital human cardiovascular system based on hemodynamics
Chakraborty et al. Measurement of arterial blood pressure through single-site acquisition of photoplethysmograph signal
Paviglianiti et al. Noninvasive arterial blood pressure estimation using ABPNet and VITAL-ECG
CN113303776A (en) Non-contact blood pressure measuring method based on cyclic neural network
Priyanka et al. Estimating blood pressure via artificial neural networks based on measured photoplethysmography waveforms
Ji et al. Noninvasive cuffless blood pressure estimation with dendritic neural regression
CN113907727A (en) Beat-to-beat blood pressure measuring system and method based on photoplethysmography
CN116392091A (en) Continuous arterial blood pressure waveform detection system and device based on single-channel finger tip PPG
US20220313167A1 (en) Recliner having healthcare function
JP3721743B2 (en) Cardiac function diagnostic device
CN115054218A (en) Blood pressure measuring method and equipment
Yen et al. Development of a continuous blood pressure measurement and cardiovascular multi-indicator platform for Asian populations by using a back propagation neural network and dual photoplethysmography sensor signal acquisition technology
Tian et al. A device employing a neural network for blood pressure estimation from the oscillatory pressure pulse wave and PPG signal
JP2023076791A (en) Information processing system, server, information processing method, and program
CN114947782A (en) System and method for central arterial pressure waveform reconstruction based on PPG signal
Forouzanfar A modeling approach for coefficient-free oscillometric blood pressure estimation
Zhang Cuff-free blood pressure estimation using signal processing techniques
JP7015602B1 (en) Biometric information measuring device
Lin Specialised non-invasive blood pressure measurement algorithm
US20230277071A1 (en) Systems, methods, and devices for non-invasive and continuous hemodynamic measurement