JP2006006897A - Method and apparatus for measurement of blood pressure - Google Patents

Method and apparatus for measurement of blood pressure Download PDF

Info

Publication number
JP2006006897A
JP2006006897A JP2004242795A JP2004242795A JP2006006897A JP 2006006897 A JP2006006897 A JP 2006006897A JP 2004242795 A JP2004242795 A JP 2004242795A JP 2004242795 A JP2004242795 A JP 2004242795A JP 2006006897 A JP2006006897 A JP 2006006897A
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
wave
maximum point
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004242795A
Other languages
Japanese (ja)
Inventor
Susumu Murakami
進 村上
Akira Ogino
晃 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004242795A priority Critical patent/JP2006006897A/en
Publication of JP2006006897A publication Critical patent/JP2006006897A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measurement of blood pressure to estimate the blood pressure of the subject by only analyzing a measured pulse wave. <P>SOLUTION: In this method for measurement of blood pressure, an acceleration pulse wave is obtained by twice differentiating a volume pulse wave measured on the subject. Blood pressure of the subject is estimated by using phenomena that a time interval t from the maximum point of the a wave (protosystole positive wave) to the maximum point of the e wave (protodiastole positive wave) becomes shorter when blood pressure is high and the time interval t longer when blood pressure is low. When the maximum point of the c wave (midsystole re-elevation wave) or the minimum point of the d wave (late systolic re-descent wave) are unclear and the maximum point and the minimum point of each component cannot be discriminated, the acceleration pulse wave is further differentiated twice to obtain the maximum point and the minimum point in the acceleration pulse wave. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測定した脈波を解析することで被験者の血圧を推定する血圧測定方法及びその装置に関する。   The present invention relates to a blood pressure measurement method and apparatus for estimating blood pressure of a subject by analyzing measured pulse waves.

従来、血圧を測定する方法としては、カフ(圧迫帯)を用いて動脈を圧迫し、その圧迫の変化過程で血圧を測定するものと、カフを用いないで血圧を測定するものとがある。このうちカフを用いる血圧測定方法は、臨床でも長年利用されており、その精度は社会的にも認知されている。一方、カフを用いない方法としては、例えば下記特許文献1に示すようなものがある。   Conventionally, methods for measuring blood pressure include a method in which an artery is compressed using a cuff (compression band) and the blood pressure is measured in the process of changing the pressure, and a method in which blood pressure is measured without using a cuff. Among them, the blood pressure measurement method using a cuff has been used in clinical practice for many years, and its accuracy is recognized by society. On the other hand, as a method not using a cuff, for example, there is a method as shown in Patent Document 1 below.

この特許文献1記載の血圧計測装置は、一対の心電位電極と、心電位電極からの心電位信号を処理する心電位処理手段と、指尖光電脈波検出センサと、検出された脈波信号を処理する脈波処理手段と、処理された脈波信号を2回微分する2回微分処理手段と、これらの処理された心電位信号、脈波信号及び2回微分信号に基づいて血圧を演算する演算手段とから構成される。そして、演算手段は、心電位波形と脈波波形とから脈波伝播時間、脈波インターバル及び心拍数を求め、これらに基づいて血圧を演算する。すなわち、この特許文献1記載の技術は、血圧が高くなると一般に脈の伝播速度が速くなる現象を利用し、電気的に伝播する故に末梢においても心臓で発生した時点と殆ど遅延がない心電位波形を基準として、心電位波形に対する末梢で観測される脈の遅延時間から血圧を推定するものである。   The blood pressure measurement device described in Patent Document 1 includes a pair of electrocardiogram electrodes, an electrocardiogram processing means for processing an electrocardiogram signal from the electrocardiogram electrodes, a fingertip photoelectric pulse wave detection sensor, and a detected pulse wave signal. A pulse wave processing means for processing the blood pressure, a second differential processing means for differentiating the processed pulse wave signal twice, and calculating a blood pressure based on the processed electrocardiogram signal, pulse wave signal and the second differential signal And calculating means. And a calculating means calculates | requires a pulse wave propagation time, a pulse wave interval, and a heart rate from a cardiac potential waveform and a pulse wave waveform, and calculates blood pressure based on these. That is, the technique disclosed in Patent Document 1 uses a phenomenon that the propagation speed of a pulse is generally increased when blood pressure is increased, and an electrocardiographic waveform that has little delay from the time of occurrence in the heart even in the periphery because of electrical propagation. The blood pressure is estimated from the pulse delay time observed in the periphery with respect to the electrocardiographic waveform.

特開平8−140948号公報JP-A-8-140948

しかしながら、この特許文献1記載の技術は、脈波伝播時間を求めるために心電位と脈という伝播原理が異なる2つのパラメータを計測しなければならず、また、一対の心電位電極と指尖光電波検出センサとを被験者に装着する必要があり、面倒且つ煩雑なものであった。   However, in the technique described in Patent Document 1, two parameters having different propagation principles of cardiac potential and pulse must be measured in order to obtain the pulse wave propagation time, and a pair of cardiac potential electrodes and fingertip light are measured. It was necessary to attach the radio wave detection sensor to the subject, which was troublesome and complicated.

本発明は、このような従来の実情に鑑みて提案されたものであり、測定した脈波を解析するのみで被験者の血圧を推定する血圧測定方法及びその装置を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and an object of the present invention is to provide a blood pressure measurement method and apparatus for estimating the blood pressure of a subject only by analyzing the measured pulse wave.

本件発明者らは、上述した目的を達成するために、様々な観点から鋭意研究を重ねてきた。その結果、脈波(容積脈波)を2回微分した加速度脈波のうち、収縮初期陽性波の極大点から拡張初期陽性波の極大点までの時間間隔が血圧と有意な相関を示すことを見出した。本発明は、このような知見に基づいて完成されたものである。   In order to achieve the above-described object, the present inventors have conducted intensive research from various viewpoints. As a result, among the acceleration pulse waves obtained by differentiating the pulse wave (volume pulse wave) twice, the time interval from the maximum point of the contraction initial positive wave to the maximum point of the expansion initial positive wave shows a significant correlation with the blood pressure. I found it. The present invention has been completed based on such findings.

すなわち、本発明に係る血圧測定方法は、血液循環によって生じる脈波を検出する脈波検出工程と、上記脈波検出工程にて検出された脈波の波形を2回微分する微分演算工程と、上記微分演算工程で得られた波形のうち、収縮初期陽性波の極大点から拡張初期陽性波の極大点までの時間間隔に基づいて血圧を演算する血圧演算工程とを有する。   That is, the blood pressure measurement method according to the present invention includes a pulse wave detection step for detecting a pulse wave generated by blood circulation, a differential calculation step for differentiating the pulse wave waveform detected in the pulse wave detection step twice, A blood pressure calculation step of calculating blood pressure based on a time interval from the maximum point of the contraction initial positive wave to the maximum point of the expansion initial positive wave among the waveforms obtained in the differential calculation step.

また、本発明に係る血圧測定装置は、血液循環によって生じる脈波を検出する脈波検出手段と、上記脈波検出手段によって検出された脈波の波形を2回微分する微分演算手段と、上記微分演算手段によって得られた波形のうち、収縮初期陽性波の極大点から拡張初期陽性波の極大点までの時間間隔に基づいて血圧を演算する血圧演算手段とを備える。   Further, the blood pressure measurement device according to the present invention includes a pulse wave detection means for detecting a pulse wave generated by blood circulation, a differential calculation means for differentiating the pulse wave waveform detected by the pulse wave detection means twice, Blood pressure calculating means for calculating blood pressure based on the time interval from the maximum point of the contraction initial positive wave to the maximum point of the extended initial positive wave among the waveforms obtained by the differential calculation means.

ここで、脈波を検出する際には、脈波を検出する部位に対して発光部から光を投射し、この部位から得られる透過光又は反射光を受光部により検出する。   Here, when detecting a pulse wave, light is projected from the light emitting unit to a part for detecting the pulse wave, and transmitted light or reflected light obtained from this part is detected by the light receiving unit.

本発明に係る血圧測定方法及びその装置では、血液循環によって生じる脈波の波形(容積脈波)を2回微分した波形(加速度脈波)のうち収縮初期陽性波の極大点から拡張初期陽性波の極大点までの時間間隔に基づいて被験者の血圧を推定するため、脈波を測定するのみで簡便に血圧データを得ることができる。   In the blood pressure measurement method and apparatus according to the present invention, an expanded initial positive wave from a maximum point of a contraction initial positive wave in a waveform (acceleration pulse wave) obtained by differentiating a pulse wave waveform (volume pulse wave) generated by blood circulation twice. Since the blood pressure of the subject is estimated based on the time interval up to the maximum point, blood pressure data can be obtained simply by measuring the pulse wave.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を、脈波を解析することで被験者の血圧を推定する血圧測定方法及びその装置に適用したものである。以下では、先ず脈波から血圧を推定する方法について説明し、次いで、脈波を測定し、これを解析して血圧を推定する処理を行う血圧測定装置の一例について説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to a blood pressure measurement method and apparatus for estimating a blood pressure of a subject by analyzing a pulse wave. In the following, a method for estimating blood pressure from a pulse wave will be described first, and then an example of a blood pressure measurement apparatus that performs processing for measuring a pulse wave and analyzing the blood pressure to analyze the pulse wave will be described.

皮膚血管(末梢血管)の膨張・収縮を皮膚表面から電気的・機械的にとらえたものを容積脈波という。検出された容積脈波の一般的な波形を図1(A)に示す。また、この容積脈波を1回微分したいわゆる速度脈波と、容積脈波を2回微分したいわゆる加速度脈波とをそれぞれ図1(B)、(C)に示す。   A volume pulse wave is obtained by electrically and mechanically capturing the expansion / contraction of skin blood vessels (peripheral blood vessels) from the skin surface. A general waveform of the detected volume pulse wave is shown in FIG. Also, a so-called velocity pulse wave obtained by differentiating the volume pulse wave once and a so-called acceleration pulse wave obtained by differentiating the volume pulse wave twice are shown in FIGS. 1B and 1C, respectively.

ここで、図1(C)に示す加速度脈波の各成分にはそれぞれ慣例として名前が付けられている。すなわち、最大の振幅を示す最初の極大点を有する陽性波はa波(収縮初期陽性波)と称され、a波に続く陰性波はb波(収縮初期陰性波)と称され、以下、c波(収縮中期再上昇波)、d波(収縮後期再下降波)、e波(拡張初期陽性波)と称される。   Here, each component of the acceleration pulse wave shown in FIG. 1C is given a name as a convention. That is, the positive wave having the first maximum point showing the maximum amplitude is referred to as a wave (contraction initial positive wave), and the negative wave following the a wave is referred to as b wave (contraction initial negative wave). These waves are referred to as wave (mid-systolic re-rising wave), d wave (late systolic re-falling wave), and e wave (expanded initial positive wave).

本件発明者らは、本発明に至る過程での広範な実験とその統計結果とから、a波の極大点からe波の極大点までの時間間隔tが血圧と有意な相関を示すことを見出した。具体的には、血圧が高い場合にはa−e間の時間間隔tが短くなり、血圧が低い場合にはa−e間の時間間隔tが長くなることを見出した。   The inventors of the present invention have found that the time interval t from the a-wave maximum point to the e-wave maximum point has a significant correlation with the blood pressure, based on extensive experiments and statistical results in the process leading to the present invention. It was. Specifically, it has been found that the time interval t between a and e decreases when the blood pressure is high, and the time interval t between a and e increases when the blood pressure is low.

解剖学的な説明を試みると、a波の極大点は、容積脈波における極小点、すなわち心臓から駆出される脈の圧力が最低になる点を示し、左心室が収縮を開始して血液を駆出する直前の時点を表すのに対して、e波の極大点は、心臓から駆出された脈が動脈系において流体力学的に非線形な振る舞いを呈する箇所、例えば動脈の分岐や狭窄などで反射し、その反射した脈が元の脈に重畳されることよる幹動脈圧力の再上昇を発生させる直前の時点を表す、ということができる。   In an anatomical explanation, the maximum point of the a wave indicates the minimum point in the volume pulse wave, that is, the point where the pressure of the pulse ejected from the heart is the lowest, and the left ventricle begins to contract and the blood In contrast to the time immediately before ejection, the maximum point of the e-wave is a point where a pulse ejected from the heart exhibits a hydrodynamically nonlinear behavior in the arterial system, for example, branching or stenosis of the artery. It can be said that it represents a point in time immediately before the re-elevation of the trunk artery pressure due to reflection and superimposition of the reflected pulse on the original pulse.

本実施の形態における血圧測定方法は、このようにa波の極大点からe波の極大点までの時間間隔tに基づいて血圧を推定するものである。この血圧測定方法では、a−e間の時間間隔tのみから血圧を推定することができるため、被験者の何れかの生体部分で一系統の脈波データを測定するのみでよく、非常に簡便である。   In this way, the blood pressure measurement method according to the present embodiment estimates blood pressure based on the time interval t from the maximum point of the a wave to the maximum point of the e wave. In this blood pressure measurement method, since the blood pressure can be estimated only from the time interval t between a and e, it is only necessary to measure one system of pulse wave data in any living body part of the subject, which is very simple. is there.

以下、脈波の波形の特徴からa波及びe波の極大点を特定する手順について説明する。
図1(C)に示した加速度脈波では、a波、b波、c波、d波、e波の波形形状が明瞭であり、その極大点、極小点の特定は容易である。しかしながら、実際に人体で測定した場合には、c波及びd波の波形形状が明瞭でない加速度脈波が得られる場合がある。すなわち、例えば図2に示すように、d波の極小値がc波の極大値と比較して十分に小さくならず、b波からe波に至る過程において、増加−減少−増加という明確な極性反転を伴わない加速度脈波が得られる場合がある。
Hereinafter, a procedure for identifying the maximum points of the a wave and the e wave from the characteristics of the waveform of the pulse wave will be described.
In the acceleration pulse wave shown in FIG. 1C, the waveform shapes of the a wave, b wave, c wave, d wave, and e wave are clear, and it is easy to specify the maximum point and the minimum point. However, when actually measured by a human body, an acceleration pulse wave with unclear waveform shapes of c and d waves may be obtained. That is, for example, as shown in FIG. 2, the minimum value of the d wave is not sufficiently smaller than the maximum value of the c wave, and in the process from the b wave to the e wave, there is a clear polarity of increase-decrease-increase. An acceleration pulse wave without reversal may be obtained.

一般的には、加速度脈波をさらにもう1回微分し、その値がゼロになる点(グラフに描画した際に横軸と交差するゼロクロス点)を求めることで、加速度脈波における極大点、極小点を特定することができるが、図2に示したような波形の場合、b波からe波に至る過程が単純増加に近いため、微分してもゼロクロス点が存在しない場合も起こり得る。   Generally, the acceleration pulse wave is further differentiated once more, and the point at which the value becomes zero (the zero cross point that intersects the horizontal axis when drawn on the graph) is obtained, whereby the maximum point in the acceleration pulse wave, Although the local minimum point can be specified, in the case of the waveform as shown in FIG. 2, the process from the b wave to the e wave is close to a simple increase.

そこで、このような場合においても血圧の推定に最も重要なe波の極大点を確実に特定するため、本実施の形態では、加速度脈波をさらに2回微分した波形を得る。   Therefore, in this case, in order to reliably specify the maximum point of the e wave most important for blood pressure estimation, in this embodiment, a waveform obtained by further differentiating the acceleration pulse wave twice is obtained.

図3(A)〜(C)は、それぞれ加速度脈波、その1回微分波形、2回微分波形を同じ時間軸上に図示したものである。これらの波形は、元の容積脈波から通算すると、それぞれ2回、3回、4回微分したものに相当する。   FIGS. 3A to 3C show the acceleration pulse wave, its once differentiated waveform, and its twice differentiated waveform on the same time axis. These waveforms correspond to those obtained by differentiation from the original volume pulse wave twice, three times, and four times, respectively.

ここで、極小点を無視すると、加速度脈波におけるa波の極大点a、c波の極大点c、e波の極大点eは、1回微分波形(図3(B))においてはゼロクロス点a',b',c' にそれぞれ対応し、2回微分波形(図3(C))においては極小点a",b",c" にそれぞれ対応する。   If the minimum points are ignored, the a-wave maximum point a, the c-wave maximum point c, and the e-wave maximum point e in the acceleration pulse wave are zero-cross points in the one-time differential waveform (FIG. 3B). It corresponds to a ′, b ′ and c ′, respectively, and corresponds to the minimum points a ″, b ″ and c ″ in the twice differentiated waveform (FIG. 3C).

上述したように、c波及びd波の極大、極小が顕著でない波形においては、c波の極大点及びd波の極小点に対応する部分の1回微分波形がゼロとならない場合、すなわち横軸と交差しない場合がある。しかしながら、その場合においても、加速度脈波の2回微分波形(図3(C))においては極小点a",b",c" が現れるため、これらを、加速度脈波におけるa波、c波、e波の極大点とそれぞれ定義しておくことで、c波及びd波の極大、極小の振る舞いに関わらず、それぞれの極大、極小の位置を特定することができる。   As described above, in the waveform in which the maximum and minimum of the c wave and the d wave are not remarkable, the one-time differential waveform corresponding to the maximum point of the c wave and the minimum point of the d wave does not become zero, that is, the horizontal axis May not intersect. However, even in that case, the minimum points a ", b", and c "appear in the twice-differentiated waveform of the acceleration pulse wave (FIG. 3C). By defining each as the maximum point of e wave, the position of each maximum and minimum can be specified regardless of the behavior of the maximum and minimum of c wave and d wave.

このようにして特定したa波の極大点からe波の極大点までの時間間隔tを測定し、この時間間隔tと被検者の拡張期血圧との関係を示したグラフを図4に示す。図4から分かるように、血圧が高くなるにつれて時間間隔tが有意に減少している傾向が確認できる。   A time interval t from the maximum point of the a wave specified in this way to the maximum point of the e wave is measured, and a graph showing the relationship between the time interval t and the diastolic blood pressure of the subject is shown in FIG. . As can be seen from FIG. 4, it can be seen that the time interval t tends to decrease significantly as the blood pressure increases.

次に、脈波を測定し、これを上述したように解析して血圧を推定する処理を行う血圧測定装置の一例について説明する。   Next, an example of a blood pressure measurement device that measures a pulse wave and analyzes it to estimate blood pressure as described above will be described.

本実施の形態における血圧測定装置の概略を図5に示す。図5に示すように、本実施の形態における血圧測定装置1は、脈波を測定するためのインナーイヤー型イヤーレシーバ形状のセンサ素子10と、音楽等を再生すると共にセンサ素子10で測定された脈波を解析して血圧データを得るための信号解析部30とが、配線50を介して接続されてなる。信号解析部30には表示部31が設けられており、信号解析部30で解析された血圧データはこの表示部31を介して被験者に提供される。   An outline of the blood pressure measurement device according to the present embodiment is shown in FIG. As shown in FIG. 5, the blood pressure measurement device 1 according to the present embodiment includes an inner-ear type ear receiver-shaped sensor element 10 for measuring a pulse wave, and a pulse measured by the sensor element 10 while reproducing music and the like. A signal analysis unit 30 for analyzing blood waves and obtaining blood pressure data is connected via a wiring 50. The signal analysis unit 30 is provided with a display unit 31, and blood pressure data analyzed by the signal analysis unit 30 is provided to the subject via the display unit 31.

この血圧測定装置1のうちセンサ素子10を拡大して図6に示す。図6に示すように、センサ素子10は、信号解析部30で再生された音楽等を出力するためのスピーカ21を有する本体部20と、シリコンゴムや低反発ウレタン等の柔軟な緩衝材からなるイヤーピース22とからなり、血圧を測定する際には、図7に示すように、一般のインナーイヤー型イヤーレシーバと同様に、イヤーピース22が外耳道の内部に挿入され、本体部20が被験者の耳甲介腔に固定されるように用いられる。   FIG. 6 is an enlarged view of the sensor element 10 in the blood pressure measurement device 1. As shown in FIG. 6, the sensor element 10 includes a main body 20 having a speaker 21 for outputting music reproduced by the signal analysis unit 30 and a flexible cushioning material such as silicon rubber or low-resilience urethane. As shown in FIG. 7, when measuring blood pressure, the earpiece 22 is inserted into the ear canal and the main body portion 20 is connected to the concha of the subject as shown in FIG. Used to be fixed to the cavity.

イヤーピース22の側断面図の一例を図8(A)、(B)に示す。イヤーピース22の中央には貫通孔が設けられており、スピーカ21から出力された音波は、この貫通孔を通して外耳道に送り込まれ、鼓膜に到達する。また、イヤーピース22には、脈波を測定するための発光部23及び受光部24が埋め込まれており、この発光部23及び受光部24は、図9に示すように、センサ素子10を被験者に装着した際に外耳道内部の皮膚に当接し、且つ発光部23から投射した投射光及びその反射光の光軸が外耳道と直角又は直角に近い角度になるように配置されている。なお、図8では受光部24を1つしか設けていないが、複数設けることで異なる経路を経由した反射光を受光することができ、より高精度に脈波を測定することが可能となる。   An example of a side sectional view of the earpiece 22 is shown in FIGS. A through hole is provided in the center of the earpiece 22, and sound waves output from the speaker 21 are sent to the ear canal through the through hole and reach the eardrum. Further, the earpiece 22 is embedded with a light emitting unit 23 and a light receiving unit 24 for measuring a pulse wave, and the light emitting unit 23 and the light receiving unit 24 provide the sensor element 10 to the subject as shown in FIG. It is disposed so that the optical axis of the projection light projected from the light emitting unit 23 and the reflected light thereof is at right angles or close to right angles with the ear canal when it is worn and in contact with the skin inside the ear canal. In FIG. 8, only one light receiving unit 24 is provided. However, by providing a plurality of light receiving units 24, reflected light passing through different paths can be received, and the pulse wave can be measured with higher accuracy.

イヤーピース22において、発光部23には小型のLED(Light Emission Diode)素子等の発光素子を用いることができる。また、受光部24には例えばSi、InGaAs、Ge等を用いたフォトダイオードや焦電型のマイクロセンサからなる光検出器を用いることができる。発光部23は、イヤーピース22の外側、すなわち外耳道の皮膚に接している面に向けて赤色光及び近赤外光を投射する。投射された光は被験者を経由し、一部分が反射、拡散されて戻ってくる。受光部24は、この反射光を受光して電気信号に変換し、信号解析部30に配線50を介して伝送する。ここで、血流には脈があり、さらに血液の透過率は皮膚等の他の生体部分の透過率と比較して低いため、受光部24で検出される反射光の強度は脈拍に同期して変動する。したがって、この変動を連続して測定することにより、脈波を得ることができる。   In the earpiece 22, a light emitting element such as a small LED (Light Emission Diode) element can be used for the light emitting unit 23. For the light receiving unit 24, for example, a photodetector using a photodiode or pyroelectric microsensor using Si, InGaAs, Ge or the like can be used. The light emitting unit 23 projects red light and near infrared light toward the outside of the earpiece 22, that is, the surface in contact with the skin of the ear canal. The projected light passes through the subject and partly reflects and diffuses back. The light receiving unit 24 receives the reflected light, converts it into an electrical signal, and transmits it to the signal analyzing unit 30 via the wiring 50. Here, the blood flow has a pulse, and the blood permeability is lower than that of other biological parts such as the skin. Therefore, the intensity of the reflected light detected by the light receiving unit 24 is synchronized with the pulse. Fluctuate. Therefore, a pulse wave can be obtained by continuously measuring this variation.

本実施の形態における血圧測定装置1では、このような発光部23及び受光部24が柔軟な緩衝材からなるイヤーピース22に埋め込まれているため、発光部23及び受光部24は、緩衝材の反発力によって適度な圧力で外耳道内面の皮膚に当接されることになる。これにより、被験者自身の動きや重力の影響によって発光部23及び受光部24から皮膚までの距離が変動することを有効に抑制することができ、安定した測定が可能となる。また、イヤーピース22は、外耳道内に挿入されており体外に露出していないため、測定に際して外来光の影響を受けにくいという利点がある。また、外耳道内部は腕や指などの随意的に動かせる筋肉から遠いため、被験者自身の動きによる影響が少なく、測定の際に被検者を拘束する必要がないという利点がある。   In the blood pressure measurement device 1 according to the present embodiment, since the light emitting unit 23 and the light receiving unit 24 are embedded in the earpiece 22 made of a flexible buffer material, the light emitting unit 23 and the light receiving unit 24 are repelled by the buffer material. It is brought into contact with the skin on the inner surface of the ear canal with an appropriate pressure by force. Thereby, it can suppress effectively that the distance from the light emission part 23 and the light-receiving part 24 to skin by the influence of test subject's own movement and gravity can be suppressed, and the stable measurement is attained. Further, since the earpiece 22 is inserted into the ear canal and is not exposed outside the body, there is an advantage that the earpiece 22 is not easily affected by external light during measurement. In addition, since the inside of the external auditory canal is far from muscles that can be moved arbitrarily such as arms and fingers, there is an advantage that there is little influence of the subject's own movement and there is no need to restrain the subject during measurement.

さらに、本実施の形態における血圧測定装置1では、センサ素子10がインナーイヤー型イヤーレシーバ形状とされており、本体部20のスピーカ21を介して音楽等を出力することができるため、被験者は、音楽等を鑑賞しながら非拘束、無意識のうちにリラックスした状態で血圧を測定することが可能となる。このため、長時間の装着が可能であり、血圧の推移、変動等の傾向を観察することも可能である。特に、イヤーピース22に埋め込まれる発光部23及び受光部24は小型であるため、音響性能の低下を最小限に抑えることができ、また、イヤーレシーバとしてのデザイン性を損ねることもない。また、本実施の形態における血圧測定装置1では、スピーカ21を有する本体部20と発光部23及び受光部24を有するイヤーピース22とが分離されているため、音楽等を鑑賞しながら血圧を測定した場合であっても、音響振動の影響を受けることは殆どない。   Furthermore, in the blood pressure measurement device 1 according to the present embodiment, the sensor element 10 has an inner-ear ear receiver shape, and music or the like can be output through the speaker 21 of the main body unit 20. The blood pressure can be measured in a relaxed state unconsciously and unconsciously. For this reason, it can be worn for a long time, and it is also possible to observe trends such as blood pressure transitions and fluctuations. In particular, since the light emitting unit 23 and the light receiving unit 24 embedded in the earpiece 22 are small in size, a decrease in acoustic performance can be minimized, and the design as an ear receiver is not impaired. In the blood pressure measurement device 1 according to the present embodiment, since the main body 20 having the speaker 21 and the earpiece 22 having the light emitting part 23 and the light receiving part 24 are separated, the blood pressure was measured while listening to music or the like. Even in this case, it is hardly affected by acoustic vibration.

上述した血圧測定装置1のうち、血圧の測定に関連する部分の概略構成を図10に示す。イヤーピース22の受光部24から伝送された電気信号は、先ず信号解析部30のプリアンプ部40に入力される。プリアンプ部40は、ローパスフィルタにより、入力された電気信号のうち概ね20Hzより高周波の成分を除去することにより、電源周波数から電気磁気的に誘導されるノイズや、照明器具からの光により誘起されるノイズを取り除く。さらに、プリアンプ部40は、このノイズを除去した電気信号を増幅する。信号処理回路41は、その電気信号から脈波信号や基線変動成分を分離する。   FIG. 10 shows a schematic configuration of a portion related to blood pressure measurement in the blood pressure measurement device 1 described above. The electrical signal transmitted from the light receiving unit 24 of the earpiece 22 is first input to the preamplifier unit 40 of the signal analysis unit 30. The preamplifier unit 40 is induced by noise that is electromagnetically induced from a power supply frequency or light from a lighting fixture by removing a component having a frequency higher than about 20 Hz from the input electric signal by a low-pass filter. Remove noise. Further, the preamplifier unit 40 amplifies the electric signal from which this noise has been removed. The signal processing circuit 41 separates the pulse wave signal and the baseline fluctuation component from the electrical signal.

分離された基線変動成分は、フィードバック回路42において5乃至10秒程度の長い時定数で積分され、発光部駆動回路43に供給される。発光部駆動回路43は、受光部24で検出される脈波の電圧が小さいときには発光部23の発光量を多くしてより大きい変化を得るように、逆に受光部24で検出される脈波の電圧が大きいときには発光部23の発光量を減少させて受光部24及びその後の信号処理の回路が飽和するのを抑制するように制御する。   The separated baseline fluctuation component is integrated with a long time constant of about 5 to 10 seconds in the feedback circuit 42 and supplied to the light emitting unit driving circuit 43. The light emitting unit drive circuit 43 conversely detects the pulse wave detected by the light receiving unit 24 so as to increase the light emission amount of the light emitting unit 23 to obtain a larger change when the pulse wave voltage detected by the light receiving unit 24 is small. When the voltage is large, the light emission amount of the light emitting unit 23 is decreased to control the light receiving unit 24 and the subsequent signal processing circuit from being saturated.

一方、分離された脈波信号は、A/D(Analogue/Digital)コンバータ44により量子化され、数値データとしてプロセッサ45に送られる。プロセッサ45は、このデータに対して上述したような2回微分等を含む数値的演算処理を施すことにより波形を解析して被験者の血圧を推定し、その結果を記憶媒体46に記録すると共に、表示部31において文字その他の方法により表示する。   On the other hand, the separated pulse wave signal is quantized by an A / D (Analogue / Digital) converter 44 and sent to the processor 45 as numerical data. The processor 45 estimates the blood pressure of the subject by analyzing the waveform by performing the numerical calculation processing including the above-described double differentiation on the data, and records the result in the storage medium 46. Displayed on the display unit 31 by characters or other methods.

なお、上述した発光部23及び受光部24では、測定する血中成分(グルコースやコレステロールなど)に吸収されやすい波長の光を投射することにより、血糖値や血中コレステロール値を測定することもできる。また、酸素を結合したヘモグロビンと酸素を結合していないヘモグロビンとの光吸収率の違いを利用することで、血中酸素飽和度を測定することもできる。このように、本実施の形態における血圧測定装置1によれば、血圧以外にも、脈拍数、血糖値、血中コレステロール値、血中酸素飽和度等の複数の生態情報を並行して測定することができるため、被験者の健康管理上、有益である。また、それぞれの生体情報の相関関係を解析するなど、より高次の解析も可能である。   In addition, in the light emission part 23 and the light-receiving part 24 mentioned above, a blood glucose level and a blood cholesterol level can also be measured by projecting the light of the wavelength which is easy to be absorbed by the blood component (glucose, cholesterol, etc.) to measure. . Further, the oxygen saturation level in blood can be measured by utilizing the difference in light absorption rate between hemoglobin to which oxygen is bound and hemoglobin to which oxygen is not bound. Thus, according to the blood pressure measurement device 1 in the present embodiment, in addition to blood pressure, a plurality of biological information such as pulse rate, blood sugar level, blood cholesterol value, blood oxygen saturation and the like are measured in parallel. Therefore, it is beneficial for the health management of the subject. Further, higher-order analysis such as analysis of the correlation between the respective pieces of biological information is possible.

以上、本発明を適用した具体的な実施の形態について説明したが、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。   Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Of course there is.

例えば、上述した実施の形態では、図5に示すようなインナーイヤー型イヤーレシーバ形状のセンサ素子を血圧測定装置に用いるものとして説明したが、この形状に限定されるものではなく、指先や耳朶、手首などの人体の末梢組織を挟むような形状であっても構わない。この場合においても、その末梢組織に対して発光部から光を投射し、その透過光又は反射光を受光部で検出することにより脈波を測定することができ、その脈波を解析することで血圧を推定することができる。   For example, in the above-described embodiment, the sensor element having the inner ear type ear receiver shape as shown in FIG. 5 has been described as being used in the blood pressure measurement device. However, the present invention is not limited to this shape, and the fingertip, earlobe, wrist The shape may be such that the peripheral tissue of the human body is sandwiched between them. Even in this case, it is possible to measure the pulse wave by projecting light from the light emitting unit to the peripheral tissue and detecting the transmitted light or reflected light by the light receiving unit, and analyzing the pulse wave Blood pressure can be estimated.

容積脈波とその微分波形を説明する図であり、同図(A)は、容積脈波の一般的な波形を示し、同図(B)は、この容積脈波を1回微分した速度脈波を示し、同図(C)は、容積脈波を2回微分した加速度脈波を示す。It is a figure explaining a volume pulse wave and its differential waveform, The figure (A) shows the general waveform of a volume pulse wave, The figure (B) is a velocity pulse which differentiated this volume pulse wave once. FIG. 3C shows an acceleration pulse wave obtained by differentiating the volume pulse wave twice. b波からe波に至る過程において、増加−減少−増加という明確な極性反転を伴わない加速度脈波の一例を示す図である。It is a figure which shows an example of the acceleration pulse wave without the clear polarity reversal of increase-decrease-increase in the process from b wave to e wave. 加速度脈波とその微分波形を説明する図であり、同図(A)は、加速度脈波の一例を示し、同図(B)は、この加速度脈波を1回微分した波形を示し、同図(C)は、加速度脈波を2回微分した波形を示す。It is a figure explaining an acceleration pulse wave and its differential waveform, the figure (A) shows an example of an acceleration pulse wave, the figure (B) shows the waveform which differentiated this acceleration pulse wave once, FIG. (C) shows a waveform obtained by differentiating the acceleration pulse wave twice. a波の極大点からe波の極大点までの時間間隔tと被検者の拡張期血圧との関係を示す図である。It is a figure which shows the relationship between the time interval t from the maximum point of a wave to the maximum point of e wave, and the diastolic blood pressure of a subject. 本実施の形態における血圧測定装置の一例を示す概略図である。It is the schematic which shows an example of the blood-pressure measurement apparatus in this Embodiment. 同血圧測定装置に用いられるセンサ素子を拡大して示す斜視図である。It is a perspective view which expands and shows the sensor element used for the blood pressure measuring device. 同センサ素子を被験者に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the test subject with the sensor element. 同センサ素子のイヤーピースを示す側断面図である。It is a sectional side view which shows the earpiece of the sensor element. センサ素子の発光部及び受光部が被験者の外耳道内面の皮膚に当接されている状態を示す図である。It is a figure which shows the state in which the light emission part and light-receiving part of a sensor element are contact | abutted to the skin of a test subject's inner ear canal. 同血圧測定装置のうち、血圧の測定に関連する部分の概略構成を示す図である。It is a figure which shows schematic structure of the part relevant to the measurement of blood pressure among the blood pressure measuring devices.

符号の説明Explanation of symbols

1 血圧測定装置、10 センサ素子、20 本体部、21 スピーカ、22 イヤーピース、23 発光部、24 受光部、30 信号解析部、31 表示部、40 プリアンプ部、41 信号処理回路、42 フィードバック回路、43 発光部駆動回路、44 A/Dコンバータ、45 プロセッサ、46 記憶媒体
DESCRIPTION OF SYMBOLS 1 Blood pressure measuring device, 10 Sensor element, 20 Main body part, 21 Speaker, 22 Earpiece, 23 Light emission part, 24 Light reception part, 30 Signal analysis part, 31 Display part, 40 Preamplifier part, 41 Signal processing circuit, 42 Feedback circuit, 43 Light emitting unit drive circuit, 44 A / D converter, 45 processor, 46 storage medium

Claims (9)

血液循環によって生じる脈波を検出する脈波検出工程と、
上記脈波検出工程にて検出された脈波の波形を2回微分する微分演算工程と、
上記微分演算工程で得られた波形のうち、収縮初期陽性波の極大点から拡張初期陽性波の極大点までの時間間隔に基づいて血圧を演算する血圧演算工程と
を有することを特徴とする血圧測定方法。
A pulse wave detection step for detecting a pulse wave generated by blood circulation;
A differential operation step of differentiating the pulse wave waveform detected in the pulse wave detection step twice;
A blood pressure calculation step of calculating blood pressure based on a time interval from the maximum point of the contraction initial positive wave to the maximum point of the expansion initial positive wave among the waveforms obtained in the differential calculation step. Measuring method.
上記微分演算工程で得られた波形を2回微分する第2の微分演算工程をさらに有し、
上記血圧演算工程では、上記第2の微分演算工程で得られた波形の極小点に基づいて、上記収縮初期陽性波の極大点と上記拡張初期陽性波の極大点とを求める
ことを特徴とする請求項1記載の血圧測定方法。
A second differential calculation step of differentiating the waveform obtained in the differential calculation step twice;
In the blood pressure calculation step, the maximum point of the contraction initial positive wave and the maximum point of the extended initial positive wave are obtained based on the minimum point of the waveform obtained in the second differential calculation step. The blood pressure measurement method according to claim 1.
上記脈波検出工程にて検出された脈波の高周波ノイズを除去するノイズ除去工程をさらに有し、
上記微分演算工程では、該ノイズ除去工程でノイズが除去された波形を2回微分する
ことを特徴とする請求項1記載の血圧測定方法。
A noise removal step of removing high-frequency noise of the pulse wave detected in the pulse wave detection step;
The blood pressure measurement method according to claim 1, wherein in the differential operation step, the waveform from which noise has been removed in the noise removal step is differentiated twice.
上記脈波検出工程では、脈波を検出する部位に対して発光部から光を投射し、上記部位から得られる透過光又は反射光を受光部により検出することで脈波を検出することを特徴とする請求項1記載の血圧測定方法。   In the pulse wave detection step, the pulse wave is detected by projecting light from the light emitting unit to a part for detecting the pulse wave, and detecting transmitted light or reflected light obtained from the part by the light receiving unit. The blood pressure measurement method according to claim 1. 血液循環によって生じる脈波を検出する脈波検出手段と、
上記脈波検出手段によって検出された脈波の波形を2回微分する微分演算手段と、
上記微分演算手段によって得られた波形のうち、収縮初期陽性波の極大点から拡張初期陽性波の極大点までの時間間隔に基づいて血圧を演算する血圧演算手段と
を備えることを特徴とする血圧測定装置。
Pulse wave detection means for detecting a pulse wave generated by blood circulation;
Differential calculation means for differentiating the pulse wave waveform detected by the pulse wave detection means twice;
A blood pressure calculating means for calculating blood pressure based on a time interval from the maximum point of the contraction initial positive wave to the maximum point of the extended initial positive wave among the waveforms obtained by the differential calculation means measuring device.
上記微分演算手段によって得られた波形を2回微分する第2の微分演算手段をさらに備え、
上記血圧演算手段は、上記第2の微分演算手段によって得られた波形の極小点に基づいて、上記収縮初期陽性波の極大点と上記拡張初期陽性波の極大点とを求める
ことを特徴とする請求項5記載の血圧測定装置。
A second differential calculation means for differentiating the waveform obtained by the differential calculation means twice;
The blood pressure calculation means obtains a maximum point of the contraction initial positive wave and a maximum point of the extended initial positive wave based on the minimum point of the waveform obtained by the second differential calculation means. The blood pressure measurement device according to claim 5.
上記脈波検出手段によって検出された脈波の高周波ノイズを除去するノイズ除去手段をさらに備え、
上記微分演算手段は、該ノイズ除去手段によってノイズが除去された波形を2回微分する
ことを特徴とする請求項5記載の血圧測定装置。
Noise removing means for removing high-frequency noise of the pulse wave detected by the pulse wave detecting means,
The blood pressure measurement device according to claim 5, wherein the differential calculation means differentiates the waveform from which noise has been removed by the noise removal means twice.
上記脈波検出手段は、脈波を検出する部位に対して光を照射する発光部と、上記部位から得られる透過光又は反射光を検出する受光部とを有することを特徴とする請求項5記載の血圧測定装置。   6. The pulse wave detecting means includes: a light emitting unit that irradiates light to a part that detects a pulse wave; and a light receiving part that detects transmitted light or reflected light obtained from the part. The blood pressure measurement device described. 上記脈波検出手段は、上記発光部及び上記受光部が被験者の外耳道の内面に当接して固定される形状を有することを特徴とする請求項8記載の血圧測定装置。
9. The blood pressure measuring device according to claim 8, wherein the pulse wave detecting means has a shape in which the light emitting part and the light receiving part are fixed in contact with the inner surface of the ear canal of the subject.
JP2004242795A 2004-05-21 2004-08-23 Method and apparatus for measurement of blood pressure Pending JP2006006897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242795A JP2006006897A (en) 2004-05-21 2004-08-23 Method and apparatus for measurement of blood pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004152116 2004-05-21
JP2004242795A JP2006006897A (en) 2004-05-21 2004-08-23 Method and apparatus for measurement of blood pressure

Publications (1)

Publication Number Publication Date
JP2006006897A true JP2006006897A (en) 2006-01-12

Family

ID=35774761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242795A Pending JP2006006897A (en) 2004-05-21 2004-08-23 Method and apparatus for measurement of blood pressure

Country Status (1)

Country Link
JP (1) JP2006006897A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2007236807A (en) * 2006-03-10 2007-09-20 Haruko Takada Exercise tolerability evaluation device
JP2009125316A (en) * 2007-11-22 2009-06-11 A & D Co Ltd Blood pressure monitor system
JP2011526513A (en) * 2008-06-30 2011-10-13 ネルコア・ピユーリタン・ベネツト・アイルランド System and method for non-invasive blood pressure monitoring
JP2011217822A (en) * 2010-04-06 2011-11-04 Seiko Epson Corp Device and method for measuring pulse wave
JP2012211847A (en) * 2011-03-31 2012-11-01 Oki Electric Ind Co Ltd Microvibration feature amount calculating device, microvibration feature amount calculation method and program
JP2013146371A (en) * 2012-01-19 2013-08-01 Sony Corp Blood flow sensor
JP2014097242A (en) * 2012-11-15 2014-05-29 Pioneer Electronic Corp Pulse wave analyzer and method, and computer program
JP2014226272A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Object displacement detection device and object displacement detection method
US10624586B2 (en) 2013-12-25 2020-04-21 Asahi Kasei Kabushiki Kaisha Pulse wave measuring device, mobile device, medical equipment system and biological information communication system
WO2023132178A1 (en) * 2022-01-07 2023-07-13 株式会社村田製作所 Carbohydrate metabolism capacity estimation method
WO2024034305A1 (en) * 2022-08-12 2024-02-15 株式会社村田製作所 Pulse pressure measurement device and pulse pressure measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198330A (en) * 1982-05-17 1983-11-18 日本電気株式会社 Signal treating apparatus
JPH10295657A (en) * 1997-04-24 1998-11-10 Matsushita Electric Ind Co Ltd Blood pressure measuring device
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device
JP2000217792A (en) * 1999-02-03 2000-08-08 Matsushita Electric Ind Co Ltd Biological information detector
JP2003290162A (en) * 2002-04-03 2003-10-14 U-Medica Inc Pulse-wave measurement apparatus and method for eliminating noise component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198330A (en) * 1982-05-17 1983-11-18 日本電気株式会社 Signal treating apparatus
JPH10295657A (en) * 1997-04-24 1998-11-10 Matsushita Electric Ind Co Ltd Blood pressure measuring device
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device
JP2000217792A (en) * 1999-02-03 2000-08-08 Matsushita Electric Ind Co Ltd Biological information detector
JP2003290162A (en) * 2002-04-03 2003-10-14 U-Medica Inc Pulse-wave measurement apparatus and method for eliminating noise component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2007236807A (en) * 2006-03-10 2007-09-20 Haruko Takada Exercise tolerability evaluation device
JP2009125316A (en) * 2007-11-22 2009-06-11 A & D Co Ltd Blood pressure monitor system
JP2011526513A (en) * 2008-06-30 2011-10-13 ネルコア・ピユーリタン・ベネツト・アイルランド System and method for non-invasive blood pressure monitoring
JP2011217822A (en) * 2010-04-06 2011-11-04 Seiko Epson Corp Device and method for measuring pulse wave
JP2012211847A (en) * 2011-03-31 2012-11-01 Oki Electric Ind Co Ltd Microvibration feature amount calculating device, microvibration feature amount calculation method and program
JP2013146371A (en) * 2012-01-19 2013-08-01 Sony Corp Blood flow sensor
JP2014097242A (en) * 2012-11-15 2014-05-29 Pioneer Electronic Corp Pulse wave analyzer and method, and computer program
JP2014226272A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Object displacement detection device and object displacement detection method
US10624586B2 (en) 2013-12-25 2020-04-21 Asahi Kasei Kabushiki Kaisha Pulse wave measuring device, mobile device, medical equipment system and biological information communication system
WO2023132178A1 (en) * 2022-01-07 2023-07-13 株式会社村田製作所 Carbohydrate metabolism capacity estimation method
WO2024034305A1 (en) * 2022-08-12 2024-02-15 株式会社村田製作所 Pulse pressure measurement device and pulse pressure measurement method

Similar Documents

Publication Publication Date Title
US20200375547A1 (en) Methods and apparatus for detecting motion via optomechanics
US8761853B2 (en) Devices and methods for non-invasive optical physiological measurements
JP3760920B2 (en) Sensor
TWI538660B (en) Heart rate detection module, and detection and denoising method thereof
EP2116183B1 (en) Robust opto-electrical ear located cardiovascular monitoring device
JP2007021106A (en) Biological information-measuring device
EP3678551B1 (en) Electronic stethoscope with enhanced features
KR102542395B1 (en) Apparatus and method for measuring bio-information
JP2006006897A (en) Method and apparatus for measurement of blood pressure
JP2018500949A (en) Method and apparatus for measuring blood pressure using acoustic signals
TW201600068A (en) Device, computing device, method for detecting fistula stenosis and computer readable storage medium
CN110292372B (en) Detection device
JP4581480B2 (en) Respiratory information measuring method and apparatus
US20210235996A1 (en) Signal processing apparatus, and apparatus and method for estimating bio-information
JP2005329148A (en) Instrument and method for bioinformation measurement
US20210145398A1 (en) Electronic stethoscope with enhanced features
JP4320925B2 (en) Pulse rate detector
EP4173571B1 (en) Apparatus for estimating bio-information, and method of determining false detection of bio-signal peaks
JP2005329147A (en) Bioinformation measuring instrument
JP2006102250A (en) Circulation index measuring device, circulation index measuring method, control program, and computer-readable storage medium
US20220061762A1 (en) Home-style and multi-functional testing hearing-aid device and method thereof
US20240081663A1 (en) Apparatus for estimating bio-information and method of detecting abnormal bio-signal
JP2002051996A (en) Pulsimeter
CN115429235A (en) Microvascular physiological parameter detection and estimation device
CN118036333A (en) Heart-ear canal acoustic transfer model, and construction method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102