JPH10266878A - Control device of four-stroke engine - Google Patents

Control device of four-stroke engine

Info

Publication number
JPH10266878A
JPH10266878A JP9073572A JP7357297A JPH10266878A JP H10266878 A JPH10266878 A JP H10266878A JP 9073572 A JP9073572 A JP 9073572A JP 7357297 A JP7357297 A JP 7357297A JP H10266878 A JPH10266878 A JP H10266878A
Authority
JP
Japan
Prior art keywords
intake
valve
load
self
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9073572A
Other languages
Japanese (ja)
Inventor
Toshio Tanahashi
敏雄 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9073572A priority Critical patent/JPH10266878A/en
Publication of JPH10266878A publication Critical patent/JPH10266878A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly perform a self-ignition while preventing the generation of a pumping loss by closing an exhaust valve before an intake top dead center in a predetermined load range extending from low load of engine to middle load, and hastening the closing period of the exhaust valve as the required load is lowered. SOLUTION: During the operation of an engine 1, the opening period of an exhaust valve 10 is fixed to a crank angle before compression bottom dead center in an electronic control unit 30, the closing period of the exhaust valve 10 is set before an intake top dead center within self-ignition area, and the closing period of the exhaust valve 10 is controlled so as to be hastened as the required load is lowered. A throttle valve 19 is held in full open state substantially over the whole self-ignition area, and the control of intake air quantity to the required load is performed by changing the residual burned gas quantity. On the other hand, the opening period of an intake valve 7 is set after the intake top dead center within the self-ignition area, and its opening period is controlled so as to be delayed as the required load is lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は4ストロークエンジ
ンの制御装置に関する。
The present invention relates to a control device for a four-stroke engine.

【0002】[0002]

【従来の技術】4ストロークエンジンにおいては通常機
関吸気通路内に配置されたスロットル弁により機関出力
が制御される。しかしながらこのようにして機関出力を
制御するとスロットル弁開度が小さいときに大きなポン
ピング損失が発生する。そこでこのようなポンピング損
失が発生するのを阻止するためにスロットル弁を取除
き、吸気弁の閉弁時期を変えることによって機関出力を
制御するようにした内燃機関が公知である(特開昭55
−128610号公報参照)。
2. Description of the Related Art In a four-stroke engine, the engine output is normally controlled by a throttle valve arranged in an engine intake passage. However, when the engine output is controlled in this manner, a large pumping loss occurs when the throttle valve opening is small. Therefore, there is known an internal combustion engine in which the throttle valve is removed in order to prevent such pumping loss from occurring, and the engine output is controlled by changing the closing timing of the intake valve (Japanese Patent Laid-Open No. 55-55980).
-128610).

【0003】一方、2ストロークエンジンにおいて燃焼
室内に多量の既燃ガスを残留させると燃焼室内に供給さ
れた新気中の燃料が高温の既燃ガスによって熱分解さ
れ、その結果ラジカルが生成される。このようにラジカ
ルが生成されると燃料は点火栓によらずに自己着火す
る。この自己着火は燃焼室内全体において同時に多点的
に生ずるためにこのような自己着火を生ずると燃焼室内
全体の混合気が良好に燃焼せしめられることになる。そ
の結果、熱効率が向上し、斯くして燃料消費率が向上す
る。また、この自己着火は燃焼室内全体において同時に
多点的に生ずるために燃焼室内における燃焼温が局所的
に高くなることがなく、斯くしてNOxの発生を抑制す
ることができる。
On the other hand, when a large amount of burned gas remains in the combustion chamber in a two-stroke engine, fuel in fresh air supplied into the combustion chamber is thermally decomposed by the high-temperature burned gas, and as a result, radicals are generated. . When radicals are generated in this way, the fuel ignites independently of the ignition plug. This self-ignition occurs simultaneously at multiple points in the entire combustion chamber. Therefore, when such self-ignition occurs, the air-fuel mixture in the entire combustion chamber is satisfactorily burned. As a result, the thermal efficiency is improved, and thus the fuel consumption rate is improved. Further, since the self-ignition occurs simultaneously at multiple points in the entire combustion chamber, the combustion temperature in the combustion chamber does not locally increase, and thus the generation of NOx can be suppressed.

【0004】そこでクランク室圧縮式の2ストロークエ
ンジンにおいて排気ポートの開口面積を機関回転数とス
ロットル開度に応じて制御することにより自己着火を生
じさせるようにしたものが公知である(特開平7−71
279号公報参照)。
Therefore, there is known a crankcase compression type two-stroke engine in which the opening area of an exhaust port is controlled in accordance with the engine speed and the throttle opening to cause self-ignition (Japanese Patent Laid-Open No. Hei 7-1995). −71
No. 279).

【0005】[0005]

【発明が解決しようとする課題】ところで2ストローク
エンジンは本来的に多量の既燃ガスが残留する燃焼方法
を採用しているので自己着火を比較的容易に生じさせる
ことができる。しかしながら4ストロークエンジンは本
来的に既燃ガスをできる限り残留させない燃焼方法を採
用しているので4ストロークエンジンにおいて自己着火
を生じさせるのは2ストロークエンジンほど容易ではな
い。
By the way, since the two-stroke engine inherently employs a combustion method in which a large amount of burned gas remains, self-ignition can be generated relatively easily. However, since a 4-stroke engine inherently employs a combustion method in which burned gas does not remain as much as possible, it is not as easy to cause self-ignition in a 4-stroke engine as in a 2-stroke engine.

【0006】また、自己着火を生じさせれば上述したよ
うに燃料消費率を向上させることができるがこのときポ
ンピング損失が発生すると自己着火による燃料消費率向
上のメリットも半減してしまう。従ってポンピング損失
が生ずることなく自己着火を生じさせることが重要とな
ってくる。ところで上述したように吸気弁の閉弁時期を
変えることにより機関出力を制御すればポンピング損失
の発生を阻止することができる。しかしながらこのよう
に吸気弁の閉弁時期を制御しただけでは自己着火を生じ
させるのは困難である。
If the self-ignition occurs, the fuel consumption rate can be improved as described above. However, at this time, if pumping loss occurs, the merit of the improvement in the fuel consumption rate by the self-ignition is reduced by half. Therefore, it is important to cause self-ignition without pumping loss. By controlling the engine output by changing the closing timing of the intake valve as described above, it is possible to prevent the occurrence of pumping loss. However, it is difficult to cause self-ignition only by controlling the closing timing of the intake valve in this way.

【0007】従って本発明の第1の目的は、4ストロー
クエンジンにおいて自己着火の発生に適用することがで
きる、ポンピング損失のない機関出力の制御装置を提供
することにある。本発明の第2の目的は、4ストローク
エンジンにおいてポンピング損失の発生を阻止しつつ自
己着火を生じさせる制御装置を提供することにある。
SUMMARY OF THE INVENTION It is therefore a first object of the present invention to provide a control device for an engine output which can be applied to the occurrence of self-ignition in a four-stroke engine and has no pumping loss. A second object of the present invention is to provide a control device that causes self-ignition while preventing pumping loss in a four-stroke engine.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に1番目の発明によれば、機関低負荷から中負荷に亘る
予め定められた負荷範囲において排気弁を吸気上死点前
に閉弁させると共に要求負荷が低くなるにつれて排気弁
の閉弁時期を早めるようにしている。即ち、排気弁の閉
弁時期を早めると燃焼室内に残留する既燃ガス量が多く
なり、従って燃焼室内に供給される吸入空気量が減少す
る。云い換えると吸入空気量が排気弁の閉弁時期を制御
することによって制御される。
According to a first aspect of the present invention, an exhaust valve is closed before intake top dead center in a predetermined load range from a low engine load to a medium engine load. As the required load decreases, the closing timing of the exhaust valve is advanced. That is, when the closing timing of the exhaust valve is advanced, the amount of burned gas remaining in the combustion chamber increases, and accordingly, the amount of intake air supplied to the combustion chamber decreases. In other words, the intake air amount is controlled by controlling the closing timing of the exhaust valve.

【0009】2番目の発明では1番目の発明において、
上述の負荷範囲において吸気弁を吸気上死点後に開弁さ
せると共に要求負荷が低くなるにつれて吸気弁の開弁時
期を遅らすようにしている。吸気弁の開弁時期を遅らす
と燃焼室内に供給される吸入空気量は減少する。3番目
の発明では1番目の発明において、上述の負荷範囲にお
いて吸気弁を吸気下死点後に閉弁させると共に吸気弁の
閉弁時期を要求負荷の増大に伴い徐々に遅らせた後徐々
に早めるようにしている。吸気弁の閉弁時期を早くする
と圧縮比が高くなり、その結果圧縮行程末期の燃焼室内
の温度が高くなるために自己着火を生じやすくなる。即
ち、自己着火が生じずらい負荷のときには吸気弁の閉弁
時期が早くされ、圧縮比が高くされる。
In the second invention, in the first invention,
In the above-described load range, the intake valve is opened after the intake top dead center, and the opening timing of the intake valve is delayed as the required load decreases. If the opening timing of the intake valve is delayed, the amount of intake air supplied to the combustion chamber decreases. According to a third aspect of the present invention, in the first aspect, the intake valve is closed after the intake bottom dead center in the above-described load range, and the closing timing of the intake valve is gradually delayed with an increase in required load, and then gradually advanced. I have to. If the closing timing of the intake valve is advanced, the compression ratio increases, and as a result, the temperature in the combustion chamber at the end of the compression stroke increases, so that self-ignition tends to occur. That is, when the load is such that self-ignition hardly occurs, the closing timing of the intake valve is advanced and the compression ratio is increased.

【0010】[0010]

【発明の実施の形態】図1を参照すると、1は4ストロ
ークエンジン本体、2はシリンダブロック、3はシリン
ダヘッド、4はピストン、5は燃焼室、6は点火栓、7
は吸気弁、8は吸気弁駆動用アクチュエータ、9は吸気
ポート、10は排気弁、11は排気弁駆動用アクチュエ
ータ、12は排気ポートを夫々示す。吸気ポート9は対
応する吸気枝管13を介してサージタンク14に連結さ
れ、各吸気枝管13には夫々燃料噴射弁15が取付けら
れる。サージタンク14は吸気ダクト16を介してエア
クリーナ17に連結され、吸気ダクト16内には電気モ
ータ18により駆動されるスロットル弁19が配置され
る。一方、排気ポート12は排気マニホルド20に連結
され、排気マニホルド20内には空燃比センサ21が配
置される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, 1 is a four-stroke engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is a spark plug, 7
Denotes an intake valve, 8 denotes an intake valve driving actuator, 9 denotes an intake port, 10 denotes an exhaust valve, 11 denotes an exhaust valve driving actuator, and 12 denotes an exhaust port. The intake port 9 is connected to a surge tank 14 via a corresponding intake branch 13, and a fuel injection valve 15 is attached to each intake branch 13. The surge tank 14 is connected to an air cleaner 17 via an intake duct 16, and a throttle valve 19 driven by an electric motor 18 is arranged in the intake duct 16. On the other hand, the exhaust port 12 is connected to an exhaust manifold 20, and an air-fuel ratio sensor 21 is disposed in the exhaust manifold 20.

【0011】電子制御ユニット30はデジタルコンピュ
ータからなり、双方向性バス31によって互いに接続さ
れたROM(リードオンリメモリ)32、RAM(ラン
ダムアクセスメモリ)33、CPU(マイクロプロセッ
サ)34、入力ポート35および出力ポート36を具備
する。空燃比センサ21の出力信号は対応するAD変換
器37を介して入力ポート35に入力される。アクセル
ペダル40にはアクセルペダル40の踏込み量Lに比例
した出力電圧を発生する負荷センサ41が接続され、負
荷センサ41の出力電圧は対応するAD変換器37を介
して入力ポート35に入力される。更に入力ポート35
にはクランクシャフトが例えば30°回転する毎に出力
パルスを発生するクランク角センサ42が接続される。
一方、出力ポート36は対応する駆動回路38を介して
点火栓6、アクチュエータ8,11、燃料噴射弁15お
よび電気モータ18に接続される。
The electronic control unit 30 is composed of a digital computer, and is connected to a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35, An output port 36 is provided. The output signal of the air-fuel ratio sensor 21 is input to the input port 35 via the corresponding AD converter 37. A load sensor 41 that generates an output voltage proportional to the amount of depression L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. . Further input port 35
Is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, by 30 °.
On the other hand, the output port 36 is connected to the ignition plug 6, the actuators 8, 11, the fuel injection valve 15, and the electric motor 18 via the corresponding drive circuit 38.

【0012】図2に吸気弁駆動用アクチュエータ8の拡
大図を示す。図2を参照すると、50は吸気弁7の頂部
に取付けられた円板状鉄片、51,52は鉄片50の両
側に配置されたソレノイド、53,54は鉄片50の両
側に配置された圧縮ばねを夫々示す。ソレノイド51が
付勢されると鉄片50が上昇し、吸気弁7が閉弁する。
これに対してソレノイド52が付勢されると鉄片50が
下降し、吸気弁7が開弁する。従って各ソレノイド5
1,52の付勢タイミングを制御することによって吸気
弁7を任意の時期に開弁し、閉弁することができる。排
気弁駆動用アクチュエータ11も図2に示す吸気弁駆動
用アクチュエータ8と同じ構造を有しており、従って排
気弁10も任意の時期に開弁し、閉弁することができ
る。
FIG. 2 is an enlarged view of the actuator 8 for driving the intake valve. Referring to FIG. 2, reference numeral 50 denotes a disc-shaped iron piece mounted on the top of the intake valve 7, 51 and 52 denote solenoids disposed on both sides of the iron piece 50, and 53 and 54 denote compression springs disposed on both sides of the iron piece 50. Are shown respectively. When the solenoid 51 is energized, the iron piece 50 rises, and the intake valve 7 closes.
On the other hand, when the solenoid 52 is energized, the iron piece 50 descends, and the intake valve 7 opens. Therefore, each solenoid 5
By controlling the energizing timings 1 and 52, the intake valve 7 can be opened and closed at an arbitrary time. The exhaust valve driving actuator 11 also has the same structure as the intake valve driving actuator 8 shown in FIG. 2, so that the exhaust valve 10 can be opened and closed at any time.

【0013】図3は吸気弁7の開弁時期IO、吸気弁7
の閉弁時期IC、排気弁10の開弁時期EO、排気弁1
0の閉弁時期ECおよびスロットル弁19の開度θを示
している。なお、図3において横軸はアクセルペダル4
0の踏込み量L、即ち要求負荷を表わしている。本発明
による実施例では機関低負荷から中負荷に至る予め定め
られた負荷範囲において自己着火を生じさせることを意
図しており、この負荷範囲が図3において自己着火領域
として示されている。
FIG. 3 shows the opening timing IO of the intake valve 7 and the intake valve 7.
Valve closing timing IC, exhaust valve opening timing EO, exhaust valve 1
0 indicates the valve closing timing EC and the opening degree θ of the throttle valve 19. The horizontal axis in FIG.
This represents a stepping amount L of 0, that is, a required load. The embodiment according to the present invention is intended to cause self-ignition in a predetermined load range from low engine load to medium load, and this load range is shown in FIG. 3 as a self-ignition region.

【0014】図3に示されるように排気弁10の開弁時
期EOは要求負荷Lにかかわらずに圧縮下死点BDCの
少し手前のクランク角に固定されている。一方、自己着
火領域内においては排気弁10の閉弁時期ECは吸気上
死点TDCよりも少し手前に設定されており、しかも排
気弁10の閉弁時期ECは要求負荷Lが低くなるほど早
められる。排気弁10の閉弁時期ECが早められると燃
焼室5内に残留する既燃ガスが増大し、燃焼室5内に残
留する既燃ガスが増大すると吸気行程時に燃焼室5内に
供給される吸入空気量が減少する。即ち、要求負荷Lが
低くなるほど吸入空気量が減少することになる。
As shown in FIG. 3, the opening timing EO of the exhaust valve 10 is fixed to a crank angle slightly before the compression bottom dead center BDC regardless of the required load L. On the other hand, in the self-ignition region, the closing timing EC of the exhaust valve 10 is set slightly before the intake top dead center TDC, and the closing timing EC of the exhaust valve 10 is advanced as the required load L decreases. . If the valve closing timing EC of the exhaust valve 10 is advanced, the burned gas remaining in the combustion chamber 5 increases, and if the burned gas remaining in the combustion chamber 5 increases, the burned gas is supplied into the combustion chamber 5 during the intake stroke. The intake air volume decreases. That is, the intake air amount decreases as the required load L decreases.

【0015】一方、図3に示されるように自己着火領域
のほぼ全領域に亘ってスロットル弁19は全開状態に保
持されており、従って要求負荷Lに対する吸入空気量の
制御は排気弁10の閉弁時期を変化させることによっ
て、即ち残留既燃ガス量を変化させることによって行わ
れる。従ってポンピング損失を発生することなく要求負
荷Lに応じて機関出力を制御できることになる。
On the other hand, as shown in FIG. 3, the throttle valve 19 is maintained in a fully open state over almost the entire self-ignition region. Therefore, the control of the intake air amount with respect to the required load L is performed by closing the exhaust valve 10. This is performed by changing the valve timing, that is, by changing the amount of residual burned gas. Therefore, the engine output can be controlled according to the required load L without generating pumping loss.

【0016】図3に示されるように自己着火領域内にお
いては吸気弁7の開弁時期IOは吸気上死点TDCを若
干越えたときに設定されており、しかも吸気弁7の開弁
時期IOは要求負荷Lが低くなるほど遅くなる。吸気弁
7の開弁時期IOが遅くなると吸入空気量が減少する。
従って吸気弁7の開弁時期IOの制御も要求負荷Lに応
じて機関出力を制御する役目を果している。
As shown in FIG. 3, in the self-ignition region, the opening timing IO of the intake valve 7 is set when it slightly exceeds the intake top dead center TDC, and the opening timing IO of the intake valve 7 is set. Becomes slower as the required load L decreases. When the valve opening timing IO of the intake valve 7 is delayed, the amount of intake air decreases.
Therefore, the control of the valve opening timing IO of the intake valve 7 also serves to control the engine output according to the required load L.

【0017】一方、自己着火は燃焼室5内に供給された
吸入空気温がほぼ1000°Kに達すると生じることが
判明している。吸入空気は既燃ガスにより加熱されて温
度上昇するので燃焼室5内に供給された吸入空気の温度
がほぼ1000°Kまで上昇せしめられるか否かは燃焼
室5内に残留している既燃ガスの熱エネルギに依存して
いる。図3に示されるように要求負荷Lが低くなると排
気弁10の閉弁時期ECが早められるので残留既燃ガス
量が増大し、この点からみると既燃ガスの熱エネルギは
要求負荷Lが低くなるほど増大することになる。一方、
要求負荷Lが低くなるほど燃焼温が低くなるのでこの点
からみると既燃ガスの熱エネルギは要求負荷Lが低くな
るほど減少する。総合的にみると既燃ガスの熱エネルギ
は要求負荷Lが低くなるほど減少することになる。
On the other hand, it has been found that self-ignition occurs when the temperature of the intake air supplied into the combustion chamber 5 reaches approximately 1000 ° K. Since the intake air is heated by the burned gas and rises in temperature, it is determined whether or not the temperature of the intake air supplied into the combustion chamber 5 can be raised to approximately 1000 ° K. It depends on the heat energy of the gas. As shown in FIG. 3, when the required load L decreases, the valve closing timing EC of the exhaust valve 10 is advanced, so that the amount of residual burned gas increases. It will increase as it gets lower. on the other hand,
Since the combustion temperature decreases as the required load L decreases, the thermal energy of the burned gas decreases as the required load L decreases from this point of view. Comprehensively, the thermal energy of the burned gas decreases as the required load L decreases.

【0018】一方、要求負荷Lが高くなると残留既燃ガ
ス量が減少するが燃焼温が高くなるために既燃ガス温が
高くなる。この場合、総合的にみると既燃ガスの熱エネ
ルギは要求負荷Lが高くなるほど減少する。即ち、要求
負荷Lが低くもなく高くもないときには残留既燃ガス量
が比較的多く、残留既燃ガス温も比較的高いのでこのと
きに既燃ガスの熱エネルギが最も高くなる。即ち、残留
既燃ガスの熱エネルギは要求負荷Lに対して図4に示さ
れるように変化する。
On the other hand, when the required load L increases, the amount of residual burned gas decreases, but the temperature of burned gas increases because the combustion temperature increases. In this case, when viewed comprehensively, the thermal energy of the burned gas decreases as the required load L increases. That is, when the required load L is neither low nor high, the residual burned gas amount is relatively large, and the residual burned gas temperature is also relatively high. At this time, the burned gas has the highest thermal energy. That is, the thermal energy of the residual burned gas changes with respect to the required load L as shown in FIG.

【0019】残留既燃ガスの熱エネルギが高いときには
圧縮比が低くても吸入空気温はほぼ1000°Kに達
し、残留既燃ガスの熱エネルギが低いときには圧縮比を
高くして吸入空気を昇温させないと吸入空気温はほぼ1
000°Kに達しない。一方、吸気弁7の閉弁時期IC
は吸気下死点BDC後において遅くすれば遅くするほど
圧縮比は低くなる。従って残留既燃ガスの熱エネルギが
最も高いときに圧縮比が最も小さくなるように吸気弁7
の閉弁時期ICは図3に示される如く要求負荷Lの増大
に伴い次第に遅くされた後に次第に早められる。自己着
火領域における吸気弁7の開弁時期IOおよび閉弁時期
IC、並びに排気弁10の閉弁時期ECを図3に示すよ
うに制御することによって図3に示す自己着火領域内に
おいて自己着火を生じさせることができる。
When the heat energy of the residual burned gas is high, the intake air temperature reaches approximately 1000 ° K even if the compression ratio is low, and when the heat energy of the residual burned gas is low, the compression ratio is increased to raise the intake air. If not heated, the intake air temperature will be almost 1
000 ° K is not reached. On the other hand, the closing timing IC of the intake valve 7
The compression ratio decreases as the delay time increases after intake bottom dead center BDC. Therefore, when the residual burned gas has the highest thermal energy, the intake valve 7 is set so that the compression ratio becomes the smallest.
The valve closing timing IC is gradually delayed as the required load L increases as shown in FIG. By controlling the valve opening timing IO and valve closing timing IC of the intake valve 7 and the valve closing timing EC of the exhaust valve 10 in the self-ignition region as shown in FIG. 3, the self-ignition in the self-ignition region shown in FIG. Can be caused.

【0020】図3に示されるように要求負荷Lが自己着
火領域よりも低いときには自己着火は生じず、このとき
には点火栓6による通常の燃焼が行われる。このときに
は要求負荷Lに応じてスロットル弁19の開度を制御す
ることにより機関出力が制御される。また、要求負荷L
が自己着火領域よりも高いときにも自己着火は生じず、
このときにも点火栓6による通常の燃焼が行われる。た
だし、このときには吸気弁7の開弁期間および排気弁1
0の開弁期間を要求負荷に応じて変えることにより機関
出力が制御される。
As shown in FIG. 3, when the required load L is lower than the self-ignition region, self-ignition does not occur, and at this time, normal combustion by the ignition plug 6 is performed. At this time, the engine output is controlled by controlling the opening of the throttle valve 19 according to the required load L. Also, the required load L
Self-ignition does not occur when is higher than the self-ignition area,
Also at this time, normal combustion by the ignition plug 6 is performed. However, at this time, the opening period of the intake valve 7 and the exhaust valve 1
The engine output is controlled by changing the zero valve opening period according to the required load.

【0021】本発明による実施例では自己着火を広範囲
の運転状態に亘って生じさせるために空燃比が理論空燃
比に制御される。空燃比を理論空燃比とするのに必要な
基本噴射時間TPは機関回転数Nおよび要求負荷Lの関
数として図5に示すマップの形で予めROM32内に記
憶されており、この基本噴射時間TPを空燃比センサ2
1の出力信号に基づき補正することによって空燃比が理
論空燃比に維持される。
In the embodiment according to the present invention, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio in order to cause self-ignition over a wide range of operating conditions. The basic injection time TP required to make the air-fuel ratio the stoichiometric air-fuel ratio is stored in the ROM 32 in advance in the form of a map shown in FIG. 5 as a function of the engine speed N and the required load L. The air-fuel ratio sensor 2
The air-fuel ratio is maintained at the stoichiometric air-fuel ratio by making correction based on the output signal of 1.

【0022】図6に機関の運転制御ルーチンを示す。図
6を参照するとまず初めにステップ60において図3に
示される要求負荷Lに応じた吸気弁7の開弁時期IOと
閉弁時期ICが算出され、次いでステップ61において
図3に示される要求負荷Lに応じた排気弁10の開弁時
期EOと閉弁時期ECが算出される。次いでステップ6
2では図3に示される要求負荷Lに応じたスロットル弁
19の開度θが算出される。次いでステップ63では図
5に示されるマップから基本噴射時間TPが算出され、
次いでステップ64では空燃比センサ21の出力信号に
基づき空燃比が理論空燃比となるよう基本噴射時間TP
を補正することによって噴射時間TAUが算出される。
FIG. 6 shows an operation control routine of the engine. Referring to FIG. 6, first, in step 60, the valve opening timing IO and the valve closing timing IC of the intake valve 7 according to the required load L shown in FIG. 3 are calculated, and then in step 61, the required load shown in FIG. The valve opening timing EO and the valve closing timing EC of the exhaust valve 10 according to L are calculated. Then step 6
In step 2, the opening θ of the throttle valve 19 according to the required load L shown in FIG. 3 is calculated. Next, at step 63, the basic injection time TP is calculated from the map shown in FIG.
Next, at step 64, based on the output signal of the air-fuel ratio sensor 21, the basic injection time TP is set so that the air-fuel ratio becomes the stoichiometric air-fuel ratio.
Is corrected, the injection time TAU is calculated.

【0023】[0023]

【発明の効果】4ストロークエンジンにおいて残留既燃
ガス量を要求負荷に応じ制御することによりポンピング
損失が発生しないようにしつつ要求負荷に応じて機関出
力を制御することができる。
According to the present invention, by controlling the amount of residual burned gas in a four-stroke engine according to a required load, the engine output can be controlled according to the required load while preventing pumping loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】4ストロークエンジンの全体図である。FIG. 1 is an overall view of a four-stroke engine.

【図2】吸気弁駆動用アクチュエータの拡大側面断面図
である。
FIG. 2 is an enlarged side sectional view of an actuator for driving an intake valve.

【図3】吸気弁および排気弁の開閉弁時期等を示す図で
ある。
FIG. 3 is a diagram showing opening / closing valve timings of an intake valve and an exhaust valve.

【図4】残留既燃ガスの熱エネルギを示す図である。FIG. 4 is a diagram showing heat energy of residual burned gas.

【図5】基本噴射時間のマップを示す図である。FIG. 5 is a diagram showing a map of a basic injection time.

【図6】機関の運転制御を行うためのフローチャートで
ある。
FIG. 6 is a flowchart for controlling the operation of the engine.

【符号の説明】[Explanation of symbols]

7…吸気弁 10…排気弁 15…燃料噴射弁 7 ... intake valve 10 ... exhaust valve 15 ... fuel injection valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/02 320 F02D 41/02 320 370 370 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/02 320 F02D 41/02 320 370 370

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機関低負荷から中負荷に亘る予め定めら
れた負荷範囲において排気弁を吸気上死点前に閉弁させ
ると共に要求負荷が低くなるにつれて排気弁の閉弁時期
を早めるようにした4ストロークエンジンの制御装置。
An exhaust valve is closed before TDC in a predetermined load range from a low engine load to a medium engine load, and the closing timing of the exhaust valve is advanced as the required load decreases. Control device for 4-stroke engine.
【請求項2】 上記負荷範囲において吸気弁を吸気上死
点後に開弁させると共に要求負荷が低くなるにつれて吸
気弁の開弁時期を遅らすようにした請求項1に記載の4
ストロークエンジンの制御装置。
2. The intake valve according to claim 1, wherein the intake valve is opened after the intake top dead center in the load range, and the opening timing of the intake valve is delayed as the required load decreases.
Control device for stroke engine.
【請求項3】 上記負荷範囲において吸気弁を吸気下死
点後に閉弁させると共に吸気弁の閉弁時期を要求負荷の
増大に伴い徐々に遅らせた後徐々に早めるようにした請
求項1に記載の4ストロークエンジンの制御装置。
3. The intake valve according to claim 1, wherein the intake valve is closed after the intake bottom dead center in the load range, and the closing timing of the intake valve is gradually delayed and then advanced with an increase in required load. Control device for 4-stroke engine.
JP9073572A 1997-03-26 1997-03-26 Control device of four-stroke engine Pending JPH10266878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9073572A JPH10266878A (en) 1997-03-26 1997-03-26 Control device of four-stroke engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9073572A JPH10266878A (en) 1997-03-26 1997-03-26 Control device of four-stroke engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005256717A Division JP4120670B2 (en) 2005-09-05 2005-09-05 Control device for 4-stroke engine

Publications (1)

Publication Number Publication Date
JPH10266878A true JPH10266878A (en) 1998-10-06

Family

ID=13522139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9073572A Pending JPH10266878A (en) 1997-03-26 1997-03-26 Control device of four-stroke engine

Country Status (1)

Country Link
JP (1) JPH10266878A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192828A (en) * 1998-12-25 2000-07-11 Nissan Motor Co Ltd Combustion control device for internal combustion engine
EP1138896A2 (en) 2000-03-30 2001-10-04 Nissan Motor Company, Limited Auto-ignition of gasoline engine by varying exhaust gas retaining duration
GB2367859A (en) * 2000-10-12 2002-04-17 Lotus Car Methods of operating i.c. engines having electrically controlled actuators for the inlet and/or exhaust valves
US6425367B1 (en) 1999-09-17 2002-07-30 Nissan Motor Co., Ltd. Compression self-ignition gasoline internal combustion engine
JP2002242715A (en) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd Compression ignition type engine
US6497213B2 (en) 2000-05-16 2002-12-24 Nissan Motor Co., Ltd. Controlled auto-ignition lean burn stratified engine by intelligent injection
JP2003097329A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Compression-ignition type internal combustion engine
EP1186759A3 (en) * 2000-09-06 2003-04-09 Fuji Jukogyo Kabushiki Kaisha Self-igniting engine
EP1233151A3 (en) * 2001-02-14 2003-04-16 Mazda Motor Corporation Automotive four-cycle engine
US6622689B2 (en) 2001-06-25 2003-09-23 Nissan Motor Co., Ltd. Method and system for controlling auto-ignition in an internal combustion engine
US6718957B2 (en) 2000-10-19 2004-04-13 Nissan Motor Co., Ltd. Intelligent control to stabilize auto-ignition combustion without rapid pressure increase
US6817349B2 (en) * 2002-07-08 2004-11-16 Honda Giken Kogyo Kabushiki Kaisha Control system and method and engine control unit for compression ignition internal combustion engine
US7000586B2 (en) 2003-05-23 2006-02-21 Honda Motor Co., Ltd. Control device for compression ignition operation of internal combustion engine
JP2007085304A (en) * 2005-09-26 2007-04-05 Yamaha Motor Co Ltd Engine system and vehicle having the same
JP2007205181A (en) * 2006-01-31 2007-08-16 Honda Motor Co Ltd Four cycle internal combustion engine
JP2009156117A (en) * 2007-12-26 2009-07-16 Mazda Motor Corp Control device and control method for engine
US7628013B2 (en) 2004-05-17 2009-12-08 Toyota Jidosha Kabushiki Kaisha Control device of charge compression ignition-type internal combustion engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192828A (en) * 1998-12-25 2000-07-11 Nissan Motor Co Ltd Combustion control device for internal combustion engine
US6425367B1 (en) 1999-09-17 2002-07-30 Nissan Motor Co., Ltd. Compression self-ignition gasoline internal combustion engine
EP1138896A2 (en) 2000-03-30 2001-10-04 Nissan Motor Company, Limited Auto-ignition of gasoline engine by varying exhaust gas retaining duration
US6612294B2 (en) 2000-03-30 2003-09-02 Nissan Motor Co., Ltd. Auto-ignition of gasoline engine by varying exhaust gas retaining duration
US6497213B2 (en) 2000-05-16 2002-12-24 Nissan Motor Co., Ltd. Controlled auto-ignition lean burn stratified engine by intelligent injection
EP1186759A3 (en) * 2000-09-06 2003-04-09 Fuji Jukogyo Kabushiki Kaisha Self-igniting engine
GB2367859A (en) * 2000-10-12 2002-04-17 Lotus Car Methods of operating i.c. engines having electrically controlled actuators for the inlet and/or exhaust valves
US6718957B2 (en) 2000-10-19 2004-04-13 Nissan Motor Co., Ltd. Intelligent control to stabilize auto-ignition combustion without rapid pressure increase
EP1233151A3 (en) * 2001-02-14 2003-04-16 Mazda Motor Corporation Automotive four-cycle engine
US6626164B2 (en) 2001-02-14 2003-09-30 Mazda Motor Corporation Automotive four-cycle engine
JP2002242715A (en) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd Compression ignition type engine
JP4647112B2 (en) * 2001-02-16 2011-03-09 富士重工業株式会社 4-cycle gasoline engine
US6622689B2 (en) 2001-06-25 2003-09-23 Nissan Motor Co., Ltd. Method and system for controlling auto-ignition in an internal combustion engine
JP2003097329A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Compression-ignition type internal combustion engine
US6817349B2 (en) * 2002-07-08 2004-11-16 Honda Giken Kogyo Kabushiki Kaisha Control system and method and engine control unit for compression ignition internal combustion engine
DE10330632B4 (en) * 2002-07-08 2014-07-10 Honda Giken Kogyo K.K. Control system and method for a compression ignition internal combustion engine
US7000586B2 (en) 2003-05-23 2006-02-21 Honda Motor Co., Ltd. Control device for compression ignition operation of internal combustion engine
DE102004024864B4 (en) * 2003-05-23 2007-10-31 Honda Motor Co., Ltd. Control device for an internal combustion engine and internal combustion engine
US7628013B2 (en) 2004-05-17 2009-12-08 Toyota Jidosha Kabushiki Kaisha Control device of charge compression ignition-type internal combustion engine
JP2007085304A (en) * 2005-09-26 2007-04-05 Yamaha Motor Co Ltd Engine system and vehicle having the same
JP2007205181A (en) * 2006-01-31 2007-08-16 Honda Motor Co Ltd Four cycle internal combustion engine
JP2009156117A (en) * 2007-12-26 2009-07-16 Mazda Motor Corp Control device and control method for engine

Similar Documents

Publication Publication Date Title
US7673608B2 (en) Engine starting for engine having adjustable valve operation
US7093568B2 (en) Control of autoignition timing in a HCCI engine
KR100863475B1 (en) Control apparatus and control method for internal combustion engine
US7992541B2 (en) System and method for controlling auto-ignition
JPH10266878A (en) Control device of four-stroke engine
US7810463B2 (en) Quick restart HCCI internal combustion engine
US5797367A (en) Control apparatus for an in-cylinder injection internal combustion engine
JPWO2010052775A1 (en) Control device for internal combustion engine
JP3743414B2 (en) Engine starter
US7406937B2 (en) Method for operating an internal combustion engine
JP4180995B2 (en) Control device for compression ignition internal combustion engine
JPH10311231A (en) Output controller for internal combustion engine
JP4120670B2 (en) Control device for 4-stroke engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
US8430067B2 (en) Engine starting for engine having adjustable valve operation
JP4517516B2 (en) 4-cycle engine for automobiles
JP3828221B2 (en) In-cylinder injection fuel control apparatus and method for internal combustion engine
US7000586B2 (en) Control device for compression ignition operation of internal combustion engine
JP3062576B2 (en) Two-stroke internal combustion engine
JP2022124166A (en) internal combustion engine
JP4093003B2 (en) Switching control of combustion method in variable combustion method engine
JP4102268B2 (en) Compression ignition internal combustion engine
JP3948081B2 (en) Spark ignition internal combustion engine
JPS63246411A (en) Two-cycle fuel injection internal combustion engine
JP2004245120A (en) Start control system of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530