JP2007205181A - Four cycle internal combustion engine - Google Patents

Four cycle internal combustion engine Download PDF

Info

Publication number
JP2007205181A
JP2007205181A JP2006022062A JP2006022062A JP2007205181A JP 2007205181 A JP2007205181 A JP 2007205181A JP 2006022062 A JP2006022062 A JP 2006022062A JP 2006022062 A JP2006022062 A JP 2006022062A JP 2007205181 A JP2007205181 A JP 2007205181A
Authority
JP
Japan
Prior art keywords
ignition combustion
combustion
self
region
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006022062A
Other languages
Japanese (ja)
Inventor
Yoichi Ishibashi
羊一 石橋
Hideaki Morikawa
秀明 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006022062A priority Critical patent/JP2007205181A/en
Publication of JP2007205181A publication Critical patent/JP2007205181A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To make transition between self ignition combustion and spark ignition combustion smooth and stabilize combustion. <P>SOLUTION: In a four cycle gasoline engine 1 provided with a spark plug provided with facing a combustion chamber 5, and a variable valve gear 11 capable of varying open close timing of an exhaust valve 10, and capable of spark ignition combustion in which air fuel mixture in the combustion chamber 5 is ignited and burned by ignition of the spark plug 10 and self-ignition combustion in which air fuel mixture is self-ignited and burned, the spark plug 10 is operated in all combustion range of spark ignition combustion range in which spark ignition combustion is possible and self-ignition combustion range in which self-ignition combustion is possible, and variable quantity of the variable valve gear 11 is continuously changed at least in a boundary region in which self-ignition combustion region and spark ignition combustion region are changed over. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自着火燃焼と火花点火燃焼の両方が可能な4サイクル内燃機関に関するものである。   The present invention relates to a four-cycle internal combustion engine capable of both self-ignition combustion and spark ignition combustion.

4サイクル内燃機関では、NOxの発生が少ないなどの利点がある自着火燃焼と、高出力が得られる火花点火燃焼の両方が可能な内燃機関が開発されている。自着火燃焼を実現可能にするには筒内温度の高温化(例えばガソリンエンジンでは約1000ケルビン以上)と高圧縮比が必要であり、筒内温度の高温化に内部EGR(内部排気ガス再循環)を利用する場合がある。
自着火燃焼と火花点火燃焼が可能で、且つ、自着火燃焼においては内部EGRにより筒内温度の高温化を図る4サイクル内燃機関では、可変動弁機構で吸気弁および排気弁の作動期間や弁リフト量を変えることにより、吸排気弁のオーバーラップを制御し、自着火燃焼および火花点火燃焼のそれぞれに好適な条件を成立させる。
In the four-cycle internal combustion engine, an internal combustion engine has been developed that can perform both self-ignition combustion, which has an advantage such as low generation of NOx, and spark ignition combustion that provides high output. In order to realize self-ignition combustion, it is necessary to increase the in-cylinder temperature (for example, about 1000 Kelvin or more in a gasoline engine) and a high compression ratio. To increase the in-cylinder temperature, internal EGR (internal exhaust gas recirculation) ) May be used.
In a four-cycle internal combustion engine capable of self-ignition combustion and spark-ignition combustion, and in which self-ignition combustion increases the in-cylinder temperature by internal EGR, the variable valve mechanism operates the operating periods and valves of the intake and exhaust valves. By changing the lift amount, the overlap of the intake / exhaust valves is controlled, and conditions suitable for the self-ignition combustion and the spark ignition combustion are established.

詳述すると、火花点火燃焼では、ピストン上死点前に吸気弁を開きピストン上死点より後で排気弁を閉じることにより吸排気弁の開弁期間をオーバーラップさせ(以下、プラスオーバーラップというときもある)、これにより吸排気を効率よく行って(換言すると残留ガスを少なくして)、高出力を得る。
これに対して、自着火燃焼では、吸気弁と排気弁の開弁期間をオーバーラップさせず(以下、マイナスオーバーラップという)、これにより筒内に前サイクルの排気ガスの一部を溜め込んで内部EGR量を多くし、新気の流入量を制限し、これにより次サイクルの作動ガス温度を高める。また、吸気弁の閉時期を下死点付近にして有効圧縮比を高く取り、これにより圧縮上死点付近での圧力を極力高くする。これにより、筒内温度と筒内圧力の両方を自着火が安定して起こるレベルにし、自着火燃焼が安定して起こる雰囲気を形成している。
従来は、適宜のパラメータ(例えば要求出力)に基づいて自着火燃焼領域と火花点火燃焼領域を完全に区分し、自着火燃焼領域では吸排気弁をマイナスオーバーラップに制御するとともに点火プラグを作動させず、火花点火燃焼領域では吸排気弁をプラスのオーバーラップに制御するとともに点火プラグを作動させていた(例えば、特許文献1参照)。図5は、この従来手法により理想的にオーバーラップを切り換えた場合の、エンジン負荷に対する筒内の新気と残留ガスとの質量比の変化を示す図である。
である。
特開2000−320333号公報
More specifically, in spark ignition combustion, the intake valve is opened before the top dead center of the piston and the exhaust valve is closed after the top dead center of the piston to overlap the opening period of the intake and exhaust valves (hereinafter referred to as plus overlap). In some cases, this allows efficient intake and exhaust (in other words, less residual gas) and high output.
On the other hand, in self-ignition combustion, the valve opening periods of the intake valve and the exhaust valve do not overlap (hereinafter referred to as minus overlap). The amount of EGR is increased to limit the amount of fresh air flowing, thereby increasing the working gas temperature of the next cycle. Further, the effective compression ratio is increased by setting the intake valve close timing near the bottom dead center, thereby increasing the pressure near the compression top dead center as much as possible. Thereby, both the in-cylinder temperature and the in-cylinder pressure are set to a level at which self-ignition occurs stably, and an atmosphere in which self-ignition combustion occurs stably is formed.
Conventionally, the self-ignition combustion region and the spark ignition combustion region are completely divided based on appropriate parameters (for example, required output). In the self-ignition combustion region, the intake / exhaust valve is controlled to minus overlap and the spark plug is operated. In the spark ignition combustion region, the intake / exhaust valve is controlled to a positive overlap and the spark plug is operated (see, for example, Patent Document 1). FIG. 5 is a diagram showing a change in the mass ratio between the fresh air in the cylinder and the residual gas with respect to the engine load when the overlap is ideally switched by this conventional method.
It is.
JP 2000-320333 A

しかしながら、従来のように自着火燃焼領域と火花点火燃焼領域を完全に区分し、それぞれの燃焼形態に応じた圧縮比や内部EGR量に制御するのは、容易ではない。
例えば、燃焼形態の境界は外乱により様々に変化するため、自着火燃焼領域を最大限確保した境界の設定は困難で、そのため火花点火燃焼領域を広げるような境界設定を行わざるを得ず、結果的に自着火燃焼領域を狭めることとなった。
However, it is not easy to completely separate the self-ignition combustion region and the spark ignition combustion region as in the prior art, and to control the compression ratio and the internal EGR amount according to each combustion mode.
For example, because the boundary of the combustion mode changes variously due to disturbances, it is difficult to set a boundary that secures the auto-ignition combustion region as much as possible, so it is necessary to set a boundary that widens the spark ignition combustion region. Therefore, the auto-ignition combustion area was narrowed.

また、自着火燃焼と火花点火燃焼の切り換え制御により燃焼形態が急激に変化するため、切り換え前後で出力特性およびドライバビリティを同じ状態に維持するのが困難となる。さらに、自着火燃焼に最適な制御仕様から火花点火燃焼に最適な制御仕様に変更するにあたっては、物理的な条件が瞬時に変化してしまうため、燃焼状態を境界付近で最適にするには応答性の高い制御システムが必要になり、装置の大型化、コストアップを招く。
そこで、この発明は、制御が簡単ながら、自着火燃焼と火花点火燃焼の燃焼形態の移行がスムーズにでき且つ燃焼が安定し、しかも自着火燃焼領域を広げることができる4サイクル内燃機関を提供するものである。
In addition, since the combustion mode changes abruptly by switching control between self-ignition combustion and spark ignition combustion, it becomes difficult to maintain the same output characteristics and drivability before and after switching. Furthermore, when changing from the optimal control specification for self-ignition combustion to the optimal control specification for spark ignition combustion, the physical conditions change instantaneously, so a response is required to optimize the combustion state near the boundary. A highly reliable control system is required, resulting in an increase in size and cost of the apparatus.
Therefore, the present invention provides a four-cycle internal combustion engine that can be easily controlled, can smoothly shift between the combustion modes of self-ignition combustion and spark ignition combustion, can stably stabilize the combustion, and can expand the self-ignition combustion region. Is.

この発明に係る4サイクル内燃機関では、上記課題を解決するために以下の手段を採用した。
請求項1に係る発明は、燃焼室(例えば、後述する実施例における燃焼室5)に臨んで設けられた火花点火装置(例えば、後述する実施例における点火プラグ10)と、吸・排気弁(例えば、後述する実施例における排気弁9)の開閉タイミングとリフト量の少なくともいずれか一方を変更可能な可変動弁機構(例えば、後述する実施例における可変動弁機構11)と、を備え、前記火花点火装置の点火により前記燃焼室内の混合気を着火して燃焼させる火花点火燃焼と、前記混合気を圧縮着火して燃焼させる自着火燃焼が可能な4サイクル内燃機関(例えば、後述する実施例におけるガソリンエンジン1)において、前記火花点火燃焼が可能な火花点火燃焼領域および前記自着火燃焼が可能な自着火燃焼領域の総ての燃焼領域で前記火花点火装置を作動させるとともに、少なくとも前記自着火燃焼領域と前記火花点火燃焼領域が切り換わる境界領域では前記可変動弁機構の可変量を連続的に変化させることを特徴とする。
このように構成することにより、自着火燃焼領域と火花点火燃焼領域が切り換わる境界領域においても内部EGR率を連続的に変化させることができ、且つ、境界領域において自着火燃焼に先行して混合気の一部で火花点火燃焼を発生させることができ、これにより混合気の温度を上昇させて自着火燃焼条件を成立させ、混合気全体の自着火燃焼を確実に起こさせることができる。
The four-cycle internal combustion engine according to the present invention employs the following means in order to solve the above problems.
The invention according to claim 1 includes a spark ignition device (for example, a spark plug 10 in an embodiment to be described later) provided in a combustion chamber (for example, a combustion chamber 5 in an embodiment to be described later), an intake / exhaust valve ( For example, a variable valve mechanism (for example, a variable valve mechanism 11 in an embodiment described later) capable of changing at least one of the opening / closing timing and the lift amount of the exhaust valve 9) in an embodiment described later, A 4-cycle internal combustion engine capable of performing spark ignition combustion in which an air-fuel mixture in the combustion chamber is ignited and combusted by ignition of a spark ignition device, and self-ignition combustion in which the air-fuel mixture is compressed and ignited (for example, an embodiment described later) In the gasoline engine 1), the spark point in all the combustion regions of the spark ignition combustion region where the spark ignition combustion is possible and the self ignition combustion region where the self ignition combustion is possible Actuates the device, at least the self-ignition combustion region and the spark-ignition combustion region is switched boundary region, characterized in that continuously changing a variable amount of the variable valve mechanism.
With this configuration, the internal EGR rate can be continuously changed even in the boundary region where the self-ignition combustion region and the spark ignition combustion region are switched, and mixing is performed prior to the self-ignition combustion in the boundary region. Spark ignition combustion can be generated in a part of the air, whereby the temperature of the air-fuel mixture is raised to establish the self-ignition combustion condition, and the self-ignition combustion of the entire air-fuel mixture can be reliably caused.

請求項2に係る発明は、請求項1に記載の発明において、前記自着火燃焼領域および前記境界領域では、燃焼室内の混合気の空燃比がほぼ理論空燃比となるように燃料噴射量を制御することを特徴とする。
自着火燃焼領域における空燃比を理論空燃比にすることにより、自着火燃焼を安定して発生させることができる。
また、境界領域は燃焼形態が不確定な領域であり自着火燃焼と火花点火燃焼のどちらも起こり得るが、この境界領域において空燃比を理論空燃比(ストイキ)にすることにより、自着火燃焼または火花点火燃焼のどちらの燃焼も発生可能にすることができる。
According to a second aspect of the present invention, in the first aspect of the present invention, in the self-ignition combustion region and the boundary region, the fuel injection amount is controlled so that the air-fuel ratio of the air-fuel mixture in the combustion chamber becomes substantially the stoichiometric air-fuel ratio. It is characterized by doing.
By setting the air-fuel ratio in the self-ignition combustion region to the stoichiometric air-fuel ratio, self-ignition combustion can be stably generated.
The boundary region is a region in which the combustion form is uncertain, and both self-ignition combustion and spark ignition combustion can occur. However, by setting the air-fuel ratio to the stoichiometric air-fuel ratio (stoichiometric) in this boundary region, auto-ignition combustion or Both combustions of spark ignition combustion can be made possible.

請求項3に係る発明は、請求項1または請求項2に記載の発明において、前記可変動弁機構は排気弁のみに設けたことを特徴とする。
このように構成することにより、吸気弁の作動については特別な制御をせず、排気弁の作動を可変動弁機構により制御するだけで、内部EGR率(EGR量)を変化させることができる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the variable valve mechanism is provided only in the exhaust valve.
With this configuration, the internal EGR rate (EGR amount) can be changed only by controlling the operation of the exhaust valve by the variable valve mechanism without performing any special control on the operation of the intake valve.

請求項4に係る発明は、請求項1または請求項2に記載の発明において、吸気弁の上流の吸気通路に、吸気通路から燃焼室へのガスの流通を許可し燃焼室から吸気通路へのガスの流通を阻止する一方向弁(例えば、後述する実施例における吸気リード弁14)を設けたことを特徴とする。
このように構成することにより、吸気弁と排気弁の開弁期間をマイナスオーバーラップに設定しているときにも、燃焼室から吸気通路へガスが逆流するのを防止することができ、吸気系を保護することができる。また、燃焼室内から吸気通路側へ排気ガスを逃がさないようにすることができるので、熱の流出を阻止することができる。
According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the flow of gas from the intake passage to the combustion chamber is permitted in the intake passage upstream of the intake valve, and the flow from the combustion chamber to the intake passage is allowed. A one-way valve (for example, an intake reed valve 14 in an embodiment to be described later) for preventing gas flow is provided.
With this configuration, it is possible to prevent the gas from flowing backward from the combustion chamber to the intake passage even when the opening period of the intake valve and the exhaust valve is set to minus overlap. Can be protected. Further, since exhaust gas can be prevented from escaping from the combustion chamber to the intake passage side, heat outflow can be prevented.

請求項1に係る発明によれば、境界領域においてエンジンの制御を急激に変化させないで済むとともに、境界領域においても燃焼を安定させることができ、自着火燃焼と火花点火燃焼の間の移行をスムーズに行うことができる。また、自着火燃焼を最大限利用することが可能となり、自着火燃焼領域を拡大することができるので、自着火燃焼の利点を最大限利用することができる。
請求項2に係る発明によれば、自着火燃焼領域および境界領域において安定した燃焼を得ることができる。
According to the first aspect of the present invention, it is not necessary to change the engine control rapidly in the boundary region, the combustion can be stabilized in the boundary region, and the transition between the self-ignition combustion and the spark ignition combustion is smooth. Can be done. In addition, the self-ignition combustion can be utilized to the maximum, and the self-ignition combustion area can be expanded, so that the advantages of the self-ignition combustion can be utilized to the maximum.
According to the invention of claim 2, stable combustion can be obtained in the self-ignition combustion region and the boundary region.

請求項3に係る発明によれば、排気弁の作動を制御するだけで内部EGR率を変化させることができるので、動弁機構の簡素化を図ることができ、4サイクル内燃機関を小型・軽量にすることができる。
請求項4に係る発明によれば、燃焼室から吸気通路へガスが逆流するのを防止することができるので、吸気系を保護することができる。また、排気ガスを燃焼室から吸気通路側へ逃がさないので、熱の流出を阻止することができ、その結果、自着火燃焼が発生し易くなる。
According to the invention of claim 3, since the internal EGR rate can be changed only by controlling the operation of the exhaust valve, the valve operating mechanism can be simplified, and the 4-cycle internal combustion engine can be reduced in size and weight. Can be.
According to the fourth aspect of the present invention, it is possible to prevent the gas from flowing backward from the combustion chamber to the intake passage, so that the intake system can be protected. Further, since the exhaust gas is not escaped from the combustion chamber to the intake passage side, heat outflow can be prevented, and as a result, self-ignition combustion is likely to occur.

以下、この発明に係る4サイクル内燃機関の実施例を図1から図4の図面を参照して説明する。
この実施例における4サイクル内燃機関は4サイクルガソリンエンジンであり、図1のシステム構成図に示すように、4サイクルガソリンエンジン(以下、エンジンと略す)1は、シリンダブロック2と、シリンダヘッド3と、ピストン4と、これらに囲繞されて形成される燃焼室5と、を備えており、ピストン4の往復運動がコンロッド31を介してクランクシャフト32の回転運動に変換される。
Embodiments of a four-cycle internal combustion engine according to the present invention will be described below with reference to the drawings of FIGS.
The four-cycle internal combustion engine in this embodiment is a four-cycle gasoline engine. As shown in the system configuration diagram of FIG. 1, a four-cycle gasoline engine (hereinafter abbreviated as engine) 1 includes a cylinder block 2, a cylinder head 3, The piston 4 and the combustion chamber 5 formed so as to be surrounded by the piston 4 are provided, and the reciprocating motion of the piston 4 is converted into the rotational motion of the crankshaft 32 through the connecting rod 31.

シリンダヘッド3には、燃焼室5に連通する吸気ポート(吸気通路)6を開閉する吸気弁7と、燃焼室5に連通する排気ポート(排気通路)8を開閉する排気弁9と、燃焼室5に臨んで配置された点火プラグ(火花点火装置)10および燃料噴射弁12が設けられている。すなわち、このエンジン1は燃料を筒内に直接噴射する、いわゆる筒内直噴エンジンに構成されている。吸気弁7と排気弁9は動弁機構によってそれぞれ独立して開閉可能である。特に、この実施例では、吸気弁7は開閉タイミングを変更できない動弁機構33で構成されているが、排気弁9は可変動弁機構11を備えており、排気弁9の閉弁タイミングを変更することができるようにされている。   The cylinder head 3 includes an intake valve 7 for opening and closing an intake port (intake passage) 6 communicating with the combustion chamber 5, an exhaust valve 9 for opening and closing an exhaust port (exhaust passage) 8 communicating with the combustion chamber 5, and a combustion chamber. A spark plug (spark igniter) 10 and a fuel injection valve 12 that are disposed facing 5 are provided. That is, the engine 1 is configured as a so-called in-cylinder direct injection engine that directly injects fuel into the cylinder. The intake valve 7 and the exhaust valve 9 can be opened and closed independently by a valve operating mechanism. In particular, in this embodiment, the intake valve 7 is constituted by a valve mechanism 33 whose opening / closing timing cannot be changed, but the exhaust valve 9 is provided with a variable valve mechanism 11, and the valve closing timing of the exhaust valve 9 is changed. Have been able to.

また、吸気ポート6には、アクセルペダル(図示略)の踏み込み量またはスロットルグリップの回動量に応じて開度制御されるスロットルバルブ13が設けられている。さらに、スロットルバルブ13よりも下流の吸気ポート6には、吸気ポート6から燃焼室5へのガスの流通を許可し燃焼室5から吸気ポート6へのガスの流通を阻止する吸気リード弁(一方向弁)14が設けられている。   The intake port 6 is provided with a throttle valve 13 whose opening degree is controlled in accordance with the amount of depression of an accelerator pedal (not shown) or the amount of rotation of the throttle grip. Further, an intake reed valve (one-way valve) that permits the gas flow from the intake port 6 to the combustion chamber 5 and prevents the gas flow from the combustion chamber 5 to the intake port 6 to the intake port 6 downstream of the throttle valve 13. Directional valve) 14 is provided.

また、エンジン1はエンジン電子制御装置(ENG−ECU、以下、ECUと略す)20を備え、ECU20には、スロットルバルブ13の開度を検出するスロットル開度センサ21、クランクシャフト32の回転数を検出する回転数センサ22、燃焼室5内のガスの空燃比(A/F)を検出する空燃比センサ23、吸気ポート6を流通する吸気の温度を検出する吸気温センサ24、排気ポート8内の排気温度を検出する排気温センサ25、筒内圧力(あるいはインテークマニホールド内の圧力)を検出する筒内圧センサ26、クランクシャフト32の回転角度を検出するクランク角センサ27など各センサの出力信号が入力される。そして、ECU20は、これらセンサからの入力信号に基づいてエンジン1の運転状態を判断するとともに、点火タイミング制御、燃料噴射量制御、内部EGR率制御など所定の制御を行う。   The engine 1 also includes an engine electronic control unit (ENG-ECU, hereinafter abbreviated as “ECU”) 20. The ECU 20 controls the throttle opening degree sensor 21 that detects the opening degree of the throttle valve 13 and the rotational speed of the crankshaft 32. A rotation speed sensor 22 for detecting, an air-fuel ratio sensor 23 for detecting the air-fuel ratio (A / F) of the gas in the combustion chamber 5, an intake air temperature sensor 24 for detecting the temperature of the intake air flowing through the intake port 6, and the exhaust port 8 Output signals of sensors such as an exhaust temperature sensor 25 for detecting the exhaust temperature of the engine, an in-cylinder pressure sensor 26 for detecting the in-cylinder pressure (or pressure in the intake manifold), a crank angle sensor 27 for detecting the rotation angle of the crankshaft 32, and the like. Entered. The ECU 20 determines the operating state of the engine 1 based on input signals from these sensors, and performs predetermined control such as ignition timing control, fuel injection amount control, and internal EGR rate control.

このエンジン1は、点火プラグ10による点火により燃焼室5内の混合気を着火して燃焼させる火花点火燃焼と、燃焼室5内の混合気を圧縮着火して燃焼させる自着火燃焼が可能なように、機関諸元が設定されている。自着火燃焼はエンジン1の低負荷領域で実施され、火花点火燃焼は主にエンジン1の中・高負荷領域で実施される。そして、このエンジン1では、負荷が低くなるほど排気弁9の閉弁タイミングを進角させるように可変動弁機構11を制御し、これにより低負荷領域で内部EGR量(内部EGR率)を高くして、燃焼室5内の混合ガス温度(作動ガス温度)を高め、自着火燃焼を可能ならしめている。   The engine 1 is capable of spark ignition combustion in which the air-fuel mixture in the combustion chamber 5 is ignited and combusted by ignition by the spark plug 10 and self-ignition combustion in which the air-fuel mixture in the combustion chamber 5 is compressed and ignited. In addition, the engine specifications are set. Self-ignition combustion is performed in the low load region of the engine 1, and spark ignition combustion is performed mainly in the medium / high load region of the engine 1. In this engine 1, the variable valve mechanism 11 is controlled so that the valve closing timing of the exhaust valve 9 is advanced as the load decreases, thereby increasing the internal EGR amount (internal EGR rate) in the low load region. Thus, the temperature of the mixed gas (the working gas temperature) in the combustion chamber 5 is increased to enable self-ignition combustion.

ただし、このエンジン1では、自着火燃焼が可能な自着火燃焼領域と、火花点火燃焼が可能な火花点火燃焼領域とを、従来のように明確に区別して制御を行うことはしない。この点がこのエンジン1の一番の特徴であり、次の構成を採用している。
(1)自着火燃焼と火花点火燃焼が切り換わる境界領域において、可変動弁機構11により排気弁9の閉弁タイミングを連続的に変化させる制御を実行する。
(2)自着火燃焼領域と火花点火燃焼領域の総ての燃焼領域において点火プラグ10を作動させる点火制御を実行する。
However, in the engine 1, the self-ignition combustion region in which self-ignition combustion is possible and the spark ignition combustion region in which spark-ignition combustion is possible are not clearly distinguished and controlled as in the past. This is the main feature of the engine 1 and the following configuration is adopted.
(1) In the boundary region where the self-ignition combustion and the spark ignition combustion are switched, the variable valve mechanism 11 performs control for continuously changing the valve closing timing of the exhaust valve 9.
(2) Ignition control for operating the spark plug 10 is executed in all combustion regions of the self-ignition combustion region and the spark ignition combustion region.

前記(1)の構成について詳述すると、周知のように、一般的に内燃機関では、高出力を得るためには吸排気を効率よく行う必要があり、そのために吸気弁7と排気弁9の開弁期間にオーバーラップを設ける。このエンジン1においても、中・高負荷域に対応する火花点火燃焼領域では吸気弁7と排気弁9の開弁期間にオーバーラップを設けている。   The configuration (1) will be described in detail. As is well known, in general, an internal combustion engine needs to efficiently perform intake and exhaust in order to obtain a high output. An overlap is provided during the valve opening period. In the engine 1 as well, an overlap is provided in the opening period of the intake valve 7 and the exhaust valve 9 in the spark ignition combustion region corresponding to the middle / high load region.

これに対して、自着火燃焼を発生させるためには燃焼室5内の混合気の温度を高温にする必要があり、このエンジン1では混合気の高温化に内部EGRを利用している。そして、自着火燃焼領域では内部EGR量(内部EGR率)を高めるため、図2に示すように、排気弁9の閉弁タイミングを進角させて吸気弁7と排気弁9の開弁期間のオーバーラップを無くし、エンジン1の負荷が低くなるほどマイナスオーバーラップを大きくして内部EGR率を高めている。   On the other hand, in order to generate self-ignition combustion, the temperature of the air-fuel mixture in the combustion chamber 5 needs to be increased, and the engine 1 uses the internal EGR to increase the temperature of the air-fuel mixture. In order to increase the internal EGR amount (internal EGR rate) in the self-ignition combustion region, as shown in FIG. 2, the valve closing timing of the exhaust valve 9 is advanced and the opening period of the intake valve 7 and the exhaust valve 9 is increased. The overlap is eliminated, and the negative overlap is increased as the load of the engine 1 is lowered to increase the internal EGR rate.

特に、このエンジン1では、自着火燃焼と火花点火燃焼が切り換わる境界領域においても、負荷が減少するにしたがって排気弁9の閉弁タイミングを連続的に進角させるので、火花点火燃焼領域における低負荷側から自着火燃焼領域における高負荷側に至る前記境界領域で、内部EGR率(内部EGR量)を連続的に高めることができる。これにより、自着火燃焼領域と火花点火燃焼領域で排気弁9の閉弁タイミングを急激に変える制御をする必要がなくなり、排気弁9の制御が複雑化することがない。なお、排気弁9の閉弁タイミングの制御はECU20によって可変動弁機構11を介して実行される。   In particular, in the engine 1, the valve closing timing of the exhaust valve 9 is continuously advanced as the load decreases even in the boundary region where the self-ignition combustion and the spark ignition combustion are switched. In the boundary region from the load side to the high load side in the self-ignition combustion region, the internal EGR rate (internal EGR amount) can be continuously increased. As a result, it is not necessary to perform control to change the valve closing timing of the exhaust valve 9 abruptly in the self-ignition combustion region and the spark ignition combustion region, and the control of the exhaust valve 9 is not complicated. Control of the closing timing of the exhaust valve 9 is executed by the ECU 20 via the variable valve mechanism 11.

図3は、エンジン1の負荷に対して、気筒内(すなわち、燃焼室5内)に充填される新気と残留ガスとの質量比の変化の一例を概念的に示した図であり、この例では、自着火燃焼領域(AI燃焼領域)と火花点火燃焼領域(SI燃焼領域)の総ての燃焼領域(換言すると、全負荷域)において、内部EGR率を変化させている。ただし、この場合には、火花点火燃焼領域では、火花点火燃焼が発生する内部EGR率の範囲で設定する。   FIG. 3 is a diagram conceptually showing an example of a change in the mass ratio of fresh air and residual gas charged in the cylinder (that is, in the combustion chamber 5) with respect to the load of the engine 1. In the example, the internal EGR rate is changed in all combustion regions (in other words, full load region) of the self-ignition combustion region (AI combustion region) and the spark ignition combustion region (SI combustion region). In this case, however, the spark ignition combustion region is set within the range of the internal EGR rate at which spark ignition combustion occurs.

なお、吸気ポート6に吸気リード弁14を設けているので、吸気弁7と排気弁9の開弁期間をマイナスオーバーラップに設定しているときにも、燃焼室5から吸気ポート6へガスが逆流するのを防止することができ、吸気系を保護することができる。また、燃焼室5内から吸気ポート6側へ排気ガスを逃がさないようにすることができるので、熱の流出を阻止することができ、自着火燃焼を発生し易くすることができる。   In addition, since the intake reed valve 14 is provided in the intake port 6, even when the opening period of the intake valve 7 and the exhaust valve 9 is set to minus overlap, gas flows from the combustion chamber 5 to the intake port 6. Backflow can be prevented and the intake system can be protected. Further, since exhaust gas can be prevented from escaping from the combustion chamber 5 to the intake port 6 side, the outflow of heat can be prevented and self-ignition combustion can be easily generated.

また、この実施例では、排気弁9にだけ可変動弁機構11を設け、排気弁9の閉弁タイミングを進角制御することだけによって、内部EGR率(内部EGR量)を変化させており、吸気弁7には可変動弁機構を設けず、吸気弁7の開閉タイミングについては特別な制御をしていない。したがって、動弁機構の簡素化を図ることができ、エンジン1の小型・軽量化を図ることができる。   Further, in this embodiment, the variable valve mechanism 11 is provided only in the exhaust valve 9, and the internal EGR rate (internal EGR amount) is changed only by advance control of the closing timing of the exhaust valve 9. The intake valve 7 is not provided with a variable valve mechanism, and the opening / closing timing of the intake valve 7 is not specially controlled. Therefore, the valve operating mechanism can be simplified, and the engine 1 can be reduced in size and weight.

前記(2)の構成について詳述すると、この構成により燃焼領域にかかわらず(換言するとエンジン1の全負荷域において)点火プラグ10の作動に基づく火花が発生することとなる。この火花は、自着火燃焼領域において自着火燃焼条件が成立したときには燃焼に寄与しない所謂「捨て火」となり、火花点火燃焼領域において火花点火燃焼条件が成立したときには通常の火花点火式エンジンと同様に混合気全体で安定した花点火燃焼を発生させる。さらに、自着火燃焼と火花点火燃焼が切り換わる境界領域では、点火プラグ10の点火タイミングを自着火タイミングよりも進角設定することにより自着火燃焼に先行して混合気の一部で火花点火燃焼を発生させることができ、これにより混合気の温度を上昇させて自着火燃焼条件を成立させ、混合気全体の自着火燃焼を発生させることができる。   The configuration (2) will be described in detail. With this configuration, a spark based on the operation of the spark plug 10 is generated regardless of the combustion region (in other words, in the full load region of the engine 1). This spark is a so-called “abandoned fire” that does not contribute to combustion when the self-ignition combustion condition is satisfied in the self-ignition combustion region, and when the spark ignition combustion condition is satisfied in the spark-ignition combustion region, Stable spark ignition combustion is generated throughout the mixture. Further, in the boundary region where the self-ignition combustion and the spark ignition combustion are switched, the ignition timing of the spark plug 10 is set to advance from the self-ignition timing, so that the spark ignition combustion occurs in a part of the air-fuel mixture prior to the self-ignition combustion. Thus, the temperature of the air-fuel mixture can be raised to establish the self-ignition combustion condition, and the self-ignition combustion of the entire air-fuel mixture can be generated.

また、点火プラグ10の点火タイミングを自着火タイミングよりも進角設定することにより、火花点火燃焼に完全に切り換わったときにも火花点火燃焼における理想的な点火タイミング付近で点火することができるので、境界領域において点火進角を急激に変える制御をする必要がない。その結果、点火制御が複雑化することがなく、制御装置を小型化することができる。
点火タイミングの進角設定は、例えば高負荷の火花点火燃焼領域の点火タイミングから低負荷になるにしたがって連続的につながるように設定するのが好ましい。なお、低負荷の自着火燃焼領域では点火タイミングを一定に設定してもよい。
Further, by setting the ignition timing of the spark plug 10 to be more advanced than the self-ignition timing, it is possible to ignite near the ideal ignition timing in the spark ignition combustion even when the ignition plug 10 is completely switched to the spark ignition combustion. In addition, it is not necessary to perform control to change the ignition advance angle rapidly in the boundary region. As a result, ignition control is not complicated, and the control device can be downsized.
It is preferable that the advance timing of the ignition timing is set so as to be continuously connected, for example, as the load decreases from the ignition timing in the high load spark ignition combustion region. Note that the ignition timing may be set constant in the low-load self-ignition combustion region.

したがって、前記(1)、(2)の構成を採用することにより、境界領域においてエンジン1の制御を急激に変化させないで済むとともに、境界領域においても燃焼を安定させることができ、自着火燃焼と火花点火燃焼の移行がスムーズになる。また、自着火燃焼を最大限利用することが可能となり、自着火燃焼領域を拡大することができるので、自着火燃焼の利点である排気ガス中のNOx低減を最大限利用することができる。   Therefore, by adopting the configurations (1) and (2), it is not necessary to change the control of the engine 1 abruptly in the boundary region, and combustion can be stabilized in the boundary region. The transition of spark ignition combustion becomes smooth. In addition, since the self-ignition combustion can be used to the maximum and the auto-ignition combustion area can be expanded, the NOx reduction in the exhaust gas, which is an advantage of the self-ignition combustion, can be used to the maximum.

次に、自着火燃焼領域および境界領域における空燃比(A/F)について考察する。
自着火燃焼領域における空燃比は、自着火燃焼を安定して発生させるために、理論空燃比(ストイキ)とするのが好ましい。一方、火花点火燃焼では燃費や要求出力に応じて燃料噴射量を変えることができるので、空燃比についてはフレキシブルである。
境界領域は燃焼形態が不確定な領域であり自着火燃焼と火花点火燃焼のどちらも起こり得るが、空燃比が理論空燃比(ストイキ)であれば、自着火燃焼または火花点火燃焼のどちらの燃焼も発生可能である。したがって、境界領域における空燃比も理論空燃比(ストイキ)に設定するのが好ましい。
また、エンジン負荷が中・高負荷域では火花点火燃焼領域となるが、中負荷域では空燃比を理論空燃比よりもリーン側に設定するのが、内燃機関としての燃料消費率を最適化する上で、好ましい。
Next, the air-fuel ratio (A / F) in the self-ignition combustion region and the boundary region will be considered.
The air-fuel ratio in the self-ignition combustion region is preferably a stoichiometric air-fuel ratio (stoichiometric) in order to stably generate self-ignition combustion. On the other hand, in spark ignition combustion, the fuel injection amount can be changed according to the fuel consumption and the required output, so the air-fuel ratio is flexible.
The boundary region is an indeterminate combustion mode, and both self-ignition combustion and spark ignition combustion can occur. However, if the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), either auto-ignition combustion or spark ignition combustion Can also occur. Therefore, it is preferable to set the air-fuel ratio in the boundary region to the stoichiometric air-fuel ratio (stoichiometric).
In addition, although the engine load is a spark ignition combustion region in the middle and high load regions, setting the air-fuel ratio leaner than the stoichiometric air-fuel ratio in the middle load region optimizes the fuel consumption rate as an internal combustion engine. Preferred above.

なお、内部EGRを実施しているときの空燃比の定義は、筒内の残留ガス量(内部EGRガス量)は考慮せず、新気の空気量(質量)と燃料噴射量(質量)の比である。
内部EGRを実施しないときは、一般に、スロットル開度センサ21により検出されるスロットルバルブ13の開度(以下、スロットル開度と略す)と、回転数センサ22により検出されるエンジン回転数に基づいて3次元マップから燃料噴射量を算出するが、このエンジン1で可変動弁制御による内部EGRを実施している場合には、式(1)に示すように可変動弁制御マップに応じてスロットル開度の補正を行い、空燃比と補正後のスロットル開度における実新気吸気量に応じて燃料噴射量を設定する。なお、この実施例では前述したように、自着火燃焼領域および境界領域における空燃比は理論空燃比である。
(補正後スロットル開度)=(VT係数)×(実スロットル開度) ・・・式(1)
ここで、VT係数は可変動弁制御マップから求めた係数であり、EGR率と相関関係を有する。要求されるEGR率により可変動弁制御マップは、回転数、実スロットル開度をパラメータとして予め用意しておく。
例えば、内部EGR率が0%のときと50%のときを比較すると、前者よりも後者の方が実新気吸気量が少ないので、内部EGR率が50%のときのVT係数は内部EGR率が0%のときのVT係数よりも小さい。
Note that the definition of the air-fuel ratio when the internal EGR is performed does not take into account the residual gas amount (internal EGR gas amount) in the cylinder, but the amount of fresh air (mass) and the amount of fuel injection (mass). Is the ratio.
When the internal EGR is not performed, generally, based on the opening of the throttle valve 13 detected by the throttle opening sensor 21 (hereinafter abbreviated as the throttle opening) and the engine speed detected by the rotation speed sensor 22. Although the fuel injection amount is calculated from the three-dimensional map, when the internal EGR is performed by the variable valve control in the engine 1, the throttle opening is performed according to the variable valve control map as shown in Expression (1). The fuel injection amount is set according to the actual fresh air intake amount at the air-fuel ratio and the corrected throttle opening. In this embodiment, as described above, the air-fuel ratio in the auto-ignition combustion region and the boundary region is the stoichiometric air-fuel ratio.
(Throttle opening after correction) = (VT coefficient) × (actual throttle opening) (1)
Here, the VT coefficient is a coefficient obtained from the variable valve control map, and has a correlation with the EGR rate. Depending on the required EGR rate, the variable valve control map is prepared in advance with the rotational speed and actual throttle opening as parameters.
For example, comparing the case where the internal EGR rate is 0% and the case where it is 50%, the actual fresh air intake amount is smaller in the latter than in the former, so the VT coefficient when the internal EGR rate is 50% is the internal EGR rate. Is smaller than the VT coefficient at 0%.

内部EGR率は、エンジン1の運転状態に基づいてECU20によって算出される。すなわち、ECU20は、回転数センサ22によって検出されるエンジン回転数と、スロットル開度とエンジン回転数に基づいてマップから算出される燃料噴射量と、A/Fセンサ23によって検出される空燃比と、吸気温センサ24によって検出される吸気温度と、排気温センサ25により検出される排気温度と、クランク角センサ27により検出されるクランク角に基づいて算出される吸気弁閉時の燃焼室5の容積、吸気弁閉時に筒内圧センサ26によって検出される吸気終了時筒内圧力と、に基づいて、筒内の残留ガス量(内部EGRガス量)を推定算出し、これに基づいて内部EGR率を算出する。内部EGR率算出については、テスト段階で内部EGR率を求め、これが要求される内部EGR率となるように前記可変動弁制御マップを設定する。   The internal EGR rate is calculated by the ECU 20 based on the operating state of the engine 1. That is, the ECU 20 detects the engine speed detected by the speed sensor 22, the fuel injection amount calculated from the map based on the throttle opening and the engine speed, and the air-fuel ratio detected by the A / F sensor 23. The intake air temperature detected by the intake air temperature sensor 24, the exhaust gas temperature detected by the exhaust gas temperature sensor 25, and the combustion chamber 5 when the intake valve is closed calculated based on the crank angle detected by the crank angle sensor 27. The cylinder residual gas amount (internal EGR gas amount) is estimated and calculated based on the volume and the cylinder pressure at the end of intake detected by the cylinder pressure sensor 26 when the intake valve is closed, and based on this, the internal EGR rate is calculated. Is calculated. For calculating the internal EGR rate, the internal EGR rate is obtained at the test stage, and the variable valve control map is set so that this becomes the required internal EGR rate.

一般的に、内部EGR率とパラメータ(スロットル開度、エンジン回転数、バルブタイミングなど)の間には次の相関があることが知られている。
(A) 吸・排気弁のバルブタイミングが固定の場合には、スロットル開度が小さいときは新気の吸気量が少なくなるので内部EGR率は大きくなり、スロットル開度が大きいときは新気の吸気量が多くなるので内部EGR率は小さくなる。
(B) 自着火せしめるようなバルブタイミングに設定され、スロットル開度が固定の場合には、エンジン回転数が大きいときは吸気時間が短くなり新気の吸気量が少なくなるので内部EGR率は大きくなり、エンジン回転数が小さいとき吸気時間が長くなり新気の吸気量が多くなるので内部EGR率は小さくなる。
(C) スロットル開度が固定の場合には、吸気弁の開弁期間(クランク角度)が小さいときは新気の吸気量が少なくなるので内部EGR率は大きくなり、吸気弁の開弁期間(クランク角度)が大きいときは新気の吸気量が多くなるので内部EGR率は小さくなる。
排気弁の開弁期間(クランク角度)が小さいときは筒内からの排気が少なくなるので内部EGR率は大きくなり、排気弁の開弁期間(クランク角度)が大きいときは筒内からの排気が多くなるので内部EGR率は小さくなる。
Generally, it is known that the following correlation exists between the internal EGR rate and parameters (throttle opening, engine speed, valve timing, etc.).
(A) When the valve timing of the intake / exhaust valves is fixed, when the throttle opening is small, the amount of fresh air intake decreases, so the internal EGR rate increases, and when the throttle opening is large, fresh air Since the intake air amount increases, the internal EGR rate decreases.
(B) When the valve timing is set so as to cause self-ignition and the throttle opening is fixed, the internal EGR rate is large because the intake time is shortened and the intake amount of fresh air is reduced when the engine speed is large. Thus, when the engine speed is small, the intake time becomes longer and the intake amount of fresh air increases, so the internal EGR rate becomes smaller.
(C) When the throttle opening is fixed, when the intake valve opening period (crank angle) is small, the amount of fresh air intake decreases, so the internal EGR rate increases, and the intake valve opening period ( When the crank angle) is large, the amount of fresh air increases, so the internal EGR rate decreases.
When the exhaust valve opening period (crank angle) is small, exhaust from the cylinder decreases, so the internal EGR rate increases. When the exhaust valve opening period (crank angle) is large, exhaust from the cylinder Since it increases, the internal EGR rate decreases.

ところで、エンジン回転数が大きいときは機関としては高出力を要求されるが、内部EGR率との相関ではエンジン回転数が大きいときは内部EGR率が大きくなり、自着火燃焼のままで高出力を発生させることが困難になる。また、エンジン回転数が小さい低負荷時は自着火燃焼領域である。そこで、可変動弁制御による内部EGR率の連続的制御を適切なスロットリング(電子制御等によるスロットルバルブの制御等)を併用することにより、自着火燃焼/火花点火燃焼の移行をスムーズに行うことが可能となる。また、筒内直噴の燃料噴射による燃料噴射時期も一つの制御要素となる。
また、エンジン回転数が大きいときに新気の吸気量を多くし内部EGR率を小さくして高出力を発生させることができるように、例えば、排気弁9の開弁期間を増加制御したり、過給を実施したり、スロットルバルブ13の開度を積極的に増加制御したり、外部EGRを実施して自着火燃焼領域を広げる。なお、過給手段としては、ターボチャージャ、スーパーチャージャ、共鳴慣性過給、ラム圧過給などを例示することができる。
By the way, when the engine speed is high, the engine is required to have a high output. However, in the correlation with the internal EGR rate, the internal EGR rate becomes large when the engine speed is large, and the high output is maintained with the self-ignition combustion. It becomes difficult to generate. In addition, when the engine speed is low and the load is low, it is a self-ignition combustion region. Therefore, the transition of self-ignition combustion / spark ignition combustion can be smoothly performed by using continuous control of internal EGR rate by variable valve control together with appropriate throttling (control of throttle valve by electronic control, etc.). Is possible. Further, the fuel injection timing by direct fuel injection in the cylinder is also a control element.
Further, for example, the opening period of the exhaust valve 9 is increased and controlled so that a high output can be generated by increasing the intake amount of fresh air and decreasing the internal EGR rate when the engine speed is high, Supercharging is performed, the opening degree of the throttle valve 13 is actively controlled to increase, or external EGR is performed to widen the auto-ignition combustion range. Examples of supercharging means include turbochargers, superchargers, resonance inertia supercharging, ram pressure supercharging, and the like.

〔他の実施例〕
なお、この発明は前述した実施例に限られるものではない。
例えば、前述した実施例では、排気弁9の閉弁タイミング制御により内部EGR率を変更したが、排気弁9の閉弁タイミングとリフト量の両方を変更制御可能な可変動弁機構11を用意して、排気弁9の閉弁タイミング制御とともに排気弁9のリフト量制御を実行して内部EGR率を変更することも可能である。
また、吸気弁7にも可変動弁機構を設け、吸気弁7の作動を制御して内部EGR率を変更することも可能である。
さらに、図4に示すように、1気筒に対して主排気弁と補助排気弁の2種類の排気弁を設置し、主排気弁は前述した実施例の吸気弁7と同様に開閉タイミングを変更できないタイプにして、この主排気弁については自着火燃焼領域から火花点火燃焼領域まで総ての領域で常に同じタイミングで開閉動作させ、補助排気弁は自着火燃焼領域および境界領域でのみ開閉動作させ、且つ、その開弁期間を吸気弁の開弁期間とオーバーラップさせるとともに開弁期間を可変にし、補助排気弁の開弁期間を制御することによって内部EGR率を変更してもよい。
[Other Examples]
The present invention is not limited to the embodiment described above.
For example, in the above-described embodiment, the internal EGR rate is changed by the closing timing control of the exhaust valve 9, but a variable valve mechanism 11 capable of changing and controlling both the closing timing and the lift amount of the exhaust valve 9 is prepared. Thus, the internal EGR rate can be changed by executing the lift amount control of the exhaust valve 9 together with the valve closing timing control of the exhaust valve 9.
The intake valve 7 can also be provided with a variable valve mechanism to control the operation of the intake valve 7 to change the internal EGR rate.
Furthermore, as shown in FIG. 4, two types of exhaust valves, a main exhaust valve and an auxiliary exhaust valve, are installed for one cylinder, and the main exhaust valve changes the opening / closing timing in the same manner as the intake valve 7 of the above-described embodiment. The main exhaust valve is always opened and closed at the same timing in all areas from the self-ignition combustion area to the spark ignition combustion area, and the auxiliary exhaust valve is opened and closed only in the self-ignition combustion area and the boundary area. In addition, the internal EGR rate may be changed by overlapping the valve opening period with the valve opening period of the intake valve, making the valve opening period variable, and controlling the valve opening period of the auxiliary exhaust valve.

この発明に係る4サイクル内燃機関の一実施例におけるシステム構成図である。1 is a system configuration diagram in one embodiment of a four-cycle internal combustion engine according to the present invention. FIG. 前記4サイクル内燃機関の吸排気弁のバルブタイミングを示す図である。It is a figure which shows the valve timing of the intake / exhaust valve of the said 4-cycle internal combustion engine. 前記4サイクル内燃機関において、負荷に対する残留ガスと新気の質量比の変化を示す概念図である。FIG. 3 is a conceptual diagram showing a change in a mass ratio of residual gas and fresh air with respect to a load in the four-cycle internal combustion engine. この発明に係る4サイクル内燃機関の他の実施例における吸排気弁のバルブタイミングを示す図である。It is a figure which shows the valve timing of the intake / exhaust valve in other Examples of the 4-cycle internal combustion engine which concerns on this invention. 従来手法により理想的にオーバーラップを切り換えた場合の、エンジン負荷に対する筒内の新気と残留ガスとの質量比の変化を示す図である。It is a figure which shows the change of the mass ratio of the fresh air in a cylinder with respect to an engine load, and residual gas when an overlap is switched ideally by the conventional method.

符号の説明Explanation of symbols

1 ガソリンエンジン(4サイクル内燃機関)
5 燃焼室
6 吸気ポート(吸気通路)
7 吸気弁
8 排気ポート(排気通路)
9 排気弁
10 点火プラグ(火花点火装置)
11 可変動弁機構
14 吸気リード弁(一方向弁)
1 Gasoline engine (4-cycle internal combustion engine)
5 Combustion chamber 6 Intake port (intake passage)
7 Intake valve 8 Exhaust port (exhaust passage)
9 Exhaust valve 10 Spark plug (spark ignition device)
11 Variable valve mechanism 14 Intake reed valve (one-way valve)

Claims (4)

燃焼室に臨んで設けられた火花点火装置と、吸・排気弁の開閉タイミングとリフト量の少なくともいずれか一方を変更可能な可変動弁機構と、を備え、前記火花点火装置の点火により前記燃焼室内の混合気を着火して燃焼させる火花点火燃焼と、前記混合気を圧縮着火して燃焼させる自着火燃焼が可能な4サイクル内燃機関において、
前記火花点火燃焼が可能な火花点火燃焼領域および前記自着火燃焼が可能な自着火燃焼領域の総ての燃焼領域で前記火花点火装置を作動させるとともに、少なくとも前記自着火燃焼領域と前記火花点火燃焼領域が切り換わる境界領域では前記可変動弁機構の可変量を連続的に変化させることを特徴とする4サイクル内燃機関。
A spark ignition device provided facing the combustion chamber, and a variable valve mechanism capable of changing at least one of the opening and closing timings and the lift amount of the intake and exhaust valves, and the combustion by the ignition of the spark ignition device In a four-cycle internal combustion engine capable of spark ignition combustion for igniting and burning an air-fuel mixture in a room and self-ignition combustion for compressing and igniting the air-fuel mixture,
The spark ignition device is operated in all the combustion regions of the spark ignition combustion region capable of spark ignition combustion and the self ignition combustion region capable of self ignition combustion, and at least the self ignition combustion region and the spark ignition combustion. A four-cycle internal combustion engine characterized by continuously changing the variable amount of the variable valve mechanism in a boundary region where the region is switched.
前記自着火燃焼領域および前記境界領域では、燃焼室内の混合気の空燃比がほぼ理論空燃比となるように燃料噴射量を制御することを特徴とする請求項1に記載の4サイクル内燃機関。   2. The four-cycle internal combustion engine according to claim 1, wherein the fuel injection amount is controlled so that the air-fuel ratio of the air-fuel mixture in the combustion chamber becomes substantially the stoichiometric air-fuel ratio in the self-ignition combustion region and the boundary region. 前記可変動弁機構は排気弁のみに設けたことを特徴とする請求項1または請求項2に記載の4サイクル内燃機関。   The four-cycle internal combustion engine according to claim 1 or 2, wherein the variable valve mechanism is provided only in an exhaust valve. 吸気弁の上流の吸気通路に、吸気通路から燃焼室へのガスの流通を許可し燃焼室から吸気通路へのガスの流通を阻止する一方向弁を設けたことを特徴とする請求項1または請求項2に記載の4サイクル内燃機関。   The one-way valve for permitting the gas flow from the intake passage to the combustion chamber and preventing the gas flow from the combustion chamber to the intake passage is provided in the intake passage upstream of the intake valve. The four-cycle internal combustion engine according to claim 2.
JP2006022062A 2006-01-31 2006-01-31 Four cycle internal combustion engine Pending JP2007205181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022062A JP2007205181A (en) 2006-01-31 2006-01-31 Four cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022062A JP2007205181A (en) 2006-01-31 2006-01-31 Four cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007205181A true JP2007205181A (en) 2007-08-16

Family

ID=38484867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022062A Pending JP2007205181A (en) 2006-01-31 2006-01-31 Four cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007205181A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047566A1 (en) * 2007-10-04 2009-04-09 Volkswagen Ag Internal-combustion engine operating method, involves varying closing flank such that energy conversion value is reached and adjusting flank into middle region between early and late time at relatively early time
JP2012041936A (en) * 2011-12-02 2012-03-01 Keihin Corp Electronic control device of engine
US20130018565A1 (en) * 2011-07-13 2013-01-17 GM Global Technology Operations LLC Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
US8396646B2 (en) 2008-04-02 2013-03-12 Honda Motor Co., Ltd. Internal EGR control device for internal combustion engine
JP2016217184A (en) * 2015-05-15 2016-12-22 マツダ株式会社 Control device for engine
JP2016217183A (en) * 2015-05-15 2016-12-22 マツダ株式会社 Control device for engine
EP3486465A3 (en) * 2017-11-10 2019-06-05 Mazda Motor Corporation Control device for engine, engine, method for controlling engine, and computer program product
EP3499008A1 (en) * 2017-12-15 2019-06-19 Mazda Motor Corporation Control system for engine, engine, method of controlling engine, and computer program product
EP3499007A1 (en) * 2017-12-15 2019-06-19 Mazda Motor Corporation Control system for engine, engine, method of controlling engine, and computer program product
EP3418543A4 (en) * 2016-11-22 2019-07-17 Mazda Motor Corporation Control apparatus for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252513A (en) * 1997-03-07 1998-09-22 Inst Fr Petrole Method for controlling self-ignition in 4-stroke engine
JPH10266878A (en) * 1997-03-26 1998-10-06 Toyota Motor Corp Control device of four-stroke engine
JPH11280507A (en) * 1998-03-31 1999-10-12 Nissan Motor Co Ltd Spark ignition type internal combustion engine
JP2004263663A (en) * 2003-03-04 2004-09-24 Osaka Gas Co Ltd Starting operation method of premixed compression ignition engine and premixed compression ignition engine
JP2005016408A (en) * 2003-06-25 2005-01-20 Mazda Motor Corp Control device for spark ignition type engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252513A (en) * 1997-03-07 1998-09-22 Inst Fr Petrole Method for controlling self-ignition in 4-stroke engine
JPH10266878A (en) * 1997-03-26 1998-10-06 Toyota Motor Corp Control device of four-stroke engine
JPH11280507A (en) * 1998-03-31 1999-10-12 Nissan Motor Co Ltd Spark ignition type internal combustion engine
JP2004263663A (en) * 2003-03-04 2004-09-24 Osaka Gas Co Ltd Starting operation method of premixed compression ignition engine and premixed compression ignition engine
JP2005016408A (en) * 2003-06-25 2005-01-20 Mazda Motor Corp Control device for spark ignition type engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047566A1 (en) * 2007-10-04 2009-04-09 Volkswagen Ag Internal-combustion engine operating method, involves varying closing flank such that energy conversion value is reached and adjusting flank into middle region between early and late time at relatively early time
US8396646B2 (en) 2008-04-02 2013-03-12 Honda Motor Co., Ltd. Internal EGR control device for internal combustion engine
US20130018565A1 (en) * 2011-07-13 2013-01-17 GM Global Technology Operations LLC Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
US9074551B2 (en) * 2011-07-13 2015-07-07 GM Global Technology Operations LLC Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
JP2012041936A (en) * 2011-12-02 2012-03-01 Keihin Corp Electronic control device of engine
JP2016217184A (en) * 2015-05-15 2016-12-22 マツダ株式会社 Control device for engine
JP2016217183A (en) * 2015-05-15 2016-12-22 マツダ株式会社 Control device for engine
EP3418543A4 (en) * 2016-11-22 2019-07-17 Mazda Motor Corporation Control apparatus for engine
US10648422B2 (en) 2016-11-22 2020-05-12 Mazda Motor Corporation Control apparatus for engine
EP3486465A3 (en) * 2017-11-10 2019-06-05 Mazda Motor Corporation Control device for engine, engine, method for controlling engine, and computer program product
EP3499008A1 (en) * 2017-12-15 2019-06-19 Mazda Motor Corporation Control system for engine, engine, method of controlling engine, and computer program product
CN109931177A (en) * 2017-12-15 2019-06-25 马自达汽车株式会社 The control device of compression ignition engine
US10641192B2 (en) 2017-12-15 2020-05-05 Mazda Motor Corporation Control system for compression-ignition engine
US10641193B2 (en) 2017-12-15 2020-05-05 Mazda Motor Corporation Control system for compression-ignition engine
EP3499007A1 (en) * 2017-12-15 2019-06-19 Mazda Motor Corporation Control system for engine, engine, method of controlling engine, and computer program product
CN109931177B (en) * 2017-12-15 2021-10-29 马自达汽车株式会社 Control device for compression ignition engine

Similar Documents

Publication Publication Date Title
EP1571322B1 (en) Diesel engine
US7251557B2 (en) Method for auto-ignition operation and computer readable storage device for use with an internal combustion engine
US6978771B2 (en) Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
JP2007205181A (en) Four cycle internal combustion engine
US7628013B2 (en) Control device of charge compression ignition-type internal combustion engine
KR20060051868A (en) Engine
WO2002014665A1 (en) Compression ignition internal combustion engine
JP2007016685A (en) Internal combustion engine control device
JP2020176571A (en) Control device of compression ignition-type engine
JP2004332717A (en) Compression-ignition type internal combustion engine capable of changing two-cycle and four-cycle
JP5015415B2 (en) Method for expanding the load range of premixed compression ignition, and system and method for realizing a high load two stroke HCCI engine cycle in an internal combustion engine that normally operates with a four stroke HCCI engine cycle
JP2007132217A (en) Combustion control device of compression self-ignition engine
JP7145006B2 (en) CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP2006299992A (en) Control system of internal combustion engine
JP6848412B2 (en) Internal combustion engine control device
JP2010185440A (en) Internal combustion engine
US6705276B1 (en) Combustion mode control for a direct injection spark ignition (DISI) internal combustion engine
JP2008051017A (en) Premixed compression self-igniting internal combustion engine
EP1435445A1 (en) Internal combustion engine, method for auto-ignition operation and computer readable storage device
JP4518251B2 (en) Control device for internal combustion engine
JP6844237B2 (en) Internal combustion engine control device
JP4461905B2 (en) Control system for premixed compression self-ignition internal combustion engine
JP7238571B2 (en) Engine control method and engine control device
JP2007040237A (en) Controller for compression ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928