JPH10248175A - Method and apparatus for charging secondary battery - Google Patents

Method and apparatus for charging secondary battery

Info

Publication number
JPH10248175A
JPH10248175A JP9067498A JP6749897A JPH10248175A JP H10248175 A JPH10248175 A JP H10248175A JP 9067498 A JP9067498 A JP 9067498A JP 6749897 A JP6749897 A JP 6749897A JP H10248175 A JPH10248175 A JP H10248175A
Authority
JP
Japan
Prior art keywords
charging
voltage
battery
charged
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9067498A
Other languages
Japanese (ja)
Inventor
Sadayuki Iwasa
貞之 岩佐
Yuichi Kageyama
雄一 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J N T KK
Original Assignee
J N T KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J N T KK filed Critical J N T KK
Priority to JP9067498A priority Critical patent/JPH10248175A/en
Priority to TW087102425A priority patent/TW370733B/en
Priority to CN98106032A priority patent/CN1193214A/en
Publication of JPH10248175A publication Critical patent/JPH10248175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To always enable appropriate charging and repeated charging, by conducting charging under the condition that a secondary battery does not show temperature rise through control that a heavier current is applied in the initial stage of the charging, the point of inflexion of the battery voltage- time curve is detected, and a charging current is reduced after passing the point of inflexion. SOLUTION: A power source section 12 generates a DC voltage for impressing a voltage at the time of charging a secondary battery 20 to be charged. A power control section 14 receives a voltage from the power supply section 12 and controls an output voltage and a duration time depending on the external control signal. A supervising section 16 supervises changes with time of a battery voltage and a charging current of the secondary battery 20 to be charged and generates an output signal by detecting the point of inflexion of a battery voltage time curve. An arithmetic operation driving section 18 drives a power control section 14 by receiving an output signal of the supervising section. Thereby, appropriate charging can always be conducted without allowing temperature rise to give a failure to the secondary battery 20 and the repeated charging can also be enabled without generating a memory effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の新規な
充電方法ならびにかかる充電方法を実施するための二次
電池の充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel charging method for a secondary battery and a charging device for a secondary battery for performing the charging method.

【0002】近年、携帯式または移動式の各種電気・電
子機器類、例えば携帯電話、ノートパソコンその他情報
処理機器、ハンディターミナル、ビデオカメラ、充電式
電動工具、小形掃除機、各種運搬機器等多方面において
広く普及し、駆動源としての電池が不可欠となってい
る。
In recent years, various types of portable or mobile electric and electronic devices, such as mobile phones, notebook personal computers and other information processing devices, handy terminals, video cameras, rechargeable power tools, compact vacuum cleaners, various transport devices, etc. And batteries as driving sources are indispensable.

【0003】このような電池には、周知のように、ただ
一度の放電のみ可能である一次電池と、多数回にわたる
充電および放電が可能な二次電池とが存在する。
As is well known, such batteries include a primary battery that can be discharged only once and a secondary battery that can be charged and discharged many times.

【0004】マンガン電池やアルカリマンガン電池とし
て広く使用されている一次電池は、国際的にも規格化さ
れており、手軽に入手でき使用できる利点があるが、完
全な消耗品であるため不経済である。
A primary battery widely used as a manganese battery or an alkaline manganese battery is standardized internationally and has an advantage that it can be easily obtained and used. However, since it is a complete consumable, it is uneconomical. is there.

【0005】多数回にわたる充・放電が可能な二次電池
であって、自動車エンジン用その他として古くから使用
されている鉛蓄電池は、長い歴史の間に種々改良され、
寸法および容量等も格段に進歩している。しかしなが
ら、このような鉛蓄電池は重量が嵩むこと、電解液とし
て希硫酸溶液を使用すること、などの理由から小形移動
用、例えば携帯用機器類の電源としては適していない。
[0005] Lead-acid batteries which can be charged and discharged a number of times and which have been used for a long time for automobile engines and the like have been variously improved over a long history.
The dimensions, capacity, etc. have also been remarkably advanced. However, such a lead storage battery is not suitable as a power source for small-sized mobile devices, for example, portable devices, because of its heavy weight and the use of a dilute sulfuric acid solution as an electrolyte.

【0006】このような歴史的に良く知られている鉛蓄
電池を小形に形成した、小形シール鉛電池も一部採用さ
れているが、単位重量当たりの電池容量が少ない。現
在、小形二次電池としてはニッケル−カドミウム(Ni
−Cd)電池、ニッケル−水素(NiMH)電池、リチ
ウムイオン(Li)電池等が広く採用されている。
[0006] Although small sealed lead-acid batteries in which such a well-known lead-acid storage battery is formed in a small form are also partially adopted, the battery capacity per unit weight is small. At present, nickel-cadmium (Ni) is used as a small secondary battery.
-Cd) batteries, nickel-hydrogen (NiMH) batteries, lithium ion (Li) batteries, and the like are widely used.

【0007】中でも、Ni−Cd電池は、1960年代
に商品化されており圧倒的なシェアを占めている。この
Ni−Cd電池の特徴は、(1)密閉形であり補液を必
要としない、(2)軽量である、(3)小型化が可能で
あり、単1、単2、単3等の標準規格のマンガン乾電池
と同形状としそのまま置換可能である、(4)電圧変動
が少なく、大電流出力が可能である、(5)一次電池で
あるマンガン乾電池と比して、繰り返し使用が可能であ
るため、使用上のコストが格段に小さくなる、等が挙げ
られる。
[0007] Above all, Ni-Cd batteries have been commercialized in the 1960s and have an overwhelming share. The characteristics of this Ni-Cd battery are (1) sealed type, which does not require replacement fluid, (2) light weight, (3) miniaturization is possible, and standard such as A1, AA, AA, etc. It has the same shape as the standard manganese dry battery and can be replaced as it is. (4) It has little voltage fluctuation and can output a large current. (5) It can be used repeatedly as compared with a manganese dry battery which is a primary battery. Therefore, the cost in use is significantly reduced.

【0008】[0008]

【従来の技術】このような多くの特徴を有する小形二次
電池ではあるが、電池メーカーの推奨する標準充電条件
によれば、0.1C程度の電流で10〜15時間程度が
指定されている。このような長い充電時間は、実用上不
便であることは明らかであり、多くの特徴を減殺させて
いる。
2. Description of the Related Art Although it is a small secondary battery having many characteristics as described above, according to standard charging conditions recommended by a battery manufacturer, a current of about 0.1 C is specified for about 10 to 15 hours. . Obviously, such a long charging time is inconvenient in practice and has reduced many features.

【0009】そこで、充電電流を0.3C程度に高く設
定することによって充電時間を短縮したり、特別に急速
充電の可能な電池として、30分〜1時間としているも
のもあるが、特殊設計をしたものに限られる。さらに、
充電時間を短縮すると、充電終期には極めて高温とな
り、電池寿命を損なう危険性がある。
Therefore, the charging time is shortened by setting the charging current to be as high as about 0.3 C, and some batteries which can be rapidly charged are set to 30 minutes to 1 hour. Limited to further,
If the charging time is shortened, the temperature becomes extremely high at the end of charging, and there is a risk of shortening the battery life.

【0010】さらに、この種の二次電池には、残容量に
加えて不完全充電を繰り返す間に有効容量が次第に低下
してしまう、いわゆるメモリ効果が生じ、遂には利用不
可能になってしまうことがある。かかる二次電池を安易
に廃棄することは、資源の浪費につながり、さらに土壌
の重金属汚染等に拍車をかけることになり望ましくな
い。
In addition, this type of secondary battery has a so-called memory effect in which the effective capacity gradually decreases during repeated incomplete charging, in addition to the remaining capacity, and eventually becomes unusable. Sometimes. Discarding such a secondary battery easily leads to waste of resources and further spoils heavy metal contamination of soil, which is not desirable.

【0011】このようなメモリ効果は、小形二次電池容
量を完全に使い切らない内に次の充電を、いわゆる継ぎ
足し充電状態を行うことによって顕著となる。携帯用機
器の内蔵二次電池などでは、使用を再開するに先立ち、
念のために追加充電または継ぎ足し充電を行なうような
状態において発生する。
Such a memory effect becomes remarkable by performing the next charging, that is, a so-called additional charging state, before the small secondary battery capacity is completely used up. Before resuming the use of built-in secondary batteries in portable devices,
This occurs in a state where additional charging or additional charging is performed just in case.

【0012】通常、携帯形の情報処理装置や通信装置
類、例えばハンディターミナルや携帯電話等の電源の場
合、使用に先立つ二次電池の充電の都度、予め完全放電
の手順を踏むことは所要時間、手数等の点から不可能に
近い。
In general, in the case of a portable information processing device or a communication device, for example, a power source of a handy terminal or a mobile phone, it is necessary to take a complete discharge procedure in advance every time the secondary battery is charged before use. It is almost impossible from the point of view of trouble.

【0013】例えば、携帯電話内蔵の二次電池を外出の
前に充電したり、または当日の使用終了後に、補充電を
開始する度に、その都度、二次電池の残容量を確認し、
あるいは完全放電を予め行うことは極めて困難である。
したがって、確実にメモリ効果が生ずる条件下で補充電
が行われることになる。
For example, each time the secondary battery built in the mobile phone is charged before going out, or after the end of use on the day, the supplementary charging is started, the remaining capacity of the secondary battery is checked each time.
Alternatively, it is extremely difficult to perform a complete discharge in advance.
Therefore, the supplementary charging is performed under the condition that the memory effect occurs.

【0014】このようなメモリ効果の予防には、定期的
に完全な放電操作を行った後に標準充電を繰り返し行
う、いわゆるリフレッシュ法が有効である。図7は、N
iCd電池およびNiMH(ニッケル−水素)電池にお
いてメモリ効果が発生した場合(実線)およびリフレッ
シュ後(破線)の電圧対容量特性を示すものである。
In order to prevent such a memory effect, a so-called refresh method, in which a standard charge is repeatedly performed after a complete discharge operation is periodically performed, is effective. FIG.
FIG. 9 shows voltage-capacity characteristics when a memory effect occurs in an iCd battery and a NiMH (nickel-hydrogen) battery (solid line) and after refresh (dashed line).

【0015】しかしながら、このようなリフレッシュを
行うに当たり、過放電を避ける配慮が必要であり、手数
および時間の点で煩瑣であることには変わりがない。
However, in performing such a refresh, consideration must be given to avoid overdischarging, and it is still complicated in terms of the number of steps and time.

【0016】特に、単電池を直並列接続した組電池の場
合には、過放電状態にすると、個々のセルの放電状態が
異なり、先に放電を終了したセルが逆極性に充電され、
回復不可能な状態になることがあり、格別の配慮が必要
となる。
In particular, in the case of an assembled battery in which cells are connected in series and parallel, when the cells are overdischarged, the discharge states of the individual cells are different, and the cells that have been discharged earlier are charged to the opposite polarity.
It may be unrecoverable, requiring special consideration.

【0017】一方、これを避けるために、リフレッシュ
の放電を浅めに設定すると、構成電池のバラツキにより
一部ないしは大部分の電池がリフレッシュされずに放電
を終えることになり、初期の効果が得られないことがあ
る。
On the other hand, if the refresh discharge is set shallow to avoid this, some or most of the batteries will be discharged without being refreshed due to variations in the constituent batteries, and the initial effect will be obtained. There may not be.

【0018】ここに示したような従来技術による充電方
式では、過不足のない充電状態で充電操作を終了するこ
とにも困難が伴う。小形二次電池の充電状態は現行では
外部から確認することができない。したがって、必要か
つ十分な充電終了時を決定することも容易ではない。
In the conventional charging method as described above, it is also difficult to end the charging operation in a proper charging state. At present, the state of charge of a small secondary battery cannot be confirmed from outside. Therefore, it is not easy to determine a necessary and sufficient charging end time.

【0019】二次電池の充電終了時を決定する方法とし
て、1.充電時間設定方式、2.端子電圧検出方式、
3.電池温度検出方式、4.電池電圧変化率検出方式
(基本的方式に加えて幾つかの改良方式がある)、が知
られている。
As a method of determining the end of charging of the secondary battery, there are 1 methods. 1. Charge time setting method, Terminal voltage detection method,
3. 3. Battery temperature detection method; A battery voltage change rate detection system (there are several improved systems in addition to the basic system) is known.

【0020】1.充電時間設定方式は、充電回路の投入
状態をタイマー制御するもので、最も簡易ではあるが、
充電開始時の電池残容量が一律ではなく、一定時間で充
電停止したとしても適正充電となる保証はなく、不足充
電または過充電となることが多い。
1. The charging time setting method controls the charging state of the charging circuit by a timer.
The remaining battery capacity at the start of charging is not uniform, and there is no guarantee that proper charging will be achieved even if charging is stopped for a certain period of time, and often insufficient charging or overcharging.

【0021】2.端子電圧検出方式は、所定の充電電流
で充電を行い、二次電池の端子電圧が予め定められた所
定の電圧、すなわち充電末期の最大電圧値に近い電圧値
に達した際に充電を停止するものである。
2. The terminal voltage detection method performs charging with a predetermined charging current, and stops charging when the terminal voltage of the secondary battery reaches a predetermined voltage, that is, a voltage value close to the maximum voltage value at the end of charging. Things.

【0022】しかしながら、充電末期電圧は電池の温度
および充電電流によって変動する。充電末期検出のため
の設定電圧は、過充電を避けるため低めに設定せざるを
得ない。したがって、検出された端子電圧は真の充電状
態を示し得ず、一般に不足充電となることが多い。
However, the end-of-charge voltage varies depending on the battery temperature and the charging current. The set voltage for the end-of-charge detection must be set lower to avoid overcharging. Therefore, the detected terminal voltage cannot indicate a true state of charge, and is generally undercharged in many cases.

【0023】3.電池温度検出方式は、電池内に予め組
み込んだ温度検出素子により電池温度を監視し、所定温
度に達した際に順次充電電流を低減し、最終的に充電を
停止するものである。充電末期に発生するガスが陰極に
吸収される際の反応熱を検出するものであるが、周囲温
度の影響を受け易く、低温時には過充電、高温時には不
足充電となる傾向がある。基本的には、当該電池自体に
とっては望ましくない過充電による温度上昇を検出して
いることになり、回数を重ねる毎に電池の劣化を招くこ
と否めない。
3. In the battery temperature detection method, the battery temperature is monitored by a temperature detection element incorporated in the battery in advance, and when the temperature reaches a predetermined temperature, the charging current is sequentially reduced, and finally the charging is stopped. It detects the heat of reaction when the gas generated at the end of charging is absorbed by the cathode, but is easily affected by the ambient temperature, and tends to be overcharged at low temperatures and undercharged at high temperatures. Basically, this means that the temperature rise due to overcharge, which is undesirable for the battery itself, is detected, and it is unavoidable that the battery is deteriorated each time it is repeated.

【0024】4−1.端子電圧変化率(ΔV/dt)検
出方式は、図4に示すように、充電終末期における電池
電圧上昇が終了して低下に転じた際(ΔV/dt≦0)
の傾斜の変化率、すなわち−ΔVになったことを検出
し、充電を終了するものである。基本的には、電池温度
の上昇に起因する電圧低下を検出して充電を停止しよう
とするものであり、必然的に電池の温度上昇が生じてい
る。なお、所定電圧に到達して、充電を完全に停止する
場合と、状態保持のための微弱充電(トリクル充電)を
持続する場合とがある。図4(B)の充電電流曲線はト
リクル充電を行う状態を示している。
4-1. As shown in FIG. 4, the terminal voltage change rate (ΔV / dt) detection method is used when the battery voltage rises at the end of charging and turns to decrease (ΔV / dt ≦ 0).
Is detected, that is, the rate of change of the slope of, that is, −ΔV, and charging is terminated. Basically, charging is stopped by detecting a voltage drop caused by a rise in battery temperature, and the battery temperature rises inevitably. Note that there are a case where charging reaches a predetermined voltage and charging is completely stopped, and a case where weak charging for maintaining a state (trickle charging) is continued. The charging current curve in FIG. 4B shows a state in which trickle charging is performed.

【0025】4−1.上記端子電圧変化率(ΔV/d
t)検出方式は、図5(A)の電池電圧曲線に示すよう
に、充電終末期における温度上昇が始まる電池電圧に到
達した際の変化率を検出し、図5(B)のように充電電
流を段階的に低減するものである。この場合には、電池
の種類、大きさ等により設定電圧V1,2,3 ・・等を
変更する必要がある。
4-1. The terminal voltage change rate (ΔV / d
t) The detection method detects the rate of change when the temperature reaches the battery voltage at which the temperature rise starts at the end of charging, as shown by the battery voltage curve in FIG. 5A, and charges the battery as shown in FIG. 5B. The current is reduced stepwise. In this case, the type of battery, it is necessary to change the set voltage V 1, V 2, V 3 ·· etc. the size or the like.

【0026】4−2.改良された第2の端子電圧変化率
検出方式は、図6(A)の電池電圧曲線において電池電
圧上昇の傾斜の変化率、すなわち拡大図(C)のように
ΔV/dtが所定値に到達したことを検出し、図6図
(B)のように電流の制御を行うものである。しかしこ
の場合の所定値とは、基本的には、電池電圧変化を検出
して充電をしようとするものであり、電池の種類や容量
により設定値を変更する必要がある。
4-2. The improved second terminal voltage change rate detection method is such that the change rate of the slope of the battery voltage rise in the battery voltage curve of FIG. 6A, that is, ΔV / dt reaches a predetermined value as shown in the enlarged view (C). This is detected, and the current is controlled as shown in FIG. 6 (B). However, the predetermined value in this case is basically to attempt to charge by detecting a change in battery voltage, and it is necessary to change the set value according to the type and capacity of the battery.

【0027】この方式においても、必然的に温度上昇を
伴い、対象とする電池の種類や容量を勘案しつつ設定す
る必要があることから煩雑であり、誤操作等による不都
合が生じやすい。
Also in this method, the temperature is inevitably increased, and it is necessary to make settings while taking into account the type and capacity of the target battery. This is complicated, and inconvenience due to erroneous operation is likely to occur.

【0028】上述のような従来の各種充電方式におい
て、不足充電であれば、電池性能が十分に発揮されず、
搭載機器の性能を左右することになる。
In the conventional various charging methods described above, if the battery is insufficiently charged, the battery performance is not sufficiently exhibited.
It will affect the performance of the onboard equipment.

【0029】逆に、密閉構造の二次電池が過充電になる
と、温度上昇を招来し、電解質の漏洩およびこれに起因
する電解質不足現象、すなわちドライアップ現象を招
き、二次電池にとって致命的障害を被ることがある。
On the other hand, when the secondary battery having a sealed structure is overcharged, the temperature rises, and the electrolyte leaks and a shortage of the electrolyte resulting therefrom, that is, a dry-up phenomenon occurs, resulting in a fatal failure for the secondary battery. May suffer.

【0030】[0030]

【発明が解決しようとする課題】本発明は、二次電池に
対して障害を与える温度上昇をもたらすことなしに、常
に適正充電を行うことが可能で、かつメモリ効果を生ず
ることなく繰り返し充放電が可能である二次電池の充電
方法ならびにこのような方法を実施するに適した充電装
置を提供することを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery which can always be properly charged without causing a temperature rise which causes an obstacle to a secondary battery, and which can be repeatedly charged and discharged without causing a memory effect. It is an object of the present invention to provide a charging method for a secondary battery capable of performing the above-described method and a charging device suitable for performing such a method.

【0031】[0031]

【課題を解決するための手段】本発明の課題は、被充電
電池端子電圧以上の最大値を有し、外部からの制御信号
により低減可能な可変直流電圧を順極性となるように被
充電電池正負端子間に印加して対応する充電電流を供給
しつつ、被充電電池の電池電圧・時間曲線における変曲
点を検出し、該変曲点の検出に応じて前記印加直流電圧
を順次制御することにより充電電流を低減せしめつつ充
電を行う、二次電池の充電方法によって解決される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery to be charged so that a variable DC voltage having a maximum value equal to or higher than the terminal voltage of the battery to be charged and which can be reduced by an external control signal has a forward polarity. The inflection point in the battery voltage / time curve of the battery to be charged is detected while applying the corresponding charging current by applying the voltage between the positive and negative terminals, and the applied DC voltage is sequentially controlled in accordance with the detection of the inflection point. Thus, the problem is solved by a method of charging a secondary battery in which charging is performed while reducing charging current.

【0032】さらに、本発明の課題は、図1に示すよう
に、被充電電池20の充電に際し電圧を印加するための
直流電圧を発生する電源部12と、該電源部12からの
電圧を受け、外部からの制御信号に応じて出力電圧およ
び持続時間を制御する電力制御部14と、前記被充電電
池20の電池電圧ならびに充電電流の時間変化を監視
し、該電池電圧・時間曲線の変曲点を検出して出力信号
を発生する監視部16と、該監視部16の出力信号を受
けて前記電力制御部14を駆動する演算・駆動部18
と、を具備する二次電池の充電装置10によって解決さ
れる。
Further, as shown in FIG. 1, the object of the present invention is to provide a power supply unit 12 for generating a DC voltage for applying a voltage when charging a battery 20 to be charged, and receiving a voltage from the power supply unit 12. A power control unit 14 for controlling an output voltage and a duration according to an external control signal, and monitoring a time change of a battery voltage and a charging current of the battery 20 to be charged, and inflection of the battery voltage / time curve. A monitoring unit 16 that detects points and generates an output signal; and a calculation / drive unit 18 that receives the output signal of the monitoring unit 16 and drives the power control unit 14
Is solved by the charging device 10 for a secondary battery comprising:

【0033】本発明にかかる二次電池の充電方法では、
二次電池の正負端子間に印加される直流電圧は、連続電
圧またはパルス状電圧とすることができる。充電状態の
間被充電二次電池の端子電圧を監視している。これらの
監視にあたっては、予め監視部16に記憶せしめられて
いる、所要特性データ、例えば電池の種類、端子電圧お
よび要領、等に適合する特性データが参照される。
In the method for charging a secondary battery according to the present invention,
The DC voltage applied between the positive and negative terminals of the secondary battery can be a continuous voltage or a pulsed voltage. During the charging state, the terminal voltage of the secondary battery to be charged is monitored. In the monitoring, reference is made to required characteristic data, for example, characteristic data suitable for the type of battery, terminal voltage and procedure, etc., stored in the monitoring unit 16 in advance.

【0034】このような充電電流の監視によって、被充
電電池の状態、特に残容量が測定される。この監視結果
に基づき演算処理を行い、その結果に従い、引き続く充
電用電圧の大きさや印加時間を決定する。充電用電圧の
印加態様は、断続的(パルス状)であっても連続的な可
変電圧であってもよい。
By monitoring the charging current, the state of the battery to be charged, in particular, the remaining capacity is measured. An arithmetic process is performed based on the monitoring result, and the magnitude and application time of the subsequent charging voltage are determined according to the result. The charging voltage may be applied either intermittently (pulsed) or continuously.

【0035】図2(A)の電池電圧−時間曲線およびそ
の部分拡大図(C)に示すように、二重微分値が実質上
零の点(d2V/dt2=0)、すなわち変曲点に至った
ことまたは実質上変曲点に至ったことを検出し、図
(B)の充電電流曲線に示すように、I1,2,3,4
のように、被充電電池電圧の各変曲点に従って充電電流
を低減せしめるものである。
As shown in the battery voltage-time curve of FIG. 2A and its partially enlarged view (C), the point at which the double differential value is substantially zero (d 2 V / dt 2 = 0), that is, It is detected that the inflection point has been reached or the inflection point has been substantially reached, and I 1, I 2, I 3, I 4
As described above, the charging current is reduced according to each inflection point of the voltage of the battery to be charged.

【0036】このように決定された最適値データに従
い、印加電圧を変化させつつ充電を継続することによ
り、過充電、過熱ならびにメモリ効果の発生を防止しつ
つ所望の充電を行うことができる。
By continuing charging while changing the applied voltage in accordance with the optimum value data thus determined, desired charging can be performed while preventing overcharging, overheating, and the occurrence of the memory effect.

【0037】被充電電池に対して温度の急上昇をもたら
す兆候は、前述のように充電電圧−時間曲線の電圧変化
率が正から負に変化したか否か、すなわち変曲点を通過
したか否かによって知ることができる。このように変曲
点は、数学的に表現すれば電圧の時間変化を二重微分し
た値が零となる曲線上の点である。
The indication that the temperature of the battery to be charged rises sharply is whether the voltage change rate of the charging voltage-time curve has changed from positive to negative, that is, whether the battery has passed the inflection point, as described above. You can know by. Thus, the inflection point is a point on the curve where the value obtained by double differentiating the time change of the voltage becomes zero when expressed mathematically.

【0038】すなわち、下に凸の電圧−時間曲線が、上
に凸の曲線に転位する状態、またはこれとは反対に変位
する状態、すなわち、このような変曲点を超えた後に
は、電流が急変し、それに伴って温度の急上昇が起こる
ことに着目したものである。
That is, the state in which the downwardly convex voltage-time curve transposes to the upwardly convex curve or the state in which the downwardly convex voltage-time curve is displaced in the opposite direction, that is, after the inflection point is exceeded, the current Suddenly changes, and the temperature rises sharply.

【0039】なお、この充電電圧−時間曲線による変曲
点の発生する現象は二次電池の種類や容量によっては、
ほとんど差異が生じない。したがって、本発明にかかる
充電方法ならびに該方法を実施するための充電装置にあ
っては、常に安全かつ高効率充電が実施可能である。
The phenomenon that the inflection point occurs due to the charging voltage-time curve depends on the type and capacity of the secondary battery.
Little difference occurs. Therefore, the charging method according to the present invention and the charging device for performing the method can always perform safe and highly efficient charging.

【0040】被充電電池の端子電圧−時間曲線における
変曲点は、厳密には電圧変化の二重微分値d2V/dt2
の状態を監視することにより容易に検出することができ
る。実際上は、電池等によって決まる所定係数k(ここ
に、−1>k>1であり、厳密にはk=0が変曲点であ
る)以下であることをもって変曲点とみなし、制御する
ことができる。
The inflection point in the terminal voltage-time curve of the battery to be charged is strictly a double differential value d 2 V / dt 2 of the voltage change.
Can be easily detected by monitoring the state of. Practically, when the coefficient is equal to or less than a predetermined coefficient k (here, -1>k> 1, and strictly k = 0 is an inflection point) determined by a battery or the like, it is regarded as an inflection point and controlled. be able to.

【0041】このような配慮を加えることにより、効率
のよい充電が行われ、その間過度の温度上昇やメモリ効
果も生じない。したがって、電池寿命を大幅に延長する
ことができ、資源の有効利用、環境破壊の抑制を達成す
ることができる。
By taking such considerations into account, efficient charging is performed, and no excessive temperature rise or memory effect occurs during the charging. Therefore, the battery life can be greatly extended, and effective use of resources and suppression of environmental destruction can be achieved.

【0042】この場合の対象二次電池としては、ニッケ
ル−カドミウム電池、ニッケル−水素電池、鉛蓄電池、
ニッケル−亜鉛電池、酸化銀−亜鉛電池、酸化銀−カド
ミウム電池、その他各種のリチウム二次電池等が挙げら
れる。本発明にかかる充電方法並びに充電装置は、前述
のように、これら各二次電池に対して広く適用すること
ができる。
In this case, the target secondary batteries include nickel-cadmium batteries, nickel-hydrogen batteries, lead-acid batteries,
Examples include nickel-zinc batteries, silver oxide-zinc batteries, silver oxide-cadmium batteries, and various other lithium secondary batteries. As described above, the charging method and the charging device according to the present invention can be widely applied to each of these secondary batteries.

【0043】[0043]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図を参照しながら開示する。図3は本発明にかか
る充電方法を実施するに適した二次電池の充電装置10
の構成例を示す概略ブロック図である。図1と同じ構成
部には同じ参照符号を付している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 3 shows a secondary battery charger 10 suitable for carrying out the charging method according to the present invention.
FIG. 3 is a schematic block diagram illustrating a configuration example of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals.

【0044】図3は、図1の基本要素の中で、監視部1
6および演算・駆動部18を具体的構成例に即して開示
したものである。監視部16は、被充電電池20の端子
電圧を検出する電圧検出部16Vと、充電電流を検出す
る電流検出部16Aとを有し、これら両検出結果によっ
て被充電電池20の当該時点における充電容量その他の
状態を総合的に監視するものである。
FIG. 3 shows a monitoring unit 1 among the basic elements of FIG.
6 and the operation / drive unit 18 are disclosed according to a specific configuration example. The monitoring unit 16 includes a voltage detection unit 16V that detects a terminal voltage of the battery 20 to be charged, and a current detection unit 16A that detects a charging current. Other conditions are comprehensively monitored.

【0045】また、監視部16は、一連の充電操作を実
行するために必要なデータを記憶する主記憶部16Mを
有している。主記憶部16Mに記憶されるデータには、
被充電電池20の当該時点における充電容量を基礎とし
て、充電電流の経時的関係および温度特性等が含まれ
る。
The monitoring section 16 has a main storage section 16M for storing data necessary for executing a series of charging operations. The data stored in the main storage unit 16M includes:
Based on the charging capacity of the battery to be charged 20 at that time, a temporal relationship of charging current, a temperature characteristic, and the like are included.

【0046】監視部16には、変曲点検出部が設けられ
る。この変曲点検出部は、電圧変化率を検出する回路1
6d、一時記憶部16T、比較部16Cにより構成する
ことができる。電圧検出部16Vにより所定時間間隔毎
に検出される電圧信号は、電圧変化率検出回路16dに
おいて二重微分値として検出される。
The monitoring section 16 is provided with an inflection point detecting section. The inflection point detection unit includes a circuit 1 for detecting a voltage change rate.
6d, a temporary storage unit 16T, and a comparison unit 16C. The voltage signal detected by the voltage detector 16V at predetermined time intervals is detected as a double differential value in the voltage change rate detection circuit 16d.

【0047】このように検出された二重微分値は一時記
憶部16T内に一旦蓄積される。このように蓄積された
値と、引き続く所定時間間隔、例えば15秒毎に電圧値
をサンプリングし、これを複数回継続して1〜2分間程
度にわたる平均を求めることにより検出される電圧変化
の二重微分値と、を順次比較回路16Cにおいて比較し
てゆき、その比較結果が所定係数値k以下になったこと
を検出するものである。すなわち、端子電圧−時間曲線
の電圧変化の二重微分値が所定係数値k以下になった際
(d2V/dt2≦k)に対応する出力信号を発生する。
この場合の係数kは、二次電池の種類や容量等によって
異なるが、前述のように−1>k>1であって、k=0
の状態が厳密な変曲点である。
The double differential value thus detected is temporarily stored in the temporary storage section 16T. The accumulated value and the voltage value detected by sampling the voltage value at successive predetermined time intervals, for example, every 15 seconds, and obtaining the average over a period of about 1 to 2 minutes by continuously performing the sampling several times are used. The multiple differential values are sequentially compared in the comparison circuit 16C, and it is detected that the comparison result is equal to or less than the predetermined coefficient value k. That is, when the double differential value of the voltage change of the terminal voltage-time curve becomes equal to or less than the predetermined coefficient value k, an output signal corresponding to (d 2 V / dt 2 ≦ k) is generated.
The coefficient k in this case varies depending on the type and capacity of the secondary battery, but as described above, −1>k> 1, and k = 0.
Is the exact inflection point.

【0048】監視部16において変曲点として検出され
た信号は、マイクロコンピュータ等から構成される演算
・駆動部18に印加され、所望の演算処理を施された
後、駆動信号として電力制御部14に供給される。その
結果、電力制御部14からは、被充電電池20に対して
最適の印加電圧が供給される。なお、演算・駆動部18
は駆動部18D、演算部18Tを有している。
The signal detected as an inflection point by the monitoring section 16 is applied to an operation / drive section 18 composed of a microcomputer or the like, subjected to a desired operation process, and then applied as a drive signal to the power control section 14. Supplied to As a result, the optimal applied voltage is supplied from the power control unit 14 to the battery 20 to be charged. The operation / drive unit 18
Has a drive unit 18D and a calculation unit 18T.

【0049】電源部12は、上述のように被充電電池2
0の端子電圧より高い最大電圧を有し、被充電電池に適
する直流電圧を発生するものである。この電圧は被充電
電池の種類、電池構成、容量等に応じて変化可能なもの
とすることができる。
The power supply unit 12 is, as described above,
It has a maximum voltage higher than the terminal voltage of 0 and generates a DC voltage suitable for the battery to be charged. This voltage can be changed according to the type of the battery to be charged, the battery configuration, the capacity, and the like.

【0050】電源部12の直流出力は、演算・駆動部1
8によって制御される電力制御部14において、被充電
電池電圧以上の波高値を有する断続電圧または連続電圧
として制御される。この直流電圧を断続電圧とする場
合、この直流電圧の波高値を被充電電池の端子電圧の少
なくとも1.3倍以上とすることが望ましい。これは、
二次電池の急速充電を行うためと、メモリ効果を解消ま
たは防止するために重要である。
The DC output of the power supply unit 12 is
The power control unit 14 is controlled as an intermittent voltage or a continuous voltage having a peak value equal to or higher than the voltage of the battery to be charged. When this DC voltage is used as the intermittent voltage, it is desirable that the peak value of the DC voltage is at least 1.3 times or more the terminal voltage of the battery to be charged. this is,
It is important for quick charging of a secondary battery and for eliminating or preventing a memory effect.

【0051】ただし、かかる高電圧を長時間継続して印
加すると二次電池に過酷な充電電流を与えることにな
り、電池の過熱や電極の物理的破壊等を招くことになる
ため取り扱い上留意が必要である。
However, if such a high voltage is continuously applied for a long time, a severe charging current is given to the secondary battery, which causes overheating of the battery and physical destruction of the electrodes. is necessary.

【0052】本発明に係る二次電池の充電装置では、当
該技術分野において知られているマイクロコンピュー
タ、メモリ、レジスタ、センサ等の組み合わせにより構
成されるハードウエアと、これらに対する制御用ソフト
ウエアと、を適宜組み合わせることにより容易に構成す
ることができる。
In the secondary battery charging apparatus according to the present invention, hardware constituted by a combination of a microcomputer, a memory, a register, a sensor, and the like known in the art, software for controlling the hardware, Can be easily configured by appropriately combining.

【0053】本発明にかかる充電方法において充電可能
な被充電電池の種類は、上述のようにニッケル−カドミ
ウム電池、ニッケル−水素電池、鉛蓄電池、ニッケル−
亜鉛電池、酸化銀−亜鉛電池、酸化銀−カドミウム電
池、その他各種のリチウム二次電池等が挙げられる。
The types of batteries that can be charged in the charging method according to the present invention include nickel-cadmium batteries, nickel-hydrogen batteries, lead-acid batteries, and nickel-cadmium batteries as described above.
Examples include zinc batteries, silver oxide-zinc batteries, silver oxide-cadmium batteries, and various other lithium secondary batteries.

【0054】[0054]

【発明の効果】本発明に係る二次電池の充電方法では、
上述の電池の多くの充電作用が吸熱反応であることに着
目し、充電開始初期に大電流を通流せしめ、電池電圧−
時間曲線の変曲点を検出し、この変曲点を通過した後に
充電電流を低減するように制御し、二次電池が温度上昇
を来さない条件下において充電を行うことを特徴として
いる。
According to the method for charging a secondary battery according to the present invention,
Focusing on the fact that many of the charging actions of the above-mentioned batteries are endothermic reactions, a large current is passed at the beginning of charging, and
It is characterized in that the inflection point of the time curve is detected, the charging current is controlled to be reduced after passing through the inflection point, and the rechargeable battery is charged under the condition that the temperature does not rise.

【0055】したがって、本発明によれば短時間の充電
が可能となり、さらに電池状態は絶えず監視されている
ため、過度の温度上昇や過充電等は生ぜず、結果的に電
池寿命を延長することができる。
Therefore, according to the present invention, it is possible to charge the battery for a short time, and since the state of the battery is constantly monitored, excessive temperature rise and overcharging do not occur, thereby extending the battery life. Can be.

【0056】本発明にかかる二次電池の充電方法では、
上述のように従来技術に比して、約1/3程度の充電所
要時間で充電を行うことができる。そのため、携帯用機
器類の充電にも有利となる。
In the method of charging a secondary battery according to the present invention,
As described above, charging can be performed in a charging time of about 1/3 of that of the related art. Therefore, it is also advantageous for charging portable devices.

【0057】さらに、いわゆる継ぎ足し充電によっても
メモリ効果は生じないから、緊急時には、上述の15〜
20分の充電時間の数分の1の時間、例えば5分間の充
電を行い、一段落した後に追加充電を行うこともでき
る。
Further, since the memory effect does not occur even by so-called additional charging, in the case of emergency, the above-mentioned 15 to
The charging may be performed for a fraction of the charging time of 20 minutes, for example, 5 minutes, and the additional charging may be performed after the charging is completed.

【0058】本発明にかかる充電方法の適用は、小形・
携帯用二次電池のみに限定されるものではない。上述の
各種二次電池は、バッテリーフォークリフト、電動カー
ト等の運輸装置、電気自動車用電源等の大形二次電池に
も十分に適用可能なものである。現状では、夜間等の不
使用時に数時間掛けて充電している用途に対しても、数
分の1の充電が可能となり、省エネルギー上も有用であ
る。
The charging method according to the present invention is applied to a small-sized
The present invention is not limited to portable secondary batteries. The above-mentioned various secondary batteries are sufficiently applicable to large-sized secondary batteries such as battery forklifts, electric carts, and other transportation devices, and electric vehicle power supplies. At present, even in applications where charging takes several hours when not in use, such as at night, charging in a fraction of a fraction is possible, which is also useful for energy saving.

【0059】また、現時点において試作段階を超えてい
ない電気自動車の最大の問題は、小形軽量電池が得られ
ていないこと、電池容量に限界があり長距離走行ができ
ないこと、充電時間が短縮できないこと、等にある。こ
のような電気自動車等の大容量電池の分野で、容量対重
量比および容量対容積比で従来の鉛電池よりも優れたア
ルカリ蓄電池の適用が期待されているが、本発明にかか
る充電方法はこれら電池類の充電技術としても有用な技
術を提供するものである。したがって、電池スタンド等
における急速充電に対する可能性も秘めている。
The biggest problems of electric vehicles that do not exceed the prototype stage at present are that small and lightweight batteries cannot be obtained, battery capacity is limited and long-distance traveling cannot be performed, and charging time cannot be shortened. , Etc. In the field of large-capacity batteries such as electric vehicles, application of an alkaline storage battery that is superior to a conventional lead battery in capacity-to-weight ratio and capacity-to-volume ratio is expected. The present invention provides a useful technique as a charging technique for these batteries. Therefore, there is a possibility of quick charging in a battery stand or the like.

【0060】本発明によれば、電池の寿命を大幅に延長
することができ、資源の有効利用が促進され、電池の廃
棄量が減少し環境破壊の防止に貢献することができる。
According to the present invention, the life of the battery can be greatly extended, the effective use of resources can be promoted, and the amount of battery disposal can be reduced, thereby contributing to the prevention of environmental destruction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる二次電池の充電装置の基本構成
を示す概略ブロック図である。
FIG. 1 is a schematic block diagram showing a basic configuration of a charging device for a secondary battery according to the present invention.

【図2】本発明にかかる二次電池の充電方法の電池電圧
および電流波形の時間変化を示す説明図であり、図
(C)は部分拡大図である。
FIG. 2 is an explanatory view showing a time change of a battery voltage and a current waveform in a method of charging a secondary battery according to the present invention, and FIG. 2 (C) is a partially enlarged view.

【図3】本発明にかかる二次電池の充電装置の実施例の
構成を示すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of an embodiment of a charging device for a secondary battery according to the present invention.

【図4】従来技術にかかる第1の二次電池の充電方法の
電池電圧および電流波形の時間変化を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a time change of a battery voltage and a current waveform in a first method of charging a secondary battery according to the related art.

【図5】従来技術にかかる第2の二次電池の充電方法の
電池電圧および電流波形の時間変化を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a time change of a battery voltage and a current waveform in a second method of charging a secondary battery according to the related art.

【図6】従来技術にかかる第3の二次電池の充電方法の
電池電圧および電流波形の時間変化を示す説明図であ、
図(C)は部分拡大図である。
FIG. 6 is an explanatory diagram showing a time change of a battery voltage and a current waveform in a third method of charging a secondary battery according to the related art;
FIG. (C) is a partially enlarged view.

【図7】従来技術によるNiCd電池およびNiMH電
池においてメモリ効果が発生した場合とリフレッシュ後
の電圧対容量特性を示す図である。
FIG. 7 is a diagram showing voltage-capacity characteristics when a memory effect occurs in a NiCd battery and a NiMH battery according to the related art and after refresh.

【符号の説明】[Explanation of symbols]

10 充電装置 12 電源部 14 電力制御部 16 監視部 16A 電流検出部 16V 電圧検出部 16d 電圧変化率検出部(電圧変化率を求める回路) 16M 記憶部 16T 一時記憶部(一時記憶回路) 16C 比較部(比較回路) 18 演算・駆動部 18T 演算部 18D 駆動部 20 被充電電池 Reference Signs List 10 charging device 12 power supply unit 14 power control unit 16 monitoring unit 16A current detection unit 16V voltage detection unit 16d voltage change rate detection unit (circuit for obtaining voltage change rate) 16M storage unit 16T temporary storage unit (temporary storage circuit) 16C comparison unit (Comparison circuit) 18 Operation / drive section 18T Calculation section 18D drive section 20 Battery to be charged

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被充電電池端子電圧以上の最大値を有
し、外部からの制御信号により低減可能な可変直流電圧
を順極性となるように被充電電池正負端子間に印加して
対応する充電電流を供給しつつ、被充電電池の電池電圧
・時間曲線における変曲点を検出し、該変曲点の検出に
応じて前記印加直流電圧を順次制御することにより充電
電流を低減せしめつつ充電を行うこと、を特徴とする二
次電池の充電方法。
1. A charging method in which a variable DC voltage having a maximum value equal to or higher than a terminal voltage of a battery to be charged and reduced by an external control signal is applied between positive and negative terminals of the battery to be charged so as to have a forward polarity. While supplying the current, the inflection point in the battery voltage-time curve of the battery to be charged is detected, and the applied DC voltage is sequentially controlled in accordance with the detection of the inflection point, thereby reducing the charging current and performing the charging. Performing a method for charging a secondary battery.
【請求項2】 前記変曲点の検出が、被充電電池の電池
電圧・時間曲線における電圧変化の二重微分値を監視
し、該二重微分値が正から負に変化した際に発せられる
信号により行われること、を特徴とする請求項1に記載
の二次電池の充電方法。
2. The inflection point is detected by monitoring a double differential value of a voltage change in a battery voltage-time curve of a battery to be charged, and issued when the double differential value changes from positive to negative. The method for charging a secondary battery according to claim 1, wherein the charging is performed by a signal.
【請求項3】 被充電電池の充電に際し電圧を印加する
ための直流電圧を発生する電源部と、 該電源部からの電圧を受け、外部からの制御信号に応じ
て出力電圧および持続時間を制御する電力制御部と、 前記被充電電池の電池電圧ならびに充電電流の時間変化
を監視し、該電池電圧・時間曲線の変曲点を検出して出
力信号を発生する監視部と、 該監視部の出力信号を受けて前記電力制御部を駆動する
演算・駆動部と、を具備することを特徴とする二次電池
の充電装置。
3. A power supply unit for generating a DC voltage for applying a voltage when charging a battery to be charged, receiving a voltage from the power supply unit, and controlling an output voltage and a duration according to an external control signal. A power control unit that monitors a battery voltage and a charging current of the battery to be charged over time, detects an inflection point of the battery voltage / time curve, and generates an output signal. And a calculating / driving unit for receiving the output signal and driving the power control unit.
【請求項4】 前記監視部における変曲点検出部が、所
定時間毎に前記被充電電池の電池電圧変化率を求める回
路と、先に得られた電圧変化率を一旦蓄積する一時記憶
回路と、該記憶回路に記憶された蓄積値と所定時間を経
て発生せしめられる次続の電圧変化率とを順次比較する
ための比較回路と、を具備し、これら先後電圧変化率間
の差異が正から負に変化した際に変曲点であることを判
定し、該判定結果に応じて前記演算・駆動部の制御を行
うことを特徴とする請求項3に記載の二次電池の充電装
置。
4. An inflection point detecting section in the monitoring section, wherein a circuit for calculating a battery voltage change rate of the battery to be charged at predetermined time intervals, and a temporary storage circuit for temporarily storing the previously obtained voltage change rate. A comparison circuit for sequentially comparing the accumulated value stored in the storage circuit with the next voltage change rate generated after a predetermined time, wherein a difference between the preceding and following voltage change rates is positive. The charging device for a secondary battery according to claim 3, wherein when it changes to a negative value, it is determined that the point is an inflection point, and the calculation / drive unit is controlled according to the determination result.
JP9067498A 1997-03-06 1997-03-06 Method and apparatus for charging secondary battery Pending JPH10248175A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9067498A JPH10248175A (en) 1997-03-06 1997-03-06 Method and apparatus for charging secondary battery
TW087102425A TW370733B (en) 1997-03-06 1998-02-20 Method and apparatus for charging secondary battery
CN98106032A CN1193214A (en) 1997-03-06 1998-03-05 Charging method for secondary cell and charging device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9067498A JPH10248175A (en) 1997-03-06 1997-03-06 Method and apparatus for charging secondary battery

Publications (1)

Publication Number Publication Date
JPH10248175A true JPH10248175A (en) 1998-09-14

Family

ID=13346721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9067498A Pending JPH10248175A (en) 1997-03-06 1997-03-06 Method and apparatus for charging secondary battery

Country Status (3)

Country Link
JP (1) JPH10248175A (en)
CN (1) CN1193214A (en)
TW (1) TW370733B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530796A (en) * 2006-03-23 2009-08-27 サイオン パワー コーポレイション How to charge a lithium sulfur cell
JP2010518805A (en) * 2007-02-12 2010-05-27 エクサー コーポレーション Battery charging method using constant current adapted to keep constant rate of change of open circuit battery voltage
JP2016201964A (en) * 2015-04-14 2016-12-01 古河電気工業株式会社 Power storage system and control method therefor
JP2016201965A (en) * 2015-04-14 2016-12-01 古河電気工業株式会社 Power storage system and control method therefor
US9716291B2 (en) 2004-01-06 2017-07-25 Sion Power Corporation Electrolytes for lithium sulfur cells
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
US9859588B2 (en) 2004-01-06 2018-01-02 Sion Power Corporation Electrolytes for lithium sulfur cells
US10050308B2 (en) 2012-12-17 2018-08-14 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099726A1 (en) 2006-02-28 2007-09-07 Toyota Jidosha Kabushiki Kaisha Vehicle drive device and method of controlling vehicle drive device
CN104736981B (en) * 2012-12-12 2017-12-22 富士电机株式会社 Semiconductor chip temperature estimating device and overtemperature protection system
CN107332316B (en) * 2017-08-23 2021-11-02 努比亚技术有限公司 Stepped charging method, mobile terminal and computer-readable storage medium
CN108828456A (en) * 2018-07-11 2018-11-16 惠州志顺电子实业有限公司 Full method, apparatus and the charger including the device are sentenced in nickel-metal hydride battery charging
CN110137584B (en) * 2019-03-20 2020-12-11 北京车和家信息技术有限公司 Charging voltage threshold determination method and charging strategy determination method
CN110824365A (en) * 2019-10-23 2020-02-21 上海施能电器设备有限公司 Lead-acid storage battery sufficiency judgment method based on Wsa charging curve voltage change rate
CN110808621B (en) * 2019-10-29 2023-06-27 上海施能电器设备有限公司 Overcurrent control method based on Wsa charging curve
CN112636406B (en) * 2020-11-26 2023-04-07 西安讯服通科技有限公司 Battery management method and device for uninterruptible power supply

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985403B2 (en) 2004-01-06 2021-04-20 Sion Power Corporation Electrolytes for lithium sulfur cells
US9716291B2 (en) 2004-01-06 2017-07-25 Sion Power Corporation Electrolytes for lithium sulfur cells
US9859588B2 (en) 2004-01-06 2018-01-02 Sion Power Corporation Electrolytes for lithium sulfur cells
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
JP2009530796A (en) * 2006-03-23 2009-08-27 サイオン パワー コーポレイション How to charge a lithium sulfur cell
JP2010518805A (en) * 2007-02-12 2010-05-27 エクサー コーポレーション Battery charging method using constant current adapted to keep constant rate of change of open circuit battery voltage
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
US10854921B2 (en) 2011-09-07 2020-12-01 Sion Power Corporation Electrochemical cell including electrolyte having insoluble nitrogen-containing material and battery including the cell
US10468721B2 (en) 2012-12-17 2019-11-05 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10050308B2 (en) 2012-12-17 2018-08-14 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US11502334B2 (en) 2012-12-17 2022-11-15 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
JP2016201965A (en) * 2015-04-14 2016-12-01 古河電気工業株式会社 Power storage system and control method therefor
JP2016201964A (en) * 2015-04-14 2016-12-01 古河電気工業株式会社 Power storage system and control method therefor

Also Published As

Publication number Publication date
CN1193214A (en) 1998-09-16
TW370733B (en) 1999-09-21

Similar Documents

Publication Publication Date Title
US5481174A (en) Method of rapidly charging a lithium ion cell
EP3204998B1 (en) Electrical energy storage device
US6137265A (en) Adaptive fast charging of lithium-ion batteries
JPH10248175A (en) Method and apparatus for charging secondary battery
US6507169B1 (en) Energy storage system
JP5488877B2 (en) Electric tool
US7135839B2 (en) Battery pack and method of charging and discharging the same
JPH07255134A (en) Series connection circuit of secondary cells
JP4246399B2 (en) Battery cell maintenance charging system and method
CN105518924A (en) Battery apparatus and electric vehicle
US20080024948A1 (en) Electrical device and battery pack
JP4112478B2 (en) Battery pack charger
JP2003132955A (en) Charging and discharging method of nonaqueous electrolyte secondary battery
KR20160063756A (en) Battery pack and method for controlling the same
US20110025272A1 (en) Charging method, charging device, and battery pack
US7994754B2 (en) Battery charging apparatus, battery pack, battery charging system, and battery charging method
JP2007049828A (en) Battery quick charge process, battery quick charger, and battery quick recharging system
JP2000134805A (en) Battery assembly charge/discharge state deciding method and battery assembly charge/discharge state deciding device
AU4252799A (en) Energy monitoring and charging system
Darwish et al. Review of battery management systems
JPH1118314A (en) Method and equipment for charging lithium ion secondary battery
JP4383431B2 (en) Battery pack charger
JPH09117075A (en) Charging method for lithium ion secondary battery
JPH0993824A (en) Charger and charging method for secondary battery
JPH11150882A (en) Method for charging battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040507

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040507

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees