JPH10193087A - Manufacture of titanium-aluminum-made turbine rotor - Google Patents

Manufacture of titanium-aluminum-made turbine rotor

Info

Publication number
JPH10193087A
JPH10193087A JP8359854A JP35985496A JPH10193087A JP H10193087 A JPH10193087 A JP H10193087A JP 8359854 A JP8359854 A JP 8359854A JP 35985496 A JP35985496 A JP 35985496A JP H10193087 A JPH10193087 A JP H10193087A
Authority
JP
Japan
Prior art keywords
tial
shaft
turbine rotor
manufacturing
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8359854A
Other languages
Japanese (ja)
Inventor
Toshiharu Noda
俊治 野田
Michio Okabe
道生 岡部
Takao Hiyamizu
孝夫 冷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8359854A priority Critical patent/JPH10193087A/en
Priority to US08/953,249 priority patent/US6007301A/en
Priority to DE69724730T priority patent/DE69724730T2/en
Priority to AT97118046T priority patent/ATE249571T1/en
Priority to EP97118046A priority patent/EP0837221B1/en
Publication of JPH10193087A publication Critical patent/JPH10193087A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a TiAl-made turbine rotor which precisely matches the axes of a TiAl rotor impeller excellent in heat resistance and a shaft of a steel for structural use or a heat resistant steel and the joined strength of the shaft and the rotor impeller. SOLUTION: The manufacturing method of the TiAl-made turbine rotor is executed by forming the part to be joined, of the TiAl-made turbine impeller (a) to a projecting shape and the part to be joined, of the shaft (b) to a recessing shape and inserting brazing filler metal (d) to the TiAl-made turbine impeller (a) produced with a precision casting and the rotor shaft (b) composed of the steel for structural use or the martenstic heat resistant steel. The projecting part of the TiAl-made turbine impeller (a) and the recessing part the shaft (b) part are fitted and the pressure having >=0.01kgf/mm<2> and each yield stress or lower of the shaft (b) and the rotor impeller (a), is loaded on the interface between the brazing filler metal (d) and the material to be joined. Then, the brazing is executed while heating and holding the joining interface part to the liquidus temp. or higher of the brazing filler metal (d) and the liquidus temp. + within 100 deg.C with a high frequency induction heating under inert gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関用の過給
機に使用されるTiAl製タービンローターの製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a TiAl turbine rotor used for a supercharger for an internal combustion engine.

【0002】[0002]

【従来の技術】これまで、内燃機関用過給機のタービン
羽根車には、高温強度に優れたNi基鋳造用超合金In
conel 713Cなどの精密鋳造品のタービン羽根
車に構造用鋼からなるシャフトを摩擦接合や電子ビーム
溶接によって接合した物が用いられてきた。
2. Description of the Related Art Up to now, a turbine impeller of a supercharger for an internal combustion engine has been provided with a superalloy In for Ni-base casting which is excellent in high-temperature strength.
A structure in which a shaft made of structural steel is joined to a turbine impeller of a precision casting such as console 713C by friction welding or electron beam welding has been used.

【0003】近年、上記過給機タービン羽根車の耐熱性
を改善するとともに、軽量化によるイナーシャの低下に
よってエンジンの応答性を向上させるため、窒化珪素か
らなるセラミックスローターが実用化された。
In recent years, ceramic rotors made of silicon nitride have been put to practical use in order to improve the heat resistance of the turbocharger turbine impeller and to improve the responsiveness of the engine by reducing inertia due to weight reduction.

【0004】しかし、このセラミックス羽根車にも、 1)靭性が乏しく従来の金属性ローターの羽根車に比
べ、肉厚を厚くしなければならない。 2)熱膨張が小さいためケーシング等の周囲の部品との
熱膨張のバランスが取りにくい。 などの欠点があった。
However, this ceramic impeller also has the following disadvantages: 1) its toughness is poor and its wall thickness must be thicker than that of a conventional metallic rotor impeller. 2) Since thermal expansion is small, it is difficult to balance thermal expansion with surrounding parts such as a casing. There were drawbacks such as.

【0005】そこで、最近セラミックス替わる新しい材
料として、比重が3.8とセラミックスに近く、高温の
比強度(強度を密度で割った値)はNi基超合金Inc
onel 713Cと同等以上で、しかも、セラミック
スよりも靭性が高く、かつ熱膨張率が金属に近いTiA
l金属間化合物が、タービン羽根車に提案された(例え
ば、特開昭61−229901)。
[0005] Therefore, as a new material that has recently replaced ceramics, the specific gravity is 3.8, which is close to that of ceramics, and the specific strength at high temperature (the value obtained by dividing the strength by the density) is Ni-base superalloy Inc.
Onel 713C or higher, and has higher toughness than ceramics and a coefficient of thermal expansion close to that of metal
(1) Intermetallic compounds have been proposed for turbine impellers (for example, JP-A-61-229901).

【0006】このタービン羽根車は、精密鋳造あるいは
恒温鍛造によって製造され、この羽根車と構造用鋼のシ
ャフトを接合してローターが製造される。このTiAl
は、セラミックスにない靭性を有するものの、室温延性
は1%程度のため、従来のNi基超合金羽根車と構造用
鋼のシャフトの接合で行われている摩擦接合を適用する
と、冷却時の構造用鋼がオーステナイトからマルテンサ
イトに変態する際に発生する体積膨張によって残留応力
が発生し、TiAlが割れるという問題や、また、接合
界面に構造用鋼中の炭素とTiAl中のTiが反応し炭
化物を生成し、界面強度を低下させるという問題があっ
た。
[0006] The turbine impeller is manufactured by precision casting or constant temperature forging, and a rotor is manufactured by joining the impeller and a structural steel shaft. This TiAl
Has a toughness not found in ceramics, but has a ductility at room temperature of about 1%. Therefore, applying frictional joining, which has been performed in the conventional joining of a Ni-base superalloy impeller and a structural steel shaft, results in a structure at the time of cooling. Residual stress is generated by the volume expansion generated when the steel for use transforms from austenite to martensite, and the TiAl cracks.Also, the carbon in the structural steel reacts with the Ti in TiAl at the joint interface to form carbides. To reduce the interfacial strength.

【0007】そこで、これらの問題を解決するために、
真空ろう付けや、TiAl羽根車とシャフトとの間に変
態のないオーステナイト系材料を中間材として摩擦接合
する方法が提案された(例えば、特開平2−13318
3)。
Therefore, in order to solve these problems,
Methods of vacuum brazing and friction joining of an austenitic material having no transformation between the TiAl impeller and the shaft as an intermediate material have been proposed (for example, Japanese Patent Application Laid-Open No. Hei 2-13318).
3).

【0008】しかし、真空ろう付けおよびオーステナイ
ト系材料を中間材とする摩擦接合法においては、前者は
高真空中で接合を行わなければならず、真空引きを含め
処理に時間がかかりコストが高く、また、後者は1回目
に中間材を例えばシャフトに摩擦接合した後、2回目に
中間材を接合したシャフトを羽根車に接合するといった
ように2回の接合をしなければならず、また、中間材の
接合後の厚さのコントロールが難しいばかりでなく、接
合コストが高いという問題があった。そこで、迅速かつ
低コストである高周波ろう付けが考えられる。
However, in the case of vacuum brazing and the friction joining method using an austenitic material as an intermediate material, the former requires joining in a high vacuum, which requires a long time for processing, including evacuation, and is costly. Further, in the latter case, the intermediate member must be joined twice, for example, by first friction-joining the intermediate member to the shaft, and then joining the shaft joined to the intermediate member to the impeller the second time. Not only is it difficult to control the thickness after joining the materials, but also the joining cost is high. Therefore, high-frequency brazing that can be performed quickly and at low cost is conceivable.

【0009】[0009]

【発明が解決しようとする課題】しかし、接合界面が平
面のため、TiAl羽根車の軸とシャフトの軸とが正確
に合わすことが難しく、これらがずれて偏心するという
問題があった。また、TiAlは熱伝導率が高いため、
運転中に高温に曝されたTiAl羽根車からシャフトへ
の熱伝導が大きいため、シャフトの温度が高くなり、軸
受け部が焼き付くという問題が発生した。そこで本発明
では、TiAl羽根車の軸とシャフトの軸を正確に合わ
せ、かつシャフトへの熱伝導を少なくするTiAl製タ
ービンローターの製造方法を提供することを目的とし
た。
However, since the joining interface is flat, it is difficult to accurately align the axis of the TiAl impeller with the axis of the shaft, and there has been a problem that these are shifted and eccentric. Also, since TiAl has a high thermal conductivity,
Since heat conduction from the TiAl impeller exposed to high temperature during operation to the shaft is large, the temperature of the shaft becomes high, causing a problem that the bearing is seized. Therefore, an object of the present invention is to provide a method of manufacturing a turbine rotor made of TiAl that accurately aligns the axis of the TiAl impeller with the axis of the shaft and reduces heat conduction to the shaft.

【0010】[0010]

【発明が解決するための手段】本発明のTiAl製ター
ビンローターの製造方法は、精密鋳造によって製造され
たTiAl製タービン羽根車と構造用鋼あるいはマルテ
ンサイト系耐熱鋼からなるローターシャフトとを、図1
(a)に示すように、TiAl製タービン羽根車の被接
合部aを凸にし、シャフトの被接合部bを凹にしたり、
あるいは、図1(b)に示すように、TiAl製タービ
ン羽根車の被接合部aを凹にし、シャフトの被接合部b
を凸にし、これらの間にろう材dを挿入し、TiAl製
タービン羽根車とシャフトの凹凸部をはめ合わせ、ろう
材と被接合材との界面に0.01kgf/mm以上で
かつ接合温度においてシャフトおよびローター羽根車の
降伏応力以下の圧力を負荷し、不活性ガスあるいは還元
性ガス雰囲気中で、高周波誘導加熱によって接合界面部
をろう材の液相線温度以上でかつ液相線温度+100℃
以内に加熱、保持しつつろう付けを行ったことを特徴と
する。
SUMMARY OF THE INVENTION A method for manufacturing a TiAl turbine rotor according to the present invention comprises the steps of combining a TiAl turbine impeller manufactured by precision casting with a rotor shaft made of structural steel or martensitic heat-resistant steel. 1
As shown in (a), the joined part a of the TiAl turbine impeller is made convex, and the joined part b of the shaft is made concave,
Alternatively, as shown in FIG. 1 (b), the joint a of the turbine impeller made of TiAl is made concave, and the joint b of the shaft is formed.
And the brazing material d is inserted between them, and the uneven portion of the TiAl turbine impeller and the shaft are fitted together, and the interface between the brazing material and the material to be joined is 0.01 kgf / mm 2 or more and the joining temperature is , A pressure equal to or lower than the yield stress of the shaft and rotor impeller is applied, and the bonding interface is heated to a liquidus temperature equal to or higher than the liquidus temperature of the brazing material by high frequency induction heating in an inert gas or reducing gas atmosphere. ° C
It is characterized in that brazing was performed while heating and holding within.

【0011】このとき、凸部の外径D2と凹部の内径D
1とが、0mm<D1−D2≦1mmであり、かつ接合
部の外径D0と凹部の内径D1とが、D1/D0
0.8であることを特徴とし、さらに凹部の深さH1と
凸部の高さH2とが、0mm<H1−H2≦15mmで
あり、接合部に空洞を有することを特徴とする。
At this time, the outer diameter D2 of the convex portion and the inner diameter D of the concave portion
1 is 0 mm <D1−D2 ≦ 1 mm, and the outer diameter D0 of the joint portion and the inner diameter D1 of the concave portion are D1 2 / D02 2
0.8, the depth H1 of the concave portion and the height H2 of the convex portion are 0 mm <H1−H2 ≦ 15 mm, and the joint portion has a cavity.

【0012】また、用いるろう材がAg、Cu、Niあ
るいはTiを主成分とすることを特徴とし、さらに用い
るろう材とシャフトとの組み合わせにおいて、ろう材の
液相線温度が、シャフトのオーステナイト化温度以上あ
ることを特徴とする。また、シャフト全体を高周波誘導
加熱によってオーステナイト化温度以上に加熱し、ろう
付け後、冷却ガスあるいは冷却液をシャフトに吹きつけ
冷却することによって、ろう付けとシャフトの焼き入れ
を同時に行うことを特徴とする。
Further, the brazing material to be used is mainly composed of Ag, Cu, Ni or Ti. Further, in the combination of the brazing material to be used and the shaft, the liquidus temperature of the brazing material is changed to austenite of the shaft. It is characterized by being at a temperature or higher. In addition, the entire shaft is heated to an austenitizing temperature or higher by high-frequency induction heating, and after brazing, a cooling gas or a cooling liquid is blown onto the shaft to cool it, thereby simultaneously performing brazing and quenching of the shaft. I do.

【0013】本発明は、いずれのTiAlからなるター
ビン羽根車に適用可能であるが、高温の使用条件下で、
高速回転する部品であるため、高温強度および延性に優
れ、かつ耐酸化性に優れることが必要であり、したがっ
て、本発明の適用を推奨すべきTiAlの代表組成は、
次の組成をもつものである。 1)Al:31〜35%を含有し、実質的に残部がTi
からなるTiAl。 2)1)のTiAlの組成に加えて、Cr、Mn、Vの
中から、1種または1種以上を合計で0.2〜4.0%
を含むTiAl。 3)1)または2)のTiAlの組成に加え、Nb、T
a、W,Reの中から、1種または1種以上を合計で
0.2〜10.0%を含むTiAl。 4)1)ないし3)のTiAlの組成に加えて、Si:
0.01〜1.00%を含むTiAl。 5)1)ないし4)のTiAlの組成に加えて、Zr:
<1.0%、Fe:<1.0%、C:<0.2%、O:
<0.2%、N:<0.2%にしたことを特徴とするT
iAl。
The present invention can be applied to any turbine impeller made of TiAl.
Because it is a component that rotates at high speed, it is necessary to have excellent high-temperature strength and ductility, and also to have excellent oxidation resistance. Therefore, the typical composition of TiAl for which application of the present invention is recommended is:
It has the following composition. 1) Al: contains 31 to 35%, with the balance being substantially Ti
TiAl consisting of 2) In addition to the composition of TiAl of 1), one or more of Cr, Mn, and V are 0.2 to 4.0% in total.
Containing TiAl. 3) In addition to the composition of TiAl of 1) or 2), Nb, T
a, Ti, Al containing one or more of 0.2 to 10.0% in total from W, Re. 4) In addition to the composition of TiAl of 1) to 3), Si:
TiAl containing 0.01-1.00%. 5) In addition to the composition of TiAl of 1) to 4), Zr:
<1.0%, Fe: <1.0%, C: <0.2%, O:
<0.2%, N: <0.2% T
iAl.

【0014】以下に、本発明について具体的に図を参照
して説明する。本発明は、TiAl製タービン羽根車と
シャフトとの高周波ろう付けしたTiAl製タービンロ
ーターの製造方法において、被接合面が平面の場合、T
iAl製タービン羽根車とシャフトとの軸中心がずれる
という問題と、TiAlの熱伝導が良いため、使用中に
シャフトの温度が上がりすぎるという問題を解決するた
め、TiAl製タービン羽根車とシャフトの被接合面を
それぞれ凹凸にして、はめあいによって軸中心を合わ
せ、また、凹凸部の寸法を変えることによって接合部に
空洞を作り熱伝導を阻害し、シャフトの温度上昇を防止
しようとしたものである。
Hereinafter, the present invention will be described specifically with reference to the drawings. The present invention relates to a method of manufacturing a TiAl turbine rotor in which a TiAl turbine impeller and a shaft are high-frequency brazed, and when the surface to be joined is flat, T
In order to solve the problem that the axial center between the iAl turbine impeller and the shaft is displaced and the problem that the temperature of the shaft rises excessively during use due to the good heat conduction of TiAl, the coating of the TiAl turbine impeller and the shaft is performed. The joint surfaces are made uneven, the centers of the shafts are aligned by fitting, and the dimensions of the uneven portions are changed to form a cavity in the joint portion, thereby inhibiting heat conduction and preventing an increase in the temperature of the shaft.

【0015】図1(a)はTiAl製タービン羽根車の
被接合面a部を凸にし、シャフトの被接合面を凹にした
場合であり、図1(b)はTiAl製タービン羽根車の
被接合面a部を凹にし、シャフトの被接合面b部を凸に
した場合である。このとき、容易にはめあいを行うた
め、凸部の径D2と凹部の穴径D1を、0<D1−D2
≦1mmの範囲にし、すきまばめにするのが望ましく、
これにより接合時にろう材が隙間に入り、接合部面積が
増加し、接合強度の上昇が期待できる。この差が0mm
以下では、シマリバメとなり、はめ合を容易に行うこと
ができない。また、1mm以上になるとTiAl製ター
ビン羽根車とシャフトとの軸心のずれが大きくなり、本
発明の趣旨に反する。
FIG. 1A shows a case where the surface to be joined of the TiAl turbine impeller is convex and the surface to be joined of the shaft is concave, and FIG. 1B is a case where the surface of the TiAl turbine impeller is concave. This is the case where the joint surface a is concave and the joint surface b of the shaft is convex. At this time, in order to easily perform the fitting, the diameter D2 of the convex portion and the hole diameter D1 of the concave portion are set to 0 <D1-D2.
≤ 1 mm, preferably a loose fit,
As a result, the brazing material enters the gap at the time of joining, the area of the joining portion increases, and an increase in joining strength can be expected. This difference is 0mm
In the following, shrinkage occurs, and the fitting cannot be performed easily. On the other hand, if it is 1 mm or more, the deviation of the axis between the TiAl turbine impeller and the shaft increases, which is contrary to the spirit of the present invention.

【0016】また、シャフトの外径D0と凹部の穴径D
1とがD1/D0≦0.8であれば接合部の面積が
十分取れ強度の確保が行えるが、D1/D0>0.
8であると接合部の面積が小さく強度が低下し、実用に
耐えない。
The outer diameter D0 of the shaft and the hole diameter D of the concave portion
1 and D1 2 / D0 2 ≦ 0.8, the area of the joint portion can be sufficiently secured and the strength can be secured, but D1 2 / D0 2 > 0.
If it is 8, the area of the joining portion is small, the strength is reduced, and it is not practical.

【0017】また、凹部の深さH1と凸部の高さ寸法H
1を0<H1−H2≦15mmにすることにより、図2
に示すように接合部に空洞を作ることが可能である。熱
の伝導は、気体に比べ金属の方が著しく大きいため、空
洞を作ることによりTiAl製タービン羽根車からシャ
フトへの熱伝導が小さくなり、シャフトの温度上昇を阻
止することが可能である。このとき、凸部および凹部穴
底面の形状は平面である必要は無く、例えば凹部は図2
(b)に示すようにドリル穴のように円錐状であっても
良い。
Further, the depth H1 of the concave portion and the height dimension H of the convex portion are set.
By setting 1 to 0 <H1-H2 ≦ 15 mm, FIG.
It is possible to create a cavity at the junction as shown in FIG. Since heat conduction of metal is remarkably higher than that of gas, heat conduction from the TiAl turbine impeller to the shaft is reduced by forming a cavity, and it is possible to prevent a rise in the temperature of the shaft. At this time, the shape of the bottom surface of the convex portion and the concave portion does not need to be flat.
As shown in (b), it may be conical like a drill hole.

【0018】接合時には、図3に示すようにシャフトの
一端に荷重をかけ、接合界面に圧力を負荷することによ
り、高周波ろう付け時にろう材と被接合材の界面の濡れ
性が良くなり、未接合部の生成による接合強度の低下を
防止することが可能であるばかりでなく、はめ合を行う
空間にもろうが回り、実質的に接合面積が増加し強度の
上昇をもたらす。特に0.01kgf/mm以上の圧
力を負荷することにより、濡れ性は良くなるが、接合面
の表面荒さが大きい場合には、圧力を高くすることが望
ましい。
At the time of joining, as shown in FIG. 3, a load is applied to one end of the shaft and a pressure is applied to the joining interface, so that the wettability of the interface between the brazing material and the material to be joined is improved during high-frequency brazing. Not only is it possible to prevent a decrease in the joining strength due to the formation of the joining portion, but also the wax goes around the space where the fitting is performed, which substantially increases the joining area and increases the strength. In particular, when a pressure of 0.01 kgf / mm 2 or more is applied, the wettability improves, but when the surface roughness of the joint surface is large, it is desirable to increase the pressure.

【0019】しかし、接合温度においてシャフトおよび
ローター羽根車の降伏応力以上になると、接合部に塑性
変形が生じるため、それぞれの降伏応力以下の圧力にす
る必要が有る。また、ろう付けはろう材の液相線温度以
上で可能であるが、温度が高くなると被接合材とろう材
とが反応し、接合界面に化合物を生成して、接合強度が
低下するため、ろう材の液相線温度以上+100℃以下
にする必要が有る。このとき、ろう材としては、Ag、
Cu、NiあるいはTiを主成分とするろう材を用いる
ことが可能であり、箔状および粉末状のいずれであって
もよい。
However, if the welding temperature exceeds the yield stress of the shaft and the rotor impeller, plastic deformation occurs at the joint, so that the pressure needs to be equal to or less than the respective yield stress. In addition, brazing can be performed at a temperature equal to or higher than the liquidus temperature of the brazing material.However, when the temperature increases, the material to be joined and the brazing material react with each other to generate a compound at the joining interface, and the joining strength decreases. It is necessary that the temperature be equal to or higher than the liquidus temperature of the brazing material and equal to or lower than + 100 ° C. At this time, Ag,
It is possible to use a brazing material containing Cu, Ni or Ti as a main component, and it may be in the form of a foil or powder.

【0020】さらに、加熱中のろう材および被接合面の
酸化によるろう材の濡れ性悪化による未接合部の増加は
接合強度の低下をもたらすため、TiAl製タービン羽
根車およびシャフトを耐熱ガラス等で覆い、耐熱ガラス
とこれらの間に不活性ガスあるいは還元性ガスを流し、
酸化を防止した。特に、ろう材に活性金属を含む場合に
は、還元性ガス(例えば水素を5%含むHeガス)を流
すのが望ましい。
Furthermore, since the increase in the unwelded portion due to the deterioration of the wettability of the brazing material during heating and the brazing material due to oxidation of the surface to be joined causes a decrease in bonding strength, the TiAl turbine impeller and shaft are made of heat-resistant glass or the like. Cover, flowing an inert gas or reducing gas between the heat-resistant glass and these,
Oxidation was prevented. In particular, when the brazing material contains an active metal, it is desirable to flow a reducing gas (for example, a He gas containing 5% of hydrogen).

【0021】以上のような方法によって、ろう付けの時
間の調査を行った結果、30秒で十分な接合強度が得ら
ることが判明し、直径17mmのシャフトの場合、加熱
開始からの時間を含め接合終了まで、約90秒という短
時間で接合が可能となった。
Investigation of the brazing time by the above-described method revealed that sufficient bonding strength was obtained in 30 seconds. In the case of a shaft having a diameter of 17 mm, the time from the start of heating was reduced. The bonding was completed in a short time of about 90 seconds until the bonding was completed.

【0022】また接合後、シャフトの調質を行うため、
焼き入れ・焼き戻しを行う場合には、シャフトの焼き入
れ時に接合界面が再溶融およびこれに伴う劣化が起こら
ないように、用いるろう材とシャフトとの組み合わせに
おいて、ろう材の液相線温度が、シャフトのオーステナ
イト化温度以上であることが必要である。実際には、接
合後の接合部のろう材は接合中に被接合部からの他元素
の拡散によって、液相線温度がろう材そのものの液相線
温度より若干高くなっているため、ろう材の液相線温度
が、シャフトのオーステナイト化温度と同じ場合の組み
合わせであっても適用可能である。
After the joining, the shaft is reconditioned to
When performing quenching and tempering, the liquidus temperature of the brazing filler metal in the combination of the brazing filler metal and the shaft used should be set so that the joint interface does not re-melt and deteriorate due to quenching of the shaft. The temperature must be equal to or higher than the austenitizing temperature of the shaft. In practice, the brazing material at the joint after joining has a liquidus temperature slightly higher than the liquidus temperature of the brazing material itself due to the diffusion of other elements from the joined part during joining. Is applicable even if the liquidus temperature is the same as the austenitizing temperature of the shaft.

【0023】また、ろう付けと同時にシャフトの焼き入
れを行うためには、図4に示すようにシャフト全体を高
周波加熱によって加熱し、ろう付け後、耐熱ガラスのノ
ズルよりArおよびHeガスなどの冷却ガスあるいは水
などの冷却液をシャフトに吹きつけ急冷することによっ
て可能である。
In order to harden the shaft simultaneously with brazing, as shown in FIG. 4, the entire shaft is heated by high-frequency heating, and after brazing, cooling of Ar and He gas or the like from a heat-resistant glass nozzle. This is possible by spraying a cooling liquid such as gas or water onto the shaft to rapidly cool the shaft.

【0024】本発明に用いるTiAl製タービン羽根車
は、精密鋳造あるいは高温鍛造のいずれの方法によって
製造されてもよい。さらに、TiAl製タービン羽根車
は1200℃〜1350℃の範囲での熱処理によって延
性を改善することが可能で、精密鋳造材については、1
200℃〜1350℃の範囲で、1000kgf/cm
以上の圧力でHIP熱処理を加えることにより、内部
の鋳造欠陥を無くし、信頼性を向上させるとともに、強
度および延性を改善することが可能である。
The TiAl turbine impeller used in the present invention may be manufactured by either precision casting or high-temperature forging. Furthermore, the ductility of a TiAl turbine impeller can be improved by heat treatment in the range of 1200 ° C to 1350 ° C.
1000 kgf / cm in the range of 200 ° C to 1350 ° C
By applying the HIP heat treatment at a pressure of 2 or more, it is possible to eliminate internal casting defects, improve reliability, and improve strength and ductility.

【0025】[0025]

【作用】以下に本発明に関わるTiAl製タービン羽根
車の組成を限定した理由を示す。 Al:31〜35% AlはTiと結合して金属間化合物TiAlならびにT
Alを生成する元素である。TiAlおよびTi
Alの単相はいずれも脆く、強度が低い化合物である
が、Alが31〜35%の範囲になると、TiAl相中
にTiAlが体積率で5〜30%を含まれるようにな
り、2相状態になって延性および強度が高くなる。しか
しながら、Alが31%以下になってTiAlが多く
なり、あるいは、Alが35%以上になってTiAl
が少なくなると、強度および延性が著しく低下する。
The reasons for limiting the composition of the TiAl turbine impeller according to the present invention will be described below. Al: 31-35% Al combines with Ti to form intermetallic compounds TiAl and T
It is an element that produces i 3 Al. TiAl and Ti 3
Al single phase are brittle either, but strength is low compound, the Al is in the range of 31-35%, is as Ti 3 Al are included a 5-30% by volume in TiAl phase, A two-phase state results in increased ductility and strength. However, when Al becomes 31% or less, Ti 3 Al increases, or when Al becomes 35% or more, Ti 3 Al
Decreases, the strength and ductility decrease significantly.

【0026】Cr、Mn、Vの1種および2種以上の合
計:0.2〜4.0% Cr、Mn、VはいずれもTiAlの延性を改善する元
素である。これらの元素が延性改善効果を示すのは、こ
れらの元素の1種あるいは2種以上の合計が0.2%以
上であり、4%を超えると耐酸化性が著しく劣化すると
ともに、β相の生成が起こり、高温強度が低下するとい
う不都合がある。
One, two or more of Cr, Mn, and V: 0.2 to 4.0% Cr, Mn, and V are all elements that improve the ductility of TiAl. The reason why these elements show the ductility improving effect is that the total of one or more of these elements is 0.2% or more, and if it exceeds 4%, the oxidation resistance is remarkably deteriorated and the β phase There is an inconvenience that formation occurs and the high-temperature strength decreases.

【0027】Nb、Ta、W、Reの1種および2種以
上の合計 :0.2〜10.0% Nb、Ta、W、ReはTiAlの耐酸化性を改善する
元素である。これらの元素が耐酸化性改善効果を示すの
は、これらの元素の1種あるいは2種以上の合計が0.
2%以上であり、10%を超えると延性が低下するとと
もに、TiAlの密度が高くなって、TiAlの低密度
であるという特徴が失われるという不都合がある。
[0027] Nb, Ta, W, and Re: one or more of the total of 0.2 to 10.0% Nb, Ta, W, and Re are elements that improve the oxidation resistance of TiAl. These elements show the effect of improving oxidation resistance only when one or a combination of two or more of these elements has a resistance to oxidation.
If it is 2% or more, and if it exceeds 10%, the ductility is reduced, and the density of TiAl is increased, so that the characteristics of TiAl having a low density are disadvantageously lost.

【0028】Si:0.01〜1.00% Siは、Tiと反応しそれぞれ珪化物(TiSi
を生成し、TiAlのクリープ特性を改善するするばか
りでなく、耐酸化性を改善する元素である。これらの効
果が表れるのは、0.01%以上であり、1.00%を
超えて添加すると延性が低下する。
Si: 0.01% to 1.00% Si reacts with Ti to form a silicide (Ti 5 Si 3 ).
Is an element that not only improves the creep characteristics of TiAl, but also improves the oxidation resistance. These effects are exhibited at 0.01% or more, and when added in excess of 1.00%, the ductility decreases.

【0029】Zr:<1.0%、Fe:<1.0%、
C:<0.2%、O:<0.2%、N:<0.2% Zr、Fe、C、O、およびNは、TiAl製ローター
羽根車の精密鋳造の工程および原料から混入する不純物
元素でり、これらが多量に混入すると、TiAlの延性
が著しく低下する。そこで、これらの元素の上限値をそ
れぞれ、1.0%、1.0%、0.2%、0.2%およ
び0.2%とした。
Zr: <1.0%, Fe: <1.0%,
C: <0.2%, O: <0.2%, N: <0.2% Zr, Fe, C, O, and N are mixed in from the precision casting process and raw materials of the TiAl rotor impeller. It is an impurity element, and when these are mixed in a large amount, the ductility of TiAl is significantly reduced. Therefore, the upper limits of these elements are set to 1.0%, 1.0%, 0.2%, 0.2% and 0.2%, respectively.

【0030】[0030]

【実施例】【Example】

実施例1 表1に接合部の形状を変化させて接合を行ったタービン
ローターのTiAl製タービン羽根車の軸芯とシャフト
の軸芯のずれを示したものである。このとき、TiAl
製タービン羽根車には直径52mmのTi−33.5A
l−4.8Nb−1.0Cr−0.2Si(wt%)の
組成を有する精密鋳造材を用い、シャフト材には外径D
0=17mm、長さ110mmのJISG4103に規
定の構造用鋼のニッケル−クロム−モリブデン鋼SNC
M439を用いた。ろう材には、厚さ50μmのAg−
35.3Cu−1.7Ti(wt%)の組成を有する銀
ろう箔を用いた。
Example 1 Table 1 shows the misalignment between the axis of a TiAl turbine impeller and the axis of a shaft of a turbine rotor joined by changing the shape of the joint. At this time, TiAl
52-3mm Ti-33.5A made of turbine impeller
1-4.8Nb-1.0Cr-0.2Si (wt%) using a precision cast material with a shaft material having an outer diameter D
0 = 17 mm, length 110 mm nickel-chromium-molybdenum steel SNC for structural steel specified in JIS G4103
M439 was used. For the brazing material, Ag-
A silver brazing foil having a composition of 35.3Cu-1.7Ti (wt%) was used.

【0031】接合は、図3に示すように高周波加熱を行
い接合した。まず、接合界面にろう材dを挿入し、シャ
フト上部を加圧し、接合界面に0.5kgf/mm
圧力を負荷した。ろう材は0.05mmの箔状のものを
用いた。さらに、接合部を不活性雰囲気にするため、被
接合材の周囲を耐熱ガラスで覆い、被接合材と耐熱ガラ
スとの間にArガスを流し、大気とのシールを行った。
高周波誘導加熱は耐熱ガラスの外側に加熱コイルを置
き、850℃まで加熱し、温度が一定になってから30
秒間保持後、電源を切り冷却を行った。
The joining was performed by high-frequency heating as shown in FIG. First, the brazing material d was inserted into the joint interface, the upper part of the shaft was pressurized, and a pressure of 0.5 kgf / mm 2 was applied to the joint interface. The brazing material used was a foil having a thickness of 0.05 mm. Further, in order to make the joining portion an inert atmosphere, the periphery of the material to be joined was covered with heat-resistant glass, and Ar gas was flowed between the material to be joined and the heat-resistant glass to seal the atmosphere.
In the high frequency induction heating, a heating coil is placed outside the heat-resistant glass and heated to 850 ° C.
After holding for 2 seconds, the power was turned off and cooling was performed.

【0032】接合後、TiAl製タービン羽根車のシャ
フト芯とシャフトの軸芯のずれを図5に示すように、シ
ャフトを固定して回転させ、タービン羽根車の最外径の
変化の最大値を芯の振れとした。芯の振れはそれぞれ3
個づつ試験を行った平均で表した。また、測定後600
℃x30min、ACの焼き戻し熱処理を行い接合部の
捩り試験を行った。この結果、本発明の接合面を凹凸に
してはめあわせ接合を行ったタービンローターの軸の振
れは、比較例1の接合部を平面にして接合した場合に比
べ、軸芯の振れが著しく小さいことがわかる。また、D
/D0>0.8の比較例3のローターは、接合面
の面積が小さいため十分な捩り破断トルクが得られなか
った。さらに、比較例2のローターはD1−D2>1.
0mmであり、凹凸部のはめ合い隙間が大きく、接合部
が平面の場合と同様に芯の振れが大きいのがわかる。
After the joining, the shaft center of the TiAl turbine impeller and the axis of the shaft are displaced as shown in FIG. 5, the shaft is fixed and rotated, and the maximum value of the change in the outermost diameter of the turbine impeller is determined. The run-out of the core. Core runout is 3 each
It was expressed as the average of individual tests. Also, after measurement
A tempering heat treatment of AC was performed at 30 ° C. for 30 minutes to perform a torsion test of the joint. As a result, the run-out of the shaft of the turbine rotor of the present invention in which the joining surface was made uneven and fitted and joined was significantly smaller than that of the comparative example 1 in which the joining portion was flat and joined. I understand. Also, D
In the rotor of Comparative Example 3 in which 1 2 / D0 0 > 0.8, a sufficient torsional rupture torque could not be obtained because the area of the joint surface was small. Further, the rotor of Comparative Example 2 has D1-D2> 1.
It is 0 mm, and it can be seen that the fitting gap between the concave and convex portions is large, and the runout of the core is large as in the case where the joint is flat.

【表1】 [Table 1]

【0033】実施例2 表2に接合を実施したろう材、シャフトおよびTiAl
製タービン羽根車の組み合わせを示す。シャフト材には
実施例1で用いたSNCM439と、JISG4311
に規定のマルテにンサイト系耐熱鋼SUH11を用い
た。これらを、実施例1と同様に高周波加熱によって、
精密鋳造で製造した直径52mmのTiAl製タービン
羽根車と、外径D0=17mm、長さ110mmに加工
したシャフト材との接合を行った。接合部は、シャフト
材が凹で、D1=8mm、H1=6mmにし、TiAl
羽根車は凸で、D2=7.9mm、H2=1mmにし
た。
Example 2 Table 2 shows the brazing filler metal, shaft and TiAl
1 shows a combination of turbine impellers. For the shaft material, SNCM439 used in Example 1 and JISG4311
A heat resistant steel SUH11 was used for the specified marte. These were subjected to high-frequency heating in the same manner as in Example 1,
A 52 mm diameter TiAl turbine impeller manufactured by precision casting and a shaft material processed to an outer diameter D0 of 17 mm and a length of 110 mm were joined. At the joint, the shaft material is concave, D1 = 8 mm, H1 = 6 mm, and TiAl
The impeller was convex, with D2 = 7.9 mm and H2 = 1 mm.

【0034】さらに、ろう材にはJISZ3261に規
定の銀ろうであBAg−7および13Aと、Ag−3
5.3Cu−1.7Ti(wt%)の組成を有する銀ろ
うAを、また、JISZ3265に規定のニッケルろう
であるBNi−3と、Cu−10Co−31.5Mn
(wt%)の組成を有する銅ろうBと、Ti−15Ni
−15Cu(wt%)の組成を有するチタンろうCを用
いた。ろう材はいずれも厚さ0.05mmの箔状のもの
を用いた。このとき、接合部の圧力はに0.5kgf/
mmで、接合部はろう材の液相線温度+50℃の温度
まで加熱し、温度が一定になってから30秒間保持後、
電源を切り冷却を行った。
Further, the brazing materials include silver brazes specified in JISZ3261 such as BAg-7 and 13A, and Ag-3.
A silver braze A having a composition of 5.3Cu-1.7Ti (wt%), a nickel braze BNi-3 specified in JISZ3265, and Cu-10Co-31.5Mn
(Wt%) of copper braze B and Ti-15Ni
Titanium brazing alloy C having a composition of −15 Cu (wt%) was used. The brazing material used was a foil having a thickness of 0.05 mm. At this time, the pressure at the joint is 0.5 kgf /
mm 2 , the joint is heated to the temperature of the liquidus temperature of the brazing material + 50 ° C. and, after the temperature has become constant, held for 30 seconds,
The power was turned off and cooling was performed.

【0035】接合したタービンローターは、接合ままの
状態と、表2に示す各条件でそれぞれ焼き入れ・焼き戻
しを行い、接合部を直径16mmに機械加工し、捩り試
験を室温で実施した。焼き入れ・焼き戻しはJISG4
103および4311の指定範囲で実施した。本発明の
タービンローターは、接合後および焼き入れ・焼き戻し
後、いずれも10kgf・m以上の捩り破断トルクを有
し、タービンローターシャフトの接合強度として十分な
強度を示した。
The joined turbine rotors were quenched and tempered under the condition as they were and under the respective conditions shown in Table 2, the joint was machined to a diameter of 16 mm, and the torsional test was performed at room temperature. Hardening / tempering is JISG4
The test was performed in the designated ranges of 103 and 4311. The turbine rotor of the present invention had a torsional rupture torque of 10 kgf · m or more after joining and quenching / tempering, and showed sufficient strength as the joining strength of the turbine rotor shaft.

【0036】しかし、比較例1〜3のローターは、焼き
入れ・焼き戻しを行ったものの内、ろう材の液相線温度
がシャフトのオーステナイト化温度より低いため、熱処
理後の強度が熱処理前に比べ著しく低下する結果とな
り、タービンローターとして十分な強度を示さなかっ
た。
However, since the rotors of Comparative Examples 1 to 3 were quenched and tempered, the liquidus temperature of the brazing material was lower than the austenitizing temperature of the shaft. As a result, the strength was remarkably reduced, and did not show sufficient strength as a turbine rotor.

【表2】 [Table 2]

【0037】実施例3 シャフトの接合と焼き入れを同時に行うため、シャフト
全体を高周波誘導によって加熱し、ろう付けと同時に焼
き入れを行った。用いたTiAl製タービン羽根車、シ
ャフト材、ろう材、接合部形状および接合条件は実施例
2の本発明5の場合と同じである。ただし、加熱・保持
完了時に耐熱ガラスとシャフトとの間にシールドガスと
して流していたArガスに代わり耐熱ガラスの冷却ガス
吹き出しノズルから、高圧Arガスをシャフトに吹きつ
けシャフトを急冷し、焼き入れを行った。接合を行った
ローターは、室温で接合部の捩り試験を行うとともに、
シャフトの硬さを測定した。室温の捩り破断トルクは、
13.7kgf・mと十分な強度を示し、シャフトの表
層硬さはHRC55と十分な焼き入れ硬さを示し、ろう
付けと同時に焼き入れを行うことが可能であった。
Example 3 In order to perform the joining and quenching of the shaft at the same time, the entire shaft was heated by high-frequency induction and quenched at the same time as brazing. The used TiAl turbine impeller, shaft material, brazing material, joint shape and joining conditions are the same as those of the fifth embodiment of the present invention. However, instead of Ar gas flowing as a shielding gas between the heat-resistant glass and the shaft when heating and holding are completed, high-pressure Ar gas is blown from the heat-resistant glass cooling gas blowing nozzle to the shaft to rapidly cool the shaft and harden. went. The joined rotor performs a torsional test of the joint at room temperature,
The hardness of the shaft was measured. The torsional breaking torque at room temperature is
The shaft showed sufficient strength of 13.7 kgf · m, and the surface hardness of the shaft showed sufficient hardening hardness with HRC55, and it was possible to perform hardening simultaneously with brazing.

【0038】実施例4 実施例1の接合部に空洞を有する本発明3に示したロー
ターと、実施例1の接合部が平面で空洞を持たない比較
例1のローターを用いて接合部外径D0=15mmの最
終形状のローターに機械加工し、軸受け部を高周波焼き
入れしてターボチャジャーを試作した。エンジン試験は
ディーゼルエンジンを用いてエンジン回転数4000r
pmで100hrの耐久試験を実施した。その結果、比
較例1の空洞を有さないローターの軸受け部は、一部変
色し温度が上がったことを示したが、本発明の空洞を有
するローターの軸受け部には変色は認められず、空洞を
有さないローターに比べ温度が上がっていないことが確
認された。
Example 4 The outer diameter of the joint was obtained by using the rotor of Example 3 having a cavity in the joint of Example 1 and the rotor of Comparative Example 1 in which the joint in Example 1 was flat and had no cavity. The rotor was machined into a rotor having a final shape of D0 = 15 mm, and the bearing was induction hardened to produce a prototype turbocharger. The engine test uses a diesel engine and the engine speed is 4000r.
A 100 hr durability test was performed at pm. As a result, the bearing portion of the rotor having no cavity in Comparative Example 1 was partially discolored, indicating that the temperature increased, but no discoloration was observed in the bearing portion of the rotor having the cavity of the present invention, It was confirmed that the temperature was not increased as compared with the rotor having no cavity.

【0039】[0039]

【発明の効果】本発明によれば、耐熱性に優れたTiA
lローター羽根車と構造用鋼あるいは耐熱鋼のシャフト
の軸を精度良く合わせ、かつシャフトとローター羽根車
の接合強度が高いTiAl製タービンローターの製造方
法を提供することが可能である。
According to the present invention, TiO having excellent heat resistance can be obtained.
It is possible to provide a method for manufacturing a TiAl turbine rotor in which the rotor impeller and the shaft of the structural steel or heat-resistant steel are precisely aligned with each other, and the joint strength between the shaft and the rotor impeller is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の接合部の構造を示す説明図である。FIG. 1 is an explanatory view showing the structure of a joint according to the present invention.

【図2】本発明の接合部に空洞を有するの構造を示す説
明図である。
FIG. 2 is an explanatory view showing a structure of the present invention having a cavity at a joint.

【図3】本発明における接合の方法を示す説明図であ
る。
FIG. 3 is an explanatory view showing a joining method according to the present invention.

【図4】本発明におけるシャフトの焼き入れと接合を同
時に行うことを示す説明図である。
FIG. 4 is an explanatory view showing that quenching and joining of a shaft are simultaneously performed in the present invention.

【図5】実施例1におけるTiAl製タービン羽根車の
軸芯とシャフトの軸芯のずれを測定する方法を示す説明
図である。
FIG. 5 is an explanatory diagram showing a method for measuring a deviation between the axis of the TiAl turbine impeller and the axis of the shaft in the first embodiment.

【符号の説明】[Explanation of symbols]

a TiAl製タービン羽根車 b シャフト C 接合部 d ろう材 D0 シャフトの外径 D1 凹部の内径 D2 凸部の外径 H1 凹部の深さ H2 凸部の高さ e 高周波加熱コイル f 耐熱ガラス g TiAl製タービン羽根車支え台 h Arガス i 冷却ガスおよび冷却液吹きつけノズル j 荷重 k 空洞 l ローター支持台 a Turbine impeller made of TiAl b Shaft C joint d Brazing material D0 Outer diameter of shaft D1 Inner diameter of concave part D2 Outer diameter of convex part H1 Depth of concave part H2 Height of convex part e High-frequency heating coil f Heat resistant glass g TiAl Turbine impeller support h Ar gas i Coolant gas and coolant spray nozzle j Load k Cavity l Rotor support

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B23K 35/24 310 B23K 35/24 310 C21D 1/76 C21D 1/76 E 9/28 9/28 A 9/50 101 9/50 101Z C22C 14/00 C22C 14/00 Z F01D 5/02 F01D 5/02 5/28 5/28 H05B 6/10 331 H05B 6/10 331 // B23K 103:18 103:24 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B23K 35/24 310 B23K 35/24 310 C21D 1/76 C21D 1/76 E 9/28 9/28 A 9/50 101 9 / 50 101Z C22C 14/00 C22C 14/00 Z F01D 5/02 F01D 5/02 5/28 5/28 H05B 6/10 331 H05B 6/10 331 // B23K 103: 18 103: 24

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 精密鋳造によって製造されたTiAl製
タービン羽根車と構造用鋼あるいはマルテンサイト系耐
熱鋼からなるローターシャフトとを、図1(a)に示す
ように、TiAl製タービン羽根車の被接合部aを凸に
し、シャフトの被接合部bを凹にして、これらの間にろ
う材dを挿入し、TiAl製タービン羽根車の凸部とシ
ャフト部の凹部をはめ合わせ、ろう材と被接合材との界
面に0.01kgf/mm以上でかつ接合温度におい
てシャフトおよびローター羽根車の降伏応力以下の圧力
を負荷し、不活性ガスあるいは還元性ガス雰囲気中で、
高周波誘導加熱によって接合界面部をろう材の液相線温
度以上でかつ液相線温度+100℃以内に加熱、保持し
つつろう付けを行ったことを特徴とするTiAl製ター
ビンローターの製造方法。
1. A TiAl turbine impeller manufactured by precision casting and a rotor shaft made of structural steel or martensitic heat-resistant steel are attached to a TiAl turbine impeller as shown in FIG. 1 (a). The joining part a is made convex, the joint part b of the shaft is made concave, a brazing material d is inserted between them, the convex part of the TiAl turbine impeller and the concave part of the shaft part are fitted, and the brazing material is covered with the brazing material. A pressure of 0.01 kgf / mm 2 or more and a joining stress of not more than the yield stress of the shaft and the rotor impeller is applied to the interface with the joining material, and in an inert gas or reducing gas atmosphere,
A method of manufacturing a turbine rotor made of TiAl, wherein brazing is performed while heating and holding a joining interface portion at a temperature equal to or higher than the liquidus temperature of the brazing material and within the liquidus temperature + 100 ° C by high-frequency induction heating.
【請求項2】 精密鋳造によって製造されたTiAl製
タービン羽根車と構造用鋼あるいはマルテンサイト系耐
熱鋼からなるローターシャフトとを、図1(b)に示す
ように、TiAl製タービン羽根車の被接合部aを凹に
し、シャフトの被接合部bを凸にして、これらの間にろ
う材dを挿入し、TiAl製タービン羽根車の凹部とシ
ャフト部の凸部をはめ合わせ、ろう材と被接合材との界
面に0.01kgf/mm以上でかつ接合温度におい
てシャフトおよびローター羽根車の降伏応力以下の圧力
を負荷し、不活性ガスあるいは還元性ガス雰囲気中で、
高周波誘導加熱によって接合界面部をろう材の液相線温
度以上でかつ液相線温度+100℃以内に加熱、保持し
つつろう付けを行ったことを特徴とするTiAl製ター
ビンローターの製造方法。
2. A TiAl turbine impeller manufactured by precision casting and a rotor shaft made of structural steel or martensitic heat-resistant steel are mounted on a TiAl turbine impeller as shown in FIG. 1 (b). The joint part a is made concave, the joint part b of the shaft is made convex, and a brazing material d is inserted between them. The concave part of the turbine blade made of TiAl and the convex part of the shaft part are fitted to each other. A pressure of 0.01 kgf / mm 2 or more and a joining stress of not more than the yield stress of the shaft and the rotor impeller is applied to the interface with the joining material, and in an inert gas or reducing gas atmosphere,
A method of manufacturing a turbine rotor made of TiAl, wherein brazing is performed while heating and holding a joining interface portion at a temperature equal to or higher than the liquidus temperature of the brazing material and within the liquidus temperature + 100 ° C by high-frequency induction heating.
【請求項3】 請求項1または2項に記載のTiAl製
タービンローターの製造方法において、前記凸部の外径
D2と前記凹部の内径D1とが、0mm<D1−D2≦
1mmであり、かつ接合部の外径D0と凹部の内径D1
とが、D1/D0≦0.8であることを特徴とする
TiAl製タービンローターの製造方法。
3. The method for manufacturing a TiAl turbine rotor according to claim 1, wherein an outer diameter D2 of the convex portion and an inner diameter D1 of the concave portion are 0 mm <D1-D2 ≦.
1 mm, and the outer diameter D0 of the joint portion and the inner diameter D1 of the concave portion
Wherein D1 2 / D0 2 ≦ 0.8.
【請求項4】 請求項1ないし3項に記載のTiAl製
タービンローターの製造方法において、凹部の深さH1
と凸部の高さH2とが、0mm<H1−H2≦15mm
であり、接合界面に空洞を作ったことを特徴とするTi
Al製タービンローターの製造方法。
4. The method of manufacturing a turbine rotor made of TiAl according to claim 1, wherein the depth H1
And the height H2 of the projection is 0 mm <H1-H2 ≦ 15 mm
Wherein a cavity is formed at the joint interface.
A method for manufacturing an Al turbine rotor.
【請求項5】 請求項1ないし4項に記載のTiAl製
タービンローターの製造方法において、接合に用いるろ
う材にAg、Ni、CuあるいはTiを主成分とするろ
う材を用いたことを特徴とするTiAl製タービンロー
ターの製造方法。
5. The method for manufacturing a turbine rotor made of TiAl according to claim 1, wherein a brazing material mainly composed of Ag, Ni, Cu or Ti is used as a brazing material used for joining. Of manufacturing a TiAl turbine rotor.
【請求項6】 請求項1ないし5項に記載のTiAl製
タービンローターの製造方法において、用いるろう材と
シャフトとの組み合わせにおいて、ろう材の液相線温度
が、シャフトのオーステナイト化温度以上であることを
特徴とするTiAl製タービンローターの製造方法。
6. The method for producing a TiAl turbine rotor according to claim 1, wherein a liquidus temperature of the brazing material is equal to or higher than an austenitizing temperature of the shaft in a combination of the brazing material and the shaft used. A method of manufacturing a turbine rotor made of TiAl.
【請求項7】 請求項1ないし6項に記載のTiAl製
タービンローターの製造方法において、シャフト全体を
高周波誘導加熱によってオーステナイト化温度以上に加
熱し、ろう付け後、冷却ガスあるいは冷却液をシャフト
に吹きつけ急冷することによって、ろう付けとシャフト
の焼き入れを同時に行ったことを特徴とするTiAl製
タービンローターの製造方法。
7. The method for manufacturing a turbine rotor made of TiAl according to claim 1, wherein the entire shaft is heated to an austenitizing temperature or higher by high-frequency induction heating, and after brazing, a cooling gas or a cooling liquid is applied to the shaft. A method of manufacturing a turbine rotor made of TiAl, wherein brazing and quenching of a shaft are simultaneously performed by spraying and rapid cooling.
【請求項8】 請求項1ないし7項記載のTiAl製タ
ービンローターの製造方法において、TiAl製タービ
ン羽根車の組成が、重量%で Al:31〜35%を含
有し実質的に残部がTiからなることを特徴とするTi
Al製タービンローターの製造方法。
8. A method for manufacturing a turbine rotor made of TiAl according to claim 1, wherein the composition of the turbine impeller made of TiAl contains 31 to 35% by weight of Al and substantially the balance is made of Ti. Ti characterized by becoming
A method for manufacturing an Al turbine rotor.
【請求項9】 請求項8記載のTiAl製タービンロー
ターの製造方法におけるTiAl製タービン羽根車の組
成が、Cr、Mn、Vの内、1種あるいは2種以上を合
計で0.2〜4.0重量%を含むことを特徴とするTi
Al製タービンローターの製造方法。
9. The method of manufacturing a TiAl turbine rotor according to claim 8, wherein the composition of the TiAl turbine impeller is one or more of Cr, Mn, and V in a total of 0.2 to 4. 0% by weight of Ti
A method for manufacturing an Al turbine rotor.
【請求項10】 請求項8ないし9項記載のTiAl製
タービンローターの製造方法におけるTiAl製タービ
ン羽根車の組成が、Nb、Ta、W、Reの内、1種ま
たは2種以上を合計で0.2〜10.0重量%を含むこ
とを特徴とするTiAl製タービンローターの製造方
法。
10. The method for manufacturing a TiAl turbine rotor according to claim 8, wherein the composition of the TiAl turbine impeller is Nb, Ta, W, Re, and one or more of Nb, Ta, W, and Re are 0 in total. A method for producing a turbine rotor made of TiAl, characterized in that the turbine rotor comprises 0.1 to 10.0% by weight.
【請求項11】 請求項8ないし10項記載のTiAl
製タービンローターの製造方法におけるTiAl製ター
ビン羽根車の組成が、重量%で、Si:0.01〜1.
00%を含むことを特徴とするTiAl製タービンロー
ターの製造方法。
11. TiAl according to claim 8, wherein
The composition of the TiAl turbine impeller in the method for producing a turbine rotor made of Si is 0.01 to 1.
A method of manufacturing a turbine rotor made of TiAl, characterized in that the turbine rotor comprises 0%.
【請求項12】 請求項8ないし11項記載の接合方法
におけるTiAl製タービンローターの製造方法におけ
るTiAl製タービン羽根車の組成が、重量%で、Z
r:<1.0%、Fe:<1.0%、C:<0.2%、
O:<0.2%、N:<0.2%にしたことを特徴とす
るTiAl製タービンローターの製造方法。
12. The TiAl turbine impeller according to claim 8, wherein the composition of the TiAl turbine impeller in the method for manufacturing a TiAl turbine rotor is Z% by weight.
r: <1.0%, Fe: <1.0%, C: <0.2%,
A method for producing a TiAl turbine rotor, wherein O: <0.2% and N: <0.2%.
JP8359854A 1996-10-18 1996-12-27 Manufacture of titanium-aluminum-made turbine rotor Pending JPH10193087A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8359854A JPH10193087A (en) 1996-12-27 1996-12-27 Manufacture of titanium-aluminum-made turbine rotor
US08/953,249 US6007301A (en) 1996-10-18 1997-10-17 TiAl turbine rotor and method of manufacturing
DE69724730T DE69724730T2 (en) 1996-10-18 1997-10-17 Turbine rotor made of Ti-Al and process for producing this rotor
AT97118046T ATE249571T1 (en) 1996-10-18 1997-10-17 TI-AL TURBINE ROTOR AND METHOD FOR PRODUCING SUCH ROTOR
EP97118046A EP0837221B1 (en) 1996-10-18 1997-10-17 Ti-Al turbine rotor and method of manufacturing said rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8359854A JPH10193087A (en) 1996-12-27 1996-12-27 Manufacture of titanium-aluminum-made turbine rotor

Publications (1)

Publication Number Publication Date
JPH10193087A true JPH10193087A (en) 1998-07-28

Family

ID=18466646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8359854A Pending JPH10193087A (en) 1996-10-18 1996-12-27 Manufacture of titanium-aluminum-made turbine rotor

Country Status (1)

Country Link
JP (1) JPH10193087A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205443A (en) * 2000-01-19 2001-07-31 Daido Steel Co Ltd Method for joining steel to titanium material
WO2006117847A1 (en) * 2005-04-27 2006-11-09 Hitachi, Ltd. Micro gas turbine
JP2010163889A (en) * 2009-01-13 2010-07-29 Ihi Corp Method for repairing low-pressure turbine component made of titanium-aluminum intermetallic compound, and low-pressure turbine part repaired thereby
WO2013125580A1 (en) 2012-02-23 2013-08-29 三菱重工業株式会社 Turbo charger
WO2013129410A1 (en) 2012-02-29 2013-09-06 三菱重工業株式会社 Turbocharger turbine rotor and manufacturing method thereof
WO2014025180A1 (en) * 2012-08-06 2014-02-13 자동차부품연구원 Rotor assembly for turbo charger
WO2015119927A1 (en) * 2014-02-05 2015-08-13 Borgwarner Inc. TiAl ALLOY, IN PARTICULAR FOR TURBOCHARGER APPLICATIONS, TURBOCHARGER COMPONENT, TURBOCHARGER AND METHOD FOR PRODUCING THE TiAl ALLOY
CN105400946A (en) * 2015-10-29 2016-03-16 中国航空工业集团公司北京航空材料研究院 Solid solution technique preventing welding bead of Ti3Al guide vane inner ring from high-temperature cracking after repair welding
US9790577B2 (en) 2013-05-20 2017-10-17 Korea Institute Of Machinery & Materials Ti—Al-based alloy ingot having ductility at room temperature
US9874100B2 (en) 2013-02-22 2018-01-23 Mitsubishi Heavy Industries, Ltd. Turbine rotor and turbocharger having the turbine rotor
US10105778B2 (en) 2011-12-01 2018-10-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Joint part

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205443A (en) * 2000-01-19 2001-07-31 Daido Steel Co Ltd Method for joining steel to titanium material
JP4538878B2 (en) * 2000-01-19 2010-09-08 大同特殊鋼株式会社 Joining method between steel and titanium
WO2006117847A1 (en) * 2005-04-27 2006-11-09 Hitachi, Ltd. Micro gas turbine
JP2010163889A (en) * 2009-01-13 2010-07-29 Ihi Corp Method for repairing low-pressure turbine component made of titanium-aluminum intermetallic compound, and low-pressure turbine part repaired thereby
US10105778B2 (en) 2011-12-01 2018-10-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Joint part
WO2013125580A1 (en) 2012-02-23 2013-08-29 三菱重工業株式会社 Turbo charger
US9556738B2 (en) 2012-02-29 2017-01-31 Mitsubishi Heavy Industries, Ltd. Turbine rotor for supercharger and manufacturing method thereof
WO2013129410A1 (en) 2012-02-29 2013-09-06 三菱重工業株式会社 Turbocharger turbine rotor and manufacturing method thereof
WO2014025180A1 (en) * 2012-08-06 2014-02-13 자동차부품연구원 Rotor assembly for turbo charger
US9874100B2 (en) 2013-02-22 2018-01-23 Mitsubishi Heavy Industries, Ltd. Turbine rotor and turbocharger having the turbine rotor
US9790577B2 (en) 2013-05-20 2017-10-17 Korea Institute Of Machinery & Materials Ti—Al-based alloy ingot having ductility at room temperature
WO2015119927A1 (en) * 2014-02-05 2015-08-13 Borgwarner Inc. TiAl ALLOY, IN PARTICULAR FOR TURBOCHARGER APPLICATIONS, TURBOCHARGER COMPONENT, TURBOCHARGER AND METHOD FOR PRODUCING THE TiAl ALLOY
US10240608B2 (en) 2014-02-05 2019-03-26 Borgwarner Inc. TiAl alloy, in particular for turbocharger applications, turbocharger component, turbocharger and method for producing the TiAl alloy
CN105400946A (en) * 2015-10-29 2016-03-16 中国航空工业集团公司北京航空材料研究院 Solid solution technique preventing welding bead of Ti3Al guide vane inner ring from high-temperature cracking after repair welding
CN105400946B (en) * 2015-10-29 2017-10-27 中国航空工业集团公司北京航空材料研究院 One kind prevents Ti3The solid solution craft that weld seam high temperature ftractures after Al stator inner ring repair weldings

Similar Documents

Publication Publication Date Title
EP0837221B1 (en) Ti-Al turbine rotor and method of manufacturing said rotor
US7287960B2 (en) Titanium aluminide wheel and steel shaft connection thereto
US9815134B2 (en) Impeller brazing method
EP0368642B1 (en) Method of forming a joint between a ti-al alloy member and a steel structural member
JP5318311B2 (en) Brazing method and product produced therefrom
US5431752A (en) Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
EP1717326A2 (en) Ni-based alloy member, method of producing the alloy member, turbine engine part, welding material, and method of producing the welding material
JPS61289973A (en) Method for fixing blade to outer periphery of rotor main body of steam turbine
JPH0248514B2 (en)
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JP3829388B2 (en) TiAl turbine rotor
EP3589760B1 (en) A method for heat treatment of a nickel base alloy alloy 282 joined with an alloy 718
US7108483B2 (en) Composite gas turbine discs for increased performance and reduced cost
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JPH05202706A (en) Engine valve and manufacture thereof
JP3534633B2 (en) Joint member and turbine member
JPH108924A (en) Manufacture of valve for large diesel engine
JP3179928B2 (en) Bonded body, bonded body thereof and ceramics, and methods of manufacturing them
JP2002283030A (en) Member for light alloy injection molding machine
JPH0494889A (en) Ti-al series alloy-made engine valve
JP2619216B2 (en) Combined ceramic and metal
JPH108904A (en) Gas turbine disk, and gas turbine
JPH0515982A (en) Production of double metallic pipe
JPH0658044B2 (en) Turbine rotor and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121