JP2006297474A - JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD - Google Patents

JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD Download PDF

Info

Publication number
JP2006297474A
JP2006297474A JP2005127225A JP2005127225A JP2006297474A JP 2006297474 A JP2006297474 A JP 2006297474A JP 2005127225 A JP2005127225 A JP 2005127225A JP 2005127225 A JP2005127225 A JP 2005127225A JP 2006297474 A JP2006297474 A JP 2006297474A
Authority
JP
Japan
Prior art keywords
alloy
steel
intermediate material
joined body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005127225A
Other languages
Japanese (ja)
Inventor
Koji Horio
浩次 堀尾
Toru Kato
徹 加藤
Motohiko Ogawa
元彦 小川
Yoshihide Kawai
良英 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005127225A priority Critical patent/JP2006297474A/en
Publication of JP2006297474A publication Critical patent/JP2006297474A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method where, when a member made of a Ti-Al alloy and a member made of steel are joined, so as to produce a joined body in which the strength of the joint is higher than the strength of the base metal, the joined body can be stably produced at a high excellent article yield even without making the control of temperature upon the joining severe. <P>SOLUTION: An intermediate material (3) produced by ferritic stainless steel having a C content of ≤0.10% is inserted between a Ti-Al alloy member (1) and a steel member (2), and Ni solder (4) is interposed between the Ti-Al alloy member and the intermediate material, so as to perform diffusion joining. The diffusion joining is carried out by performing heating to a temperature in the range from above the melting point to ≤1,150°C in a vacuum or in an inert gas atmosphere, applying the pressure of 1.5 to 7.0 MPa, and holding the conditions for 10 to 180 s. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Ti−Al合金製の部材と鋼製の部材とを接合してなる接合体と、接合方法とに関する。 The present invention relates to a joined body obtained by joining a Ti-Al alloy member and a steel member, and a joining method.

たとえば自動車エンジンのターボ装置に使用するタービンホイール(ホットホイール)は、高温に耐えるように、Ti−Al合金(TiAlやTi3Alなど)製のホイール部材を使用し、これを鋼製のシャフト用部材に接合したのち、機械加工を加えて製作する。このホイール部材とシャフト用部材との接合は、接合の強固さとともに信頼性が要求されるが、従来の技術は、十分に満足な結果を与えるものではなかった。 For example, a turbine wheel (hot wheel) used for a turbo device of an automobile engine uses a wheel member made of a Ti-Al alloy (TiAl, Ti 3 Al, etc.) to withstand high temperatures, and this is used for a steel shaft. After joining to the member, it is manufactured by machining. The joining of the wheel member and the shaft member requires reliability as well as the joining strength, but the conventional technique has not provided a sufficiently satisfactory result.

Ti−Al合金製の部材(以下「チタン部材」という)と鋼製の部材(以下「鋼部材」という)との接合は、以前は、まずチタン部材に中間材を接合した後、中間材に鋼部材を接合するという手法によっていた(特許文献1、特許文献2)。しかし、これでは接合工程が2工程になり、能率がよくない。 The Ti-Al alloy member (hereinafter referred to as “titanium member”) and the steel member (hereinafter referred to as “steel member”) were previously joined by first joining the intermediate member to the titanium member and then the intermediate member. It was based on the method of joining a steel member (patent document 1, patent document 2). However, in this case, the joining process becomes two processes, and the efficiency is not good.

そこで、接合を1工程ですませることが要求され、チタン部材と鋼部材とを、ロウ材を用いて直接接合する方法が開発された(特許文献3)。ところが、この方法によるときは、拡散接合を行なうのであるから当然ではあるが、ロウ付けに際してロウ材を挟んだ両方の部材の成分が相互に拡散して反応することが避けられない。鋼部材中のC成分が拡散してチタン部材中のTiと反応すると、脆い炭化物が形成される。このため、接合部分が弱く、接合強度が母材強度を下回る製品ができてしまう。 Therefore, it is required to perform the joining in one step, and a method of directly joining a titanium member and a steel member using a brazing material has been developed (Patent Document 3). However, when this method is used, it is natural that diffusion bonding is performed, but it is inevitable that the components of both members sandwiching the brazing material diffuse and react with each other during brazing. When the C component in the steel member diffuses and reacts with Ti in the titanium member, brittle carbide is formed. For this reason, a joined part is weak and the product in which joining strength falls below base material strength will be made.

出願人は、チタン部材と鋼部材との間に「中間材」を置き、摩擦圧接により一体に接合する方法を開発して開示した(特許文献4)。中間材としては、オーステナイト系ステンレス鋼もしくは耐熱鋼、またはNi基もしくはCo基の超合金を使用する。この接合法によるときは、上記の炭化物の形成という問題は生じない。 The applicant developed and disclosed a method of placing an “intermediate material” between a titanium member and a steel member and joining them together by friction welding (Patent Document 4). As the intermediate material, austenitic stainless steel or heat resistant steel, or a Ni-based or Co-based superalloy is used. When this bonding method is used, the problem of the formation of the above carbide does not occur.

このようにして製造したホットホイールは、使用時に温度の上昇・下降の熱サイクルに起因する熱応力が加わるため、とくに小型のものに関しては、チタン部材と中間材との間の接合部において、疲労破壊が生じる危険が指摘された。その問題の解決策として提案されたのは、中間材として、チタン部材と同等の熱膨張率を有するもの、具体的には、インコネル909のようなFe基の超合金を使用した摩擦圧接である(特許文献5)。常温から600℃の範囲において、インコネル909の熱膨張率(8〜10×10−6/℃)は、チタン部材(TiAl合金の場合)のそれ(9〜11×10−6/℃)と、ほぼ同等である。 The hot wheel manufactured in this way is subjected to thermal stress due to the thermal cycle of temperature rise and fall during use, so that especially for small ones, fatigue is caused at the joint between the titanium member and the intermediate material. The danger of destruction was pointed out. What has been proposed as a solution to the problem is friction welding using an intermediate material having a thermal expansion coefficient equivalent to that of a titanium member, specifically, an Fe-based superalloy such as Inconel 909. (Patent Document 5). In the range from room temperature to 600 ° C., the thermal expansion coefficient (8 to 10 × 10 −6 / ° C.) of Inconel 909 is that of the titanium member (in the case of TiAl alloy) (9 to 11 × 10 −6 / ° C.) It is almost equivalent.

ところが、近年、ホットホイールの使用条件がいっそう過酷となり、700℃に達する高温にさらされる場合がめずらしくなくなった。インコネル909の熱膨張率は、常温から400℃程度はほぼ一定の低い値にあるが、それを超えると急激に上昇しはじめるから、上述の熱サイクルが引き起こす疲労破壊が、改めて問題になる。 However, in recent years, the use conditions of hot wheels have become more severe, and it has become difficult to be exposed to high temperatures reaching 700 ° C. The thermal expansion coefficient of Inconel 909 is at a substantially constant low value from room temperature to about 400 ° C., but when it exceeds that, it begins to increase rapidly, so the fatigue failure caused by the above-mentioned thermal cycle becomes a problem again.

拡散接合の原理による接合法として、出願人は、チタン部材と鋼部材との間に「バリアー材」を挿入し、その両側に第一および第二のロウ材を介在させて、全体を加熱・加圧する接合方法を開発した(特許文献6)。バリアー材とするものの具体例をあげれば、Fe,Ni,Coの1種以上を主成分とする金属、たとえばNi基の低熱膨張合金製の、厚さが0.01mm以上のものである。ロウ材としては、Niベースのもの(JIS規格BNi−3すなわち4.5Si−3.2B−Ni)が好適である。
特開平2−133183 特開平2−157403 特開平10−118764 特公平8−18151 特開平11−320132 特開2001−205443
As a bonding method based on the principle of diffusion bonding, the applicant inserts a “barrier material” between a titanium member and a steel member, and interposes first and second brazing materials on both sides to heat and heat the whole. A joining method for pressurization was developed (Patent Document 6). A specific example of the barrier material is a metal mainly composed of one or more of Fe, Ni, and Co, for example, a Ni-based low thermal expansion alloy having a thickness of 0.01 mm or more. As the brazing material, a Ni-based material (JIS standard BNi-3, that is, 4.5Si-3.2B-Ni) is suitable.
JP-A-2-133183 JP-A-2-157403 JP 10-118764 A JP 18-18151 JP-A-11-320132 JP 2001-205443 A

このバリアー材を使用する接合方法により、接合部における炭化物の生成が防止され、接合部の強度が母材の強度を上回る接合体が実現した。しかし、実施してみると、良品歩留まりが低い場合が、ときに経験された。その理由を追及したところ、ひとつは接合部におけるホウ化物の生成による強度低下であり、いまひとつは、接合条件とくに加熱温度の好適範囲が狭く、その適切な条件にコントロールすることの困難さにあることがわかった。 By the joining method using this barrier material, the formation of carbides in the joined portion was prevented, and a joined body in which the strength of the joined portion exceeded the strength of the base material was realized. However, when implemented, sometimes the yield of good products was low. In pursuit of the reason, one is a decrease in strength due to the formation of boride in the joint, and the other is that the preferred range of the joining conditions, particularly the heating temperature, is narrow and difficult to control to the appropriate conditions. I understood.

第一の原因であるホウ化物の生成による接合部の強度低下は、バリアー材が、その合金成分としてNbやMoを多量に含んでいると、それらがNiベースのロウ材中のB成分と反応して、NbB,MoBを生成するという現象に起因する。バリアー材は、耐熱性を必要とするため、超合金の類が好んで用いられたが、それらの合金は、下記のように、NbやMoを多量に含有している。(重量%)
Fe Ni Cr Mo Co Nb Ti Al
インコネル909 残部(42) 38 13 − 4.7 1.5 0.03 −
Ni基低熱膨張合金 − 残部 12 18 − − 1.0 1.0
The first cause is the decrease in the strength of the joint due to the formation of boride. When the barrier material contains a large amount of Nb or Mo as its alloy component, they react with the B component in the Ni-based brazing material. As a result, NbB and MoB are generated. Since the barrier material requires heat resistance, superalloys are preferably used. These alloys contain a large amount of Nb and Mo as described below. (weight%)
Fe Ni Cr Mo Co Nb Ti Al
Inconel 909 balance (42) 38 13 − 4.7 1.5 0.03 −
Ni-based low thermal expansion alloy-balance 12 18--1.0 1.0

第二の原因は、不用意に高められた温度において、上記したホウ化物の生成が生じやすいということである。接合部分の加熱は、高周波誘導コイルによる誘導加熱が好都合に用いられており、放射温度計との組み合わせによりインプットする電力を調整することによって、温度コントロールは比較的精密に行なえるのであるが、それでも、接合にとって適切な温度範囲が狭く、不良品の発生は、この温度コントロールをシビアにしなければならないにもかかわらず、それが困難であることに起因している。また、Ni基やCo基の超合金は、一般に高価であるから、安価な合金をバリアー材として使用したいというよう要求もある。 The second cause is that the above-described boride formation is likely to occur at an inadvertently raised temperature. For the heating of the joint part, induction heating by a high frequency induction coil is conveniently used, and the temperature control can be performed relatively precisely by adjusting the input power by combining with a radiation thermometer, but still The temperature range suitable for bonding is narrow, and the generation of defective products is due to the fact that this temperature control must be severe, but it is difficult. In addition, since Ni-based or Co-based superalloys are generally expensive, there is a demand for using an inexpensive alloy as a barrier material.

本発明の目的は、チタン部材と鋼部材とを接合する技術を改良し、接合体の良品歩留まりを高めること、換言すれば、接合時の温度コントロールをシビアにしなくても、接合部の強度が母材強度を上回るという性能をもった接合体を、安定に供給できるようにすることにある。 The purpose of the present invention is to improve the technology for joining titanium members and steel members, and to improve the yield of bonded products, in other words, the strength of the joint can be increased even if the temperature control during joining is not severe. An object of the present invention is to enable a stable supply of a joined body having a performance exceeding the strength of the base material.

本発明のTi−Al合金製の部材(チタン部材)と鋼製の部材(鋼部材)との接合体は、図1に構造を観念的に示すように、チタン部材(1)と鋼部材(2)との間に、フェライト系ステンレス鋼からなる中間材(3)を挟み、チタン部材と中間材との間および中間材と鋼部材との間に、Niロウ(4)を介在させて接合してなる接合体である。 The joined body of a Ti-Al alloy member (titanium member) and a steel member (steel member) according to the present invention has a titanium member (1) and a steel member ( 2) with an intermediate material (3) made of ferritic stainless steel sandwiched between the titanium member and the intermediate material and between the intermediate material and the steel member with Ni brazing (4) interposed therebetween. This is a joined body.

本発明の接合体は、チタン部材と鋼部材との間に挟んだフェライト系ステンレス鋼の中間材がバリアーとなって、接合時に鋼材中のC成分が拡散してTiと出会い、反応して炭化物TiCを形成することが防止されるとともに、ロウ材のBがバリアー材のNbやMoと反応してホウ化物NbBやMoBを形成するということがないから、接合部が強固に形成され、母材の強度を上回るという性能が確保され、かつ、接合時にシビアな温度コントロールを行なわなくても、接合体の良品歩留まりがきわめて高く得られるという効果を奏する。 In the joined body of the present invention, an intermediate material of ferritic stainless steel sandwiched between a titanium member and a steel member serves as a barrier, and during the joining, the C component in the steel material diffuses to meet Ti and react to carbide. The formation of TiC is prevented and the brazing material B does not react with the barrier material Nb or Mo to form the boride NbB or MoB. As a result, it is possible to obtain a high yield of bonded products without the need for severe temperature control during bonding.

本発明で中間材とするフェライト系ステンレス鋼は、ホットホイールが到達することのある高温(700℃程度)の領域まで、熱膨張率がチタン部材と鋼部材のそれらのほぼ中間にあって、温度の上昇につれて増大する値をとる。したがって、両部材と中間材との熱膨張率の差や、中間材の熱膨張率の急激な変化に起因する熱応力の問題が軽減され、疲労破壊の危険が低くなる。フェライト系ステンレス鋼はまた、Ni基やCo基の超合金より安価である。 The ferritic stainless steel used as an intermediate material in the present invention has a coefficient of thermal expansion that is approximately between those of the titanium member and the steel member up to a high temperature (about 700 ° C.) region that the hot wheel can reach, It takes a value that increases as it rises. Therefore, the difference in thermal expansion coefficient between the two members and the intermediate material and the problem of thermal stress due to the rapid change in the thermal expansion coefficient of the intermediate material are alleviated, and the risk of fatigue failure is reduced. Ferritic stainless steel is also less expensive than Ni-based or Co-based superalloys.

上記の接合体を与える本発明の接合方法は、図2にターボエンジンのホットホイールを製作する場合を例にとって示すように、ホットホイールであるTi−Al合金の部材とシャフトを構成する鋼の部材(7)とを接合する方法であって、チタン部材と鋼の部材との間にフェライト系ステンレス鋼からなる中間材(3)のシートを挟み、チタン部材(6)と中間材(3)との間、および中間材(3)と鋼部材(7)との間に、それぞれNiロウ(4)の箔を挟み、接合部を、真空中または不活性ガス雰囲気中において、温度がNiロウの融点を超えて1150℃以下である温度に加熱して、1.5〜7.0MPaの圧力を加え、その条件に10〜180秒間保つことからなる。 The joining method of the present invention for providing the above-mentioned joined body is a steel member constituting a shaft and a Ti-Al alloy member which is a hot wheel, as shown in FIG. (7), wherein a sheet of intermediate material (3) made of ferritic stainless steel is sandwiched between a titanium member and a steel member, and the titanium member (6) and the intermediate material (3) And between the intermediate material (3) and the steel member (7), a foil of Ni brazing (4) is sandwiched between the intermediate member (3) and the steel member (7). It is heated to a temperature exceeding the melting point and not higher than 1150 ° C., a pressure of 1.5 to 7.0 MPa is applied, and the condition is maintained for 10 to 180 seconds.

中間材を形成するフェライト系ステンレス鋼の適切な合金組成は、重量で、C:0.10%以下、Si:1.5%以下、Mn:1.5%以下およびCr:10.5〜32.0%を含有し、P:0.045%以下、S:0.045%以下、Ni:0.6%以下であって、残部がFeおよび不純物からなる。これらの合金成分に加えて、Ti:0.01〜0.5%、Nb:0.02〜1.0%およびMo:0.05〜2.0%の1種または2種を含有することができる。合金組成をこのように定めた理由は、つぎのとおりである。 Suitable alloy compositions of ferritic stainless steel forming the intermediate material are, by weight, C: 0.10% or less, Si: 1.5% or less, Mn: 1.5% or less, and Cr: 10.5 to 32 0.0%, P: 0.045% or less, S: 0.045% or less, Ni: 0.6% or less, with the balance being Fe and impurities. In addition to these alloy components, one or two of Ti: 0.01 to 0.5%, Nb: 0.02 to 1.0% and Mo: 0.05 to 2.0% should be contained. Can do. The reason for determining the alloy composition in this way is as follows.

C:0.10%以下
C含有量が0.10%以下であれば、中間材自身から拡散するC成分の量が少量に止まり、チタン部材中のTiとの反応による炭化物TiCの生成が防止できるが、この効果を確実にするためには、C:0.05%以下、好ましくは0.02〜0.03%程度に低減したものを使用することが推奨される。
C: 0.10% or less If the C content is 0.10% or less, the amount of the C component diffusing from the intermediate material itself is small, and the formation of carbide TiC due to the reaction with Ti in the titanium member is prevented. However, in order to ensure this effect, it is recommended to use C: 0.05% or less, preferably about 0.02 to 0.03%.

Si:1.5%以下、Mn:1.5%以下
これらは鋼の溶製時に脱酸剤として添加されるが、多量に存在すると靱性を低下させるので、それぞれ上記の限度内の含有量とする。
Si: 1.5% or less, Mn: 1.5% or less These are added as deoxidizers during the melting of steel, but if present in large amounts, the toughness is lowered, To do.

Cr:10.5〜32.0%
Crはフェライト系ステンレス鋼にとって重要な成分であって、耐酸化性および高温強度を高める。この効果は10.5%以上の添加により得られるが、添加量を増してもそれに伴わず、32%を超えると飽和する。
Cr: 10.5-32.0%
Cr is an important component for ferritic stainless steel, and improves oxidation resistance and high-temperature strength. This effect can be obtained by addition of 10.5% or more, but even if the addition amount is increased, it is not accompanied by this, and when it exceeds 32%, it is saturated.

P:0.045%以下、S:0.045%以下、Ni:0.6%以下
PおよびSは不可避な不純物であって、さまざまな特性を低下させるから、含有量はなるべく低減したい。上記の値は許容限度である。Niは、原料によって混入するので、上記の規格値以内に止める。
P: 0.045% or less, S: 0.045% or less, Ni: 0.6% or less P and S are unavoidable impurities, and deteriorate various properties, so the content should be reduced as much as possible. The above values are acceptable limits. Since Ni is mixed with the raw material, it is stopped within the above standard value.

Ti:0.01〜0.5%、Nb:0.02〜1.0%、Mo:0.05〜2.0%の1種または2種
Tiは耐酸化性を、Nbは耐酸化性および高温強度を、Moは高温強度を、それぞれ向上させる。前述したように、これらの成分は、それぞれ炭化物TiCや、ホウ化物NbBやMoBを形成すると、接合部の強度を著しく低下させたり、良品歩留まりを引き下げたりするから、危険な存在である。しかし、接合部のフェライト系ステンレス鋼それ自体の特性を改善するという観点からは、少量の存在はむしろ好ましいものである。それゆえ、添加の効果が認められ、かつ、その弊害が危険にならないという見地から選んだ上記の範囲内で、適切な量を添加するとよい。
1 or 2 types of Ti: 0.01 to 0.5%, Nb: 0.02 to 1.0%, Mo: 0.05 to 2.0% Ti is oxidation resistance, Nb is oxidation resistance And, the high temperature strength and Mo improve the high temperature strength, respectively. As described above, these components are dangerous because the formation of carbide TiC, boride NbB, or MoB significantly reduces the strength of the joint or reduces the yield of non-defective products. However, from the viewpoint of improving the properties of the ferritic stainless steel itself at the joint, the presence of a small amount is rather preferable. Therefore, it is advisable to add an appropriate amount within the above-mentioned range selected from the viewpoint that the effect of addition is recognized and the harmful effect does not become dangerous.

上記の中間材の厚さは、最低限、0.05mmあれば、バリアーとしての役割を果たす。これより薄いと、鋼材のC成分が拡散してチタン部材との接合面に至り、炭化物を形成する。中間材の製造を、フェライト系ステンレス鋼の棒材をスライスすることにより行なう場合は、切削加工が容易な材料であることが望まれるので、Pb、Te、Seなどの被削性改善元素を添加した快削鋼の棒材を用いることが好ましい。 If the thickness of the intermediate material is at least 0.05 mm, it serves as a barrier. If it is thinner than this, the C component of the steel material diffuses and reaches the joint surface with the titanium member to form carbide. When manufacturing intermediate materials by slicing ferritic stainless steel rods, it is desirable that the material be easy to cut, so add machinability improving elements such as Pb, Te, Se, etc. It is preferable to use a rod of free cutting steel.

接合の温度は、少なくともNiロウの融点を超えなければならないことは、ロウ付けという操作から当然のことである。1150℃という上限は、これを超えると、Niロウ中の主成分であるNiとチタン部材のTiAlとが反応して脆弱な金属間化合物ができるから、接合界面が弱くなる。接合面を加圧する圧力は、低いと接合部分にボイドが生じるおそれがあり、一方で高いと接合時に変形して、ふくれが生じるため、寸法精度の低下や後加工の必要量が増大するという問題を引き起こす。上記の範囲内であれば、こうした問題はない。一定の温度・圧力に保持する時間は、短すぎては接合のための拡散が不十分に終わり、長すぎてはエネルギーの浪費になるばかりか、Niロウの成分とチタン部材の成分との反応が起こるおそれがでてくるから、上記の範囲に定めた。 It is natural from the operation of brazing that the bonding temperature must exceed at least the melting point of Ni brazing. If the upper limit of 1150 ° C. is exceeded, Ni, which is the main component in the Ni solder, reacts with TiAl of the titanium member to form a brittle intermetallic compound, so that the bonding interface becomes weak. If the pressure for pressurizing the joint surface is low, voids may occur in the joint part. On the other hand, if the pressure is high, deformation occurs during joining and blisters occur, resulting in a decrease in dimensional accuracy and an increase in the required amount of post processing. cause. There is no such problem as long as it is within the above range. If the time for holding at a constant temperature and pressure is too short, diffusion for bonding will be insufficient, and if it is too long, energy will be wasted, and the reaction between the Ni brazing component and the titanium component will occur. Therefore, the above range is set.

下記の合金組成のTi−Al合金を材料に、レビテーション溶解−精密鋳造によりターボチャージャーのホットホイールを鋳造した。これと接合させるシャフト用の鋼部材として、下記の合金組成のSCM435H鋼の、径17mm×長さ100mmの丸棒を選んだ。
Ti−Al合金:Ti−33.5Al−4.8Nb−1.0Cr−0.2Si
SCM435H:Fe−0.35C−1.0Cr−1.0Nb−0.2Mo
接合に好都合なように、図1に示した形状に旋削して、下記のようなインロー状の組み合わせにした。
凸材:ホットホイール側、外径5.9mm×高さ5mm
凹材:ステム側、内径6.0mm×深さ7mm
A turbo charger hot wheel was cast by levitation melting-precision casting using a Ti-Al alloy having the following alloy composition. As a steel member for the shaft to be joined to this, a round bar having a diameter of 17 mm and a length of 100 mm made of SCM435H steel having the following alloy composition was selected.
Ti-Al alloy: Ti-33.5Al-4.8Nb-1.0Cr-0.2Si
SCM435H: Fe-0.35C-1.0Cr-1.0Nb-0.2Mo
For the convenience of joining, it was turned into the shape shown in FIG.
Convex material: Hot wheel side, outer diameter 5.9mm x height 5mm
Concave material: Stem side, inner diameter 6.0mm x depth 7mm

中間材として、下記の表1に示す合金組成を有するフェライト系ステンレス鋼A〜D、LおよびMを用意した。A〜Dは本発明の好適な態様に従った合金組成のもの、LおよびMは、比較のために用いた、好適範囲外の合金組成のものである。実施例および比較例の中間材を、外径17mm×内径6mmで、厚さが0.5mmのリング状に加工した。ロウ材は、JIS規格BNi−3(Ni−4.5Si−3.2B)を使用し、外径17mm×内径6mmで、厚さが0.04mmのリング状体とした。 Ferritic stainless steels A to D, L, and M having the alloy compositions shown in Table 1 below were prepared as intermediate materials. A to D are alloy compositions according to a preferred embodiment of the present invention, and L and M are alloy compositions outside the preferred range used for comparison. The intermediate materials of Examples and Comparative Examples were processed into a ring shape having an outer diameter of 17 mm × an inner diameter of 6 mm and a thickness of 0.5 mm. As the brazing material, JIS standard BNi-3 (Ni-4.5Si-3.2B) was used, and a ring-shaped body having an outer diameter of 17 mm × an inner diameter of 6 mm and a thickness of 0.04 mm was used.

表1 重量%

Figure 2006297474
Table 1 Weight%
Figure 2006297474

接合を、表2に掲げた条件で実施した。No.7(比較例)は、中間材を使用しない場合である。接合部分の加熱は、高周波誘導加熱(100KW,周波数10kHz)によった。雰囲気はArガスである。接合後、接合体を500℃に30分間保持する歪み取りを行なった。得られた接合体の接合部を径16mmに切削し、常温における引張り試験および450℃におけるねじり試験にかけた(ともにN=10の平均値)。結果を、標準偏差とともに、表2に、あわせて掲げる。 Bonding was performed under the conditions listed in Table 2. No. 7 (comparative example) is a case where no intermediate material is used. The joining portion was heated by high frequency induction heating (100 kW, frequency 10 kHz). The atmosphere is Ar gas. After joining, distortion was removed by holding the joined body at 500 ° C. for 30 minutes. The joined portion of the obtained joined body was cut to a diameter of 16 mm and subjected to a tensile test at normal temperature and a torsion test at 450 ° C. (both N = 10 average value). The results are listed in Table 2 together with the standard deviation.

表2

Figure 2006297474
Table 2
Figure 2006297474

表2の結果は、本発明に従って得た接合体は、接合部が引張りおよびねじりに対して高い強度を示すこと、および、それらの強度特性のバラツキが小さく、接合体に高い良品歩留まりが期待できることを示している。破断は、いずれも母材(チタン部材)内で生じ、接合部で生じることはなかった。 The results of Table 2 show that the joined body obtained according to the present invention shows that the joint has high strength against tension and torsion, and that there is little variation in their strength characteristics, and that the joined body can be expected to have a high yield. Is shown. All fractures occurred in the base material (titanium member) and did not occur at the joint.

中間材として、本発明に従う合金EおよびFに加え、参考例として、既知の技術で使用されていた、X(インコネル909、Fe基の超合金)およびY(Ni基の低熱膨張合金)を使用した。それらの合金組成は、表3に示すとおりである。中間材Fについては、厚さ0.5mmのものと、1.0mmのものとを用意した。 In addition to Alloys E and F according to the present invention, X (Inconel 909, Fe-based superalloy) and Y (Ni-based low thermal expansion alloy) used in known technologies are used as reference materials as intermediate materials. did. Their alloy compositions are as shown in Table 3. About the intermediate material F, the thing of thickness 0.5mm and the thing of 1.0mm were prepared.

これらの材料の熱膨張率(常温〜700℃の平均値)を、チタン部材(TiAl)および鋼部材(SCM435)のそれとともに比較すると、下記の表4のとおりである。本発明で使用するフェライト系ステンレス鋼の熱膨張率は、おおよそ中間材EおよびFのそれに近い。 Table 4 below shows a comparison of the thermal expansion coefficients (average values from room temperature to 700 ° C.) of these materials together with those of the titanium member (TiAl) and the steel member (SCM435). The thermal expansion coefficient of the ferritic stainless steel used in the present invention is approximately that of the intermediate materials E and F.

表3 重量%

Figure 2006297474
Table 3 Weight%
Figure 2006297474

表4
中間材 線膨張率α(×10 −6 /℃)
チタン部材(TiAl) 11.6
鋼部材(SCM435) 14.1
中間材E(フェライト系ステンレス鋼) 12.5
中間材F(フェライト系ステンレス鋼) 12.3
中間材X(インコネル909) 11.6
中間材Y(低熱膨張合金) 13.4
Table 4
Intermediate material Linear expansion coefficient α (× 10 −6 / ° C.)
Titanium member (TiAl) 11.6
Steel member (SCM435) 14.1
Intermediate material E (ferritic stainless steel) 12.5
Intermediate material F (ferritic stainless steel) 12.3
Intermediate material X (Inconel 909) 11.6
Intermediate material Y (low thermal expansion alloy) 13.4

そのほかは実施例1と同じ条件で、Ti−Al合金部材と鋼部材との接合を行ない、同様な試験をした。結果を、表5に示す。 Other than that, the Ti-Al alloy member and the steel member were joined under the same conditions as in Example 1, and the same test was performed. The results are shown in Table 5.

表5

Figure 2006297474
Table 5
Figure 2006297474

以上、自動車エンジンのターボチャージャー用ホットホイールの製作に関して説明してきたが、本発明は、タービンロータ(コールドホイール)の製作にも適用できることはもちろんであり、エンジンバルブのヘッドとステムの接合そのほか、チタン部材と鋼部材との拡散接合に関して、本発明は広い用途をもつ。 As described above, the production of a hot wheel for a turbocharger of an automobile engine has been described. However, the present invention can be applied to the production of a turbine rotor (cold wheel), as well as the joining of an engine valve head and a stem, and titanium. The present invention has a wide range of applications regarding diffusion bonding of members and steel members.

本発明のTi−Al合金製の部材と鋼製の部材との接合体について、その構造を観念的に示す側面図。The side view which shows notionally the structure about the joined body of the member made from Ti-Al alloy of this invention, and the member made from steel. 本発明の接合方法を説明するため、ターボエンジンのタービンホイールを製作する場合を例にとって、接合直前の各部材の配置を示した断面図。Sectional drawing which showed arrangement | positioning of each member just before joining for the case where the turbine wheel of a turbo engine is manufactured as an example in order to demonstrate the joining method of this invention.

符号の説明Explanation of symbols

1 Ti−Al合金製の部材(チタン部材)
2 鋼の部材(鋼部材)
3 中間材
4 Niロウ材
6 タービンホイール(ホットホイール)
7 シャフト用部材
1 Ti-Al alloy member (titanium member)
2 Steel members (steel members)
3 Intermediate material 4 Ni brazing material 6 Turbine wheel (hot wheel)
7 Shaft members

Claims (5)

Ti−Al合金の部材と鋼の部材との接合体であって、Ti−Al合金の部材と鋼の部材との間にフェライト系ステンレス鋼からなる中間材を挟み、Ti−Al合金の部材と中間材との間、および中間材と鋼の部材との間に、Niロウを介在させて接合してなる接合体。 A joined body of a Ti-Al alloy member and a steel member, with an intermediate material made of ferritic stainless steel sandwiched between the Ti-Al alloy member and the steel member, and a Ti-Al alloy member A joined body formed by interposing Ni brazing between the intermediate material and between the intermediate material and the steel member. 中間材を形成するフェライト系ステンレス鋼が、重量で、C:0.10%以下、Si:1.5%以下、Mn:1.5%以下およびCr:10.5〜32.0%を含有し、P:0.045%以下、S:0.045%以下、Ni:0.6%以下であって、残部がFeおよび不純物からなる合金組成を有する請求項1の接合体。 Ferritic stainless steel forming intermediate material contains, by weight, C: 0.10% or less, Si: 1.5% or less, Mn: 1.5% or less, and Cr: 10.5-32.0% P: 0.045% or less, S: 0.045% or less, Ni: 0.6% or less, and the joined body according to claim 1 having an alloy composition comprising the balance of Fe and impurities. 中間材を形成するフェライト系ステンレス鋼が、請求項2に規定した合金成分に加えて、Ti:0.01〜0.5%、Nb:0.02〜1.0%およびMo:0.05〜2.0%の1種または2種以上を含有する請求項1または2の接合体。 The ferritic stainless steel forming the intermediate material includes Ti: 0.01 to 0.5%, Nb: 0.02 to 1.0%, and Mo: 0.05 in addition to the alloy components defined in claim 2. The joined body according to claim 1 or 2, containing ˜2.0% of one kind or two or more kinds. 自動車エンジンのタービンホイールもしくはタービンロータ、またはエンジンバルブである請求項1〜3のいずれかの接合体。 The joined body according to any one of claims 1 to 3, which is a turbine wheel or a turbine rotor of an automobile engine or an engine valve. Ti−Al合金の部材と鋼の部材とを接合する方法であって、Ti−Al合金の部材と鋼の部材との間にフェライト系ステンレス鋼からなる中間材のシートを挟み、Ti−Al合金の部材と中間材との間、および中間材と鋼の部材との間にそれぞれNiロウの箔を挟み、接合部を、真空中または不活性ガス雰囲気中において、温度がNiロウの融点を超えて1150℃以下である温度に加熱し、1.5〜7.0MPaの圧力を加え、その条件に10〜180秒間保つことからなる接合方法。
A method of joining a Ti-Al alloy member and a steel member, wherein a sheet of intermediate material made of ferritic stainless steel is sandwiched between the Ti-Al alloy member and the steel member, and the Ti-Al alloy Ni brazing foil is sandwiched between the intermediate member and the intermediate member, and between the intermediate member and the steel member, and the temperature exceeds the melting point of Ni brazing in the vacuum or in an inert gas atmosphere. A bonding method comprising heating to a temperature of 1150 ° C. or less, applying a pressure of 1.5 to 7.0 MPa, and maintaining the condition for 10 to 180 seconds.
JP2005127225A 2005-04-25 2005-04-25 JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD Pending JP2006297474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127225A JP2006297474A (en) 2005-04-25 2005-04-25 JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127225A JP2006297474A (en) 2005-04-25 2005-04-25 JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD

Publications (1)

Publication Number Publication Date
JP2006297474A true JP2006297474A (en) 2006-11-02

Family

ID=37466179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127225A Pending JP2006297474A (en) 2005-04-25 2005-04-25 JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD

Country Status (1)

Country Link
JP (1) JP2006297474A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297788A (en) * 2008-05-15 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Method for manufacturing blisk
JP2010005643A (en) * 2008-06-25 2010-01-14 Ihi Corp Method for joining titanium member and steel member
JP2010120081A (en) * 2008-11-20 2010-06-03 Korea Atomic Energy Research Inst Method of joining steel-based alloy and titanium or titanium-based alloy using intermediate layer to produce high-strength dissimilar metals-joined alloy having joint strength exceeding strength of base materials, and high-strength joint alloy including steel-based alloy and titanium or titanium-based alloy joined by the method
EP2786827A4 (en) * 2011-12-01 2016-01-06 Mitsubishi Heavy Ind Ltd Bonded component
CN105798449A (en) * 2016-05-24 2016-07-27 哈尔滨工业大学(威海) Method for diffusion connection of high-niobium TiAl alloy by using composite metal foil
CN116037958A (en) * 2022-12-30 2023-05-02 吉林大学 High-strength and high-toughness aviation shell imitating fish fins, aviation material and preparation method of aviation material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297788A (en) * 2008-05-15 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Method for manufacturing blisk
JP2010005643A (en) * 2008-06-25 2010-01-14 Ihi Corp Method for joining titanium member and steel member
JP2010120081A (en) * 2008-11-20 2010-06-03 Korea Atomic Energy Research Inst Method of joining steel-based alloy and titanium or titanium-based alloy using intermediate layer to produce high-strength dissimilar metals-joined alloy having joint strength exceeding strength of base materials, and high-strength joint alloy including steel-based alloy and titanium or titanium-based alloy joined by the method
EP2786827A4 (en) * 2011-12-01 2016-01-06 Mitsubishi Heavy Ind Ltd Bonded component
US10105778B2 (en) 2011-12-01 2018-10-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Joint part
CN105798449A (en) * 2016-05-24 2016-07-27 哈尔滨工业大学(威海) Method for diffusion connection of high-niobium TiAl alloy by using composite metal foil
CN116037958A (en) * 2022-12-30 2023-05-02 吉林大学 High-strength and high-toughness aviation shell imitating fish fins, aviation material and preparation method of aviation material

Similar Documents

Publication Publication Date Title
EP1591548B1 (en) Method for producing of a low thermal expansion Ni-base superalloy
TW412454B (en) Process of producing a component consisting of a gamma-titanium aluminide body jointed to a steel body
EP1867740A1 (en) Low thermal expansion Ni-base superalloy
US5431752A (en) Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
JP4929399B2 (en) Rotor for rotating equipment and method for manufacturing the same
EP1770182A1 (en) High-strenght heat resisting cast steel, method of producing the steel, and applications of the steel
JPS61289973A (en) Method for fixing blade to outer periphery of rotor main body of steam turbine
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
JP5601607B1 (en) Metal powder, hot working tool, and method of manufacturing hot working tool
WO2009154245A1 (en) Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE AND PROCESS FOR PRODUCING THE NI-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE
CN107030367A (en) The dissimilar metal diffusion welding method of titanium alloy and stainless steel
WO1995027586A1 (en) Alloy foil capable of liquid-phase diffusion welding of heat-resisting material in oxidizing atmosphere
EP2204462A1 (en) Ni-based alloy for a forged part of a steam turbine with excellent high temperature strength, forgeability and weldability, rotor blade of a steam turbine, stator blade of a steam turbine, screw member for a steam turbine, and pipe for a steam turbine
EP2241399B1 (en) Welding material and welding rotor
JPH10220236A (en) Tial made turbine rotor
JPWO2008072303A1 (en) Friction welding method, centrifugal gas turbine manufacturing method, and turbocharger manufacturing method
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JP7151769B2 (en) METHOD FOR JOINING METAL MEMBERS AND METAL MEMBER JOINTED BODY
CN101934405A (en) Brazing method
JP5843718B2 (en) Ni-base welding material and dissimilar material welding turbine rotor
JPH06330226A (en) Multiple-layered steel excellent in high temperature corrosion resistance and its production
JP2014176877A (en) Dissimilar material joint
US20150258627A1 (en) Layer composite
JP2003053520A (en) METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft