JPH10185523A - Optical waveguide type displacement sensor - Google Patents

Optical waveguide type displacement sensor

Info

Publication number
JPH10185523A
JPH10185523A JP34753596A JP34753596A JPH10185523A JP H10185523 A JPH10185523 A JP H10185523A JP 34753596 A JP34753596 A JP 34753596A JP 34753596 A JP34753596 A JP 34753596A JP H10185523 A JPH10185523 A JP H10185523A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
optical
measurement
reference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34753596A
Other languages
Japanese (ja)
Inventor
Akio Watanabe
章夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP34753596A priority Critical patent/JPH10185523A/en
Publication of JPH10185523A publication Critical patent/JPH10185523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical waveguide type displacement sensor which can stably measure the displacement of an object over a wide measuring range by providing a wide-band light source, a light receiving means equipped with a waveguide for extending reference light having an optical path difference adjusted to the interference length or shorter between reference light and measuring light and a narrow-band selecting means having a transmissive wavelength which is different from that of a luminous flux separating means. SOLUTION: A light wave emitted from a wide-band light source 3 is made incident to a polarization plane maintaining optical fiber F1 and led to a port 12 for light incidence. The optical wave led to an optical guide 14 is made incident to the waveguide 14' for extending reference light and becomes reference light after passing through a 3-dB coupler 13. The optical wave introduced to another optical waveguide is led to the coupler 13 as measuring light. The coupler 13 distributes the reference light and measuring light to an optical wave input port 12 and a signal output port 18 in accordance with the phase difference between the two kinds of light. The optical wave made incident on a light receiving device 21 is made incident on light receiving elements 26 and 22 through a half mirror 24. A level difference is measured from the phase information obtained from the interference signals of the elements 26 and 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的干渉により
被測定物の変位測定を行う光導波路型変位センサに関す
る。
The present invention relates to an optical waveguide type displacement sensor for measuring a displacement of an object to be measured by optical interference.

【0002】[0002]

【従来の技術】従来の光学的干渉計においては、マイケ
ルソン干渉計、マッハツェンダー干渉計等の原理を利用
する方法がある。これらの干渉計をニオブ酸リチウム
(LiNbO3)やタンタル酸リチウム(LiTaO3)等の電気光
学結晶基板上に構成すれば、複雑な光学系の位置合わせ
が不要で且つ小型な変位計が実現できる。ところが、通
常の干渉計は、非測定物の変位に応じて、周期的な位相
信号を出力する。即ち、非測定物の変位がλ/2を越え
る場合、位相信号はλ/2の整数倍の不定性を有し、変
位量を特定できない。これを解決し、測定レンジを拡大
するための方法として、波長の異なる二種類以上の波長
で不定の整数値を求める方法が知られている。
2. Description of the Related Art In a conventional optical interferometer, there is a method utilizing a principle of a Michelson interferometer, a Mach-Zehnder interferometer or the like. If these interferometers are configured on an electro-optic crystal substrate such as lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ), a compact displacement gauge that does not require complicated optical system alignment can be realized. . However, a normal interferometer outputs a periodic phase signal according to the displacement of a non-measurement object. That is, when the displacement of the non-measurement object exceeds λ / 2, the phase signal has an indeterminacy of an integral multiple of λ / 2, and the displacement cannot be specified. As a method for solving this problem and expanding the measurement range, a method is known in which an indefinite integer value is obtained at two or more wavelengths having different wavelengths.

【0003】図2は、従来の光導波路を用いた二波長変
位センサの全体構成図である。図2において、1は光源
モジュール、2はレーザ光を照射する半導体レーザ、1
1は光導波路素子、12は光源から導かれた光波を該光
導波路素子11に入射するための光源入射用ポート、1
3は光を二分する3dBカプラー、14は参照光が通過
する光導波路、15は参照光を反射するミラー、16は
測定光が通過する光導波路、17は測定光を被測定物へ
集光させるレンズ、18は受光器へ向かう測定光と参照
光が入射する信号出力ポート、19は変調器、21は測
定光と参照光を受光する受光器、22は受光素子、F1
は偏波面保持光ファイバー、G1はマルチモード光ファ
イバーである。なお、一桁番台の符号は光源モジュール
1の構成要素を、10番台の符号は光導波路素子11の
構成要素を、20番台の符号は受光器21の構成要素を
夫々示し、以後の説明で統一的に用いる。
FIG. 2 is an overall configuration diagram of a conventional two-wavelength displacement sensor using an optical waveguide. In FIG. 2, 1 is a light source module, 2 is a semiconductor laser for irradiating a laser beam, 1
1 is an optical waveguide element, 12 is a light source input port for inputting a light wave guided from a light source to the optical waveguide element 11, 1
Reference numeral 3 denotes a 3 dB coupler that bisects light, reference numeral 14 denotes an optical waveguide through which reference light passes, reference numeral 15 denotes a mirror that reflects reference light, reference numeral 16 denotes an optical waveguide through which measurement light passes, and reference numeral 17 focuses the measurement light on an object to be measured. Lens, 18 is a signal output port to which the measuring light and the reference light are directed toward the light receiving device, 19 is a modulator, 21 is a light receiving device that receives the measuring light and the reference light, 22 is a light receiving element, F1
Is a polarization maintaining optical fiber, and G1 is a multimode optical fiber. Note that single-digit reference numerals indicate constituent elements of the light source module 1, 10-th reference numerals indicate constituent elements of the optical waveguide element 11, and 20-th reference numerals indicate constituent elements of the light receiver 21. Used for

【0004】以下、図2を用いて、従来の光導波路を用
いた二波長変位センサの動作原理について述べる。図2
において、半導体レーザ2から出た光波は、偏波面保持
光ファイバーF1で光導波路素子11に形成された光源
入射用ポート12に導かれ、光導波路素子11内に作り
込まれた3dBカプラー13で二分される。光導波路1
4に導かれた光は、ミラー15で反射され、再度、3d
Bカプラー13を経て参照光となる。光導波路16に導
かれた光波は、測定光としてレンズ17で被測定物に集
光され、被測定物からの反射光は、再度、レンズ17を
経て光導波路素子端に戻り3dBカプラー13に至る。
このとき3dBカプラー13は、参照光と測定光の位相
差に応じて、光波を光源入射用ポート12と、信号出力
ポート18とに振り分ける。
The principle of operation of a conventional two-wavelength displacement sensor using an optical waveguide will be described below with reference to FIG. FIG.
In the above, the light wave emitted from the semiconductor laser 2 is guided to the light source incidence port 12 formed in the optical waveguide element 11 by the polarization maintaining optical fiber F1, and is split into two by the 3 dB coupler 13 formed in the optical waveguide element 11. You. Optical waveguide 1
The light guided to 4 is reflected by the mirror 15 and again 3d.
The light becomes reference light via the B coupler 13. The light wave guided to the optical waveguide 16 is condensed on the object to be measured by the lens 17 as measurement light, and the reflected light from the object to be measured returns again to the end of the optical waveguide element via the lens 17 and reaches the 3 dB coupler 13. .
At this time, the 3 dB coupler 13 distributes the light wave to the light source input port 12 and the signal output port 18 according to the phase difference between the reference light and the measurement light.

【0005】信号出力ポート18に振り分けられた光波
は、マルチモード光ファイバーG1に導かれ、受光器2
1に入射するようになっている。一方、光源入射用ポー
ト12に振り分けられた光波は、光ファイバーF1を経
て半導体レーザ2に戻る。光導波路14には、参照光と
測定光の位相差を正確に計測するために変調器19が設
けられている。干渉計の測定安定性を高めるためには、
半導体レーザ2の波長安定化が重要な要素となり、その
ために戻り光をカットするためのアイソレータを偏波面
保持光ファイバーF1と半導体レーザ2の間に設けられ
ている。さて、半導体レーザ2の発振波長は、僅かな駆
動電流及び温度変化で変動する。これは、共振器の熱膨
張及び半導体材料の屈折率変動に依存するものである。
また、駆動電流及び温度を大きく変化させると、発振の
共振モードが変化し、発振波長は大きく変化する。これ
をモードホッピングと呼ぶ。このモードホッピングを利
用すれば、一個の半導体レーザで時間的に波長を切り換
え、二波長測定を行うことが可能である。
The light wave distributed to the signal output port 18 is guided to a multi-mode optical fiber G1, and
1. On the other hand, the light wave distributed to the light source incidence port 12 returns to the semiconductor laser 2 via the optical fiber F1. The optical waveguide 14 is provided with a modulator 19 for accurately measuring the phase difference between the reference light and the measurement light. To increase the measurement stability of the interferometer,
The wavelength stabilization of the semiconductor laser 2 is an important factor, and therefore, an isolator for cutting the return light is provided between the polarization plane maintaining optical fiber F1 and the semiconductor laser 2. The oscillation wavelength of the semiconductor laser 2 fluctuates due to a slight driving current and a small change in temperature. This depends on the thermal expansion of the resonator and the fluctuation of the refractive index of the semiconductor material.
Further, when the drive current and the temperature are greatly changed, the resonance mode of the oscillation is changed, and the oscillation wavelength is largely changed. This is called mode hopping. If this mode hopping is used, it is possible to switch the wavelength temporally with one semiconductor laser and perform two-wavelength measurement.

【0006】高速に波長を切り換えるためには、駆動電
流値を切り換える方法が有効である。即ち、異なる発振
モードとなるような特定の駆動電流値I1 ,I2 を選
び、電流I1 で半導体レーザ2を駆動し、発振波長λ1
で変調器19を駆動して位相測定を行った後、電流I2
で半導体レーザ2を駆動し、発振波長λ2 で変調器19
を駆動して同じように位相測定を行えば良い。各々の波
長で測定された位相Ψ1 ,Ψ2 を用いると、被測定物ま
での距離は、 d=λ1 ・λ2 /{(λ1 −λ2 )・[(ΔΨ/4π)
+1/(2・n)]} と求められる。但し、ΔΨ=(Ψ1 +Ψ2 )、nは測定
の不定性を示す整数である。ここで、ΔΨは±πの範囲
で変化する。従って、測定レンジはλ1 ・λ2 /{2
(λ2 −λ1 )}となる。波長λ1 の光源で測定した場
合、一波長の測定レンジはλ1 /2であるから、二波長
測定でレンジはλ2 /(λ2 −λ1 )倍に拡大する事に
なり、二波長の測定差を小さく取るほどレンジが大きく
なることが分かる。
To switch the wavelength at high speed, a method of switching the drive current value is effective. In other words, specific drive current values I 1 and I 2 that are different oscillation modes are selected, the semiconductor laser 2 is driven by the current I 1 , and the oscillation wavelength λ 1
Drives the modulator 19 to measure the phase, and then the current I 2
Drives the semiconductor laser 2 with the oscillation wavelength λ 2 and the modulator 19.
May be driven to perform phase measurement in the same manner. Using the phases Ψ 1 and Ψ 2 measured at each wavelength, the distance to the object to be measured is d = λ 1 · λ 2 / {(λ 12 ) · [(ΔΨ / 4π)
+ 1 / (2 · n)]}. Here, ΔΨ = (Ψ 1 + Ψ 2 ), and n is an integer indicating measurement indefiniteness. Here, ΔΨ changes in a range of ± π. Therefore, the measurement range is λ 1 · λ 2 / {2
2 −λ 1 )}. When measured at a wavelength lambda 1 of the light source, because the measurement range of the wave is lambda 1/2, the range becomes possible to enlarge the λ 2 / (λ 2 -λ 1 ) times in two wavelength measurement, dual-wavelength It can be seen that the range becomes larger as the measurement difference is smaller.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述の二波
長測定方法を実現するためには、以下のような問題があ
る。第一に、半導体レーザの共振モードの特性が一つ一
つ異なり、同じ電流値で駆動しても、安定な発振状態が
得られない。また、通常の半導体レーザが単一モードで
発振する条件は制約があり、大きく電流値を切り換えて
動作させた場合、二つの電流値で確実に単一モード発振
することが期待できない。さらに、半導体レーザの波長
安定性は変位測定精度に直接影響するが、半導体レーザ
の発振波長は駆動電流と温度の変化に応じて変動するた
め、厳密な電流と温度の制御が必要となる。
However, in order to realize the above-described two-wavelength measuring method, there are the following problems. First, the characteristics of the resonance modes of the semiconductor laser are different one by one, and a stable oscillation state cannot be obtained even when driven by the same current value. In addition, the conditions under which a normal semiconductor laser oscillates in a single mode are limited, and when the semiconductor laser is operated while largely switching current values, it is not possible to reliably perform single mode oscillation at two current values. Furthermore, although the wavelength stability of the semiconductor laser directly affects the displacement measurement accuracy, the oscillation wavelength of the semiconductor laser fluctuates according to changes in the drive current and the temperature, so that strict current and temperature control is required.

【0008】第二に、電流値を大きく変化させて半導体
レーザの発振波長を切り換えると、同時にパワーも大き
く変化してしまうことである。ニオブ酸リチウム結晶基
板に作製した光導波路には光の強度に応じて屈折率が変
化する特性があり、波長切り換え直後は光の強度変動に
より光導波路自体の屈折率変化で参照光と測定光の位相
差が経時的に変動してしまうため、安定するのを待って
から位相測定を行う必要がある。このため、測定時間が
長くなるという問題を生じる。また二つの波長での位相
測定が時間的に異なるため、試料の動きが早くなるほど
測定誤差が大きくなる欠点を持つ。本発明は、上記の問
題点に鑑みてなされたものであり、その目的とするとこ
ろは、安定かつ広い測定レンジが得られる光導波路型変
位センサを実現することにある。
Second, when the oscillation wavelength of the semiconductor laser is switched by greatly changing the current value, the power also changes greatly at the same time. An optical waveguide fabricated on a lithium niobate crystal substrate has the property that the refractive index changes according to the light intensity. Immediately after wavelength switching, the reference light and the measurement light are changed by the refractive index change of the optical waveguide itself due to the light intensity fluctuation. Since the phase difference fluctuates with time, it is necessary to wait for the phase difference to stabilize before performing the phase measurement. For this reason, there is a problem that the measurement time becomes long. In addition, since the phase measurement at the two wavelengths is different in time, there is a disadvantage that the measurement error increases as the sample moves faster. The present invention has been made in view of the above problems, and an object of the present invention is to realize an optical waveguide type displacement sensor capable of obtaining a stable and wide measurement range.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る光導波路型変位センサは、方向性結合
型光導波路素子を用いた光導波路型変位センサにおい
て、広帯域光源と、光束分離手段と透過波長の異なる複
数の狭帯域選別手段を備えた受光手段と、参照光と測定
光の行路差が該狭帯域選別手段の帯域幅で決まる干渉長
以下となるように長さの調整された参照光延長用導波路
を有するようにしたことを特徴としている。
In order to achieve the above object, an optical waveguide type displacement sensor according to the present invention is an optical waveguide type displacement sensor using a directional coupling type optical waveguide element. A light receiving unit including a plurality of narrow band selecting units having different transmission wavelengths from the separating unit; and adjusting the length such that a path difference between the reference light and the measuring light is equal to or less than an interference length determined by a bandwidth of the narrow band selecting unit. And a reference light extension waveguide.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を説明する
に先立ち、本発明に係る光導波路型変位センサにおける
作用について図1を用いて説明する。図1は、本発明に
係る光導波路型変位センサの全体構成図である。図1に
おいて、3は広帯域光源、14’は参照光延長用導波
路、23は光を平行にするレンズ、24はハーフミラ
ー、25は狭帯域フィルター、26は受光素子、27は
狭帯域フィルターである。なお、図2を参照して説明し
たのと同一の素子には同一符号を用い説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing embodiments of the present invention, the operation of the optical waveguide displacement sensor according to the present invention will be described with reference to FIG. FIG. 1 is an overall configuration diagram of an optical waveguide type displacement sensor according to the present invention. In FIG. 1, 3 is a broadband light source, 14 'is a reference light extension waveguide, 23 is a lens for collimating light, 24 is a half mirror, 25 is a narrow band filter, 26 is a light receiving element, and 27 is a narrow band filter. is there. Note that the same elements as those described with reference to FIG.

【0011】図1において、広帯域光源3から出射され
た光波は偏波面保持光ファイバーF1に入射し、偏光面
を保ったまま光導波路素子11に形成された光源入射用
ポート12に導かれ、素子内に作り込まれた3dBカプ
ラー13で二分される。光導波路14に導かれた光は、
参照光延長用導波路14’に入射し、ミラー15で反射
され、再度、3dBカプラー13を経て参照光となる。
光導波路16に導かれた光波は、測定光として光導波路
素子端から出射し、レンズ17で被測定物に集光され、
被測定物からの反射光は、再度、レンズ17を経て光導
波路素子端にもどり3dBカプラー13にいたる。この
とき3dBカプラー13は、参照光と測定光の位相差に
応じて、光波を光源入射用ポート14と、信号出力ポー
ト18とに振り分ける。信号出力ポート18に振り分け
られた光波は、マルチモード光ファイバーG1を介して
信号光として受光器に入射するようになっている。光導
波路14には、参照光と測定光の位相差を正確に計るた
めに変調器19が設けられている。
In FIG. 1, a light wave emitted from a broadband light source 3 enters a polarization plane maintaining optical fiber F1 and is guided to a light source incidence port 12 formed in an optical waveguide element 11 while maintaining a polarization plane. Is divided into two parts by a 3 dB coupler 13 built in. The light guided to the optical waveguide 14 is
The light enters the reference light extension waveguide 14 ′, is reflected by the mirror 15, and becomes reference light again through the 3 dB coupler 13.
The light wave guided to the optical waveguide 16 exits from the end of the optical waveguide element as measurement light, and is condensed on the object to be measured by the lens 17.
The reflected light from the object to be measured returns to the end of the optical waveguide element via the lens 17 again, and reaches the 3 dB coupler 13. At this time, the 3 dB coupler 13 distributes the light wave to the light source input port 14 and the signal output port 18 according to the phase difference between the reference light and the measurement light. The light wave distributed to the signal output port 18 is incident on the light receiver as signal light via the multi-mode optical fiber G1. The optical waveguide 14 is provided with a modulator 19 for accurately measuring the phase difference between the reference light and the measurement light.

【0012】受光器21では、マルチモード光ファイバ
ーG1からの出射光がレンズ23で平行光にされ、ハー
フミラー24に入射する。ハーフミラー24で反射した
光波は狭帯域フィルター25を経て受光素子26に入射
する。ハーフミラー24を透過した光波は、狭帯域フィ
ルター27を経て受光素子22に入射する。受光素子2
6及び22に入射した光波から、参照光と測定光の位相
差に応じて変化する干渉信号が得られ、被測定物の変位
が測定される。この時、受光素子26の干渉信号から狭
帯域フィルター25の透過波長で測定した位相信号が得
られ、受光素子22の干渉信号から狭帯域フィルター2
7の透過波長で測定した位相信号が得られる。そこで、
二つの狭帯域フィルターの透過波長をλ1 ,λ2 とすれ
ば、実質的に光源の発振波長を切り換えて測定した場合
と同様の測定結果が得られる。
In the light receiver 21, the light emitted from the multi-mode optical fiber G1 is collimated by the lens 23 and enters the half mirror 24. The light wave reflected by the half mirror 24 enters the light receiving element 26 via the narrow band filter 25. The light wave transmitted through the half mirror 24 enters the light receiving element 22 through the narrow band filter 27. Light receiving element 2
From the light waves incident on 6 and 22, an interference signal that changes according to the phase difference between the reference light and the measurement light is obtained, and the displacement of the object to be measured is measured. At this time, a phase signal measured at the transmission wavelength of the narrow band filter 25 is obtained from the interference signal of the light receiving element 26, and the narrow band filter 2 is obtained from the interference signal of the light receiving element 22.
Thus, a phase signal measured at a transmission wavelength of 7 is obtained. Therefore,
Assuming that the transmission wavelengths of the two narrow-band filters are λ 1 and λ 2 , a measurement result similar to that obtained when the oscillation wavelengths of the light source are switched is measured.

【0013】この方式では光源3の駆動が、単一電流で
行われるため、安定な動作が可能である。また、光源3
の波長が揺らいでも、変位測定波長は実質的に受動素子
である狭帯域フィルター25,27で固定されているた
め、厳密な電流と温度の制御は必要ない。また、光導波
路に入射する光波のパワーは全く変化しないため、光の
強度に応じて光導波路の屈折率が変化する問題が避けら
れる。また、二系統の位相計測が同時に行えるため、測
定時間が短くなる。また、同じ理由で、二つの波長での
位相測定が同時であるため、試料の動きが早くなるほど
測定誤差が大きくなる問題が避けられる。
In this system, since the light source 3 is driven by a single current, a stable operation is possible. Light source 3
Even if the wavelength fluctuates, the displacement measurement wavelength is substantially fixed by the narrow-band filters 25 and 27, which are passive elements, so that strict current and temperature control is not required. Further, since the power of the light wave incident on the optical waveguide does not change at all, the problem that the refractive index of the optical waveguide changes according to the intensity of light can be avoided. In addition, since two systems of phase measurement can be performed simultaneously, the measurement time is shortened. Further, for the same reason, since the phase measurement at the two wavelengths is performed at the same time, the problem that the measurement error increases as the sample moves faster can be avoided.

【0014】但し、この方式では、狭帯域フィルターの
帯域幅で可干渉長が制約され、帯域幅1nmのフィルタ
ーでも可干渉長は数百μm程度である。従って、参照光
と測定光を干渉させて計測するためには、両光波の光路
長差を数百μm以内に調整する必要がある。そのために
参照光延長用導波路14’は、レンズに比べて高い屈折
率を有する材料で作製する必要がある。レンズ材料とし
て通常の光学ガラス、参照光延長用導波路基板としてニ
オブ酸リチウムを用いれば後者の屈折率は前者に比べ十
分高く、光路長差0を達成する事が可能である。このよ
うに、広帯域光源3と、参照光と測定光の行路差が狭帯
域フィルターの帯域幅で決まる可干渉長以下となるよう
に長さの調整された参照光延長用導波路14’を有する
光導波路型干渉計と、透過波長の異なる複数の狭帯域選
別手段25,27を使用する事で、光源の波長を超える
大きさの段差が安定に測定できる光導波路型変位センサ
を提供することが可能となる。
However, in this method, the coherence length is restricted by the bandwidth of the narrow band filter, and the coherence length is about several hundred μm even with a filter having a bandwidth of 1 nm. Therefore, in order to perform measurement by causing the reference light and the measurement light to interfere with each other, it is necessary to adjust the optical path length difference between the two light waves to within several hundred μm. Therefore, the reference light extension waveguide 14 ′ needs to be made of a material having a higher refractive index than the lens. If ordinary optical glass is used as a lens material and lithium niobate is used as a reference light extension waveguide substrate, the refractive index of the latter is sufficiently higher than that of the former, and an optical path length difference of 0 can be achieved. As described above, the broadband light source 3 and the reference light extending waveguide 14 ′ whose length is adjusted such that the path difference between the reference light and the measurement light is equal to or less than the coherence length determined by the bandwidth of the narrow band filter are provided. By using an optical waveguide interferometer and a plurality of narrow band selecting means 25 and 27 having different transmission wavelengths, it is possible to provide an optical waveguide displacement sensor capable of stably measuring a step having a size exceeding the wavelength of the light source. It becomes possible.

【0015】実施例 以下、図1を用いて本発明に係る光導波路型変位センサ
の実施例について具体的に説明する。図1において、広
帯域光源3として、中心波長840nm、スペクトル幅
20nmのスーパールミネッセントダイオード(SL
D)を用いた。SLDから出射された光波は偏波面保持
光ファイバーF1に入射し、偏光面を保ったまま光導波
路素子11に形成された光源入射用ポート12に導か
れ、光導波路素子11内に設けられた3dBカプラー1
3で二分される。光導波路14に導かれた光は、参照光
延長用導波路14’に入射し、ミラー15で反射され、
再度、3dBカプラー13を経て参照光となる。
Embodiment An embodiment of an optical waveguide type displacement sensor according to the present invention will be specifically described below with reference to FIG. In FIG. 1, a superluminescent diode (SL) having a center wavelength of 840 nm and a spectral width of 20 nm is used as the broadband light source 3.
D) was used. The light wave emitted from the SLD enters the polarization-maintaining optical fiber F1, is guided to the light source incidence port 12 formed in the optical waveguide element 11 while maintaining the polarization plane, and is provided with a 3 dB coupler provided in the optical waveguide element 11. 1
Divided by three. The light guided to the optical waveguide 14 enters the reference light extension waveguide 14 ′, is reflected by the mirror 15,
Again, the light becomes reference light via the 3 dB coupler 13.

【0016】光導波路素子11と参照光延長用導波路1
4’は共に、ニオブ酸リチウム結晶基板にプロトン交換
法で作製されている。参照光延長用導波路14’は、測
定光の光学長に合わせて、8.15mmとした。ニオブ
酸リチウムの屈折率は波長840nmで2.175であ
り、光路長は17.73mmとなる。光導波路素子11
の端面は8°に研磨されており、参照光と測定光の出射
端で前者は0.611mm長くなり、測定光出射端面を
基準とすると光路長は18.34mmとなる。光導波路
素子11と参照光延長用導波路14’ともに導波路と導
波路端面のなす角は8°になっており、両者は紫外線硬
化樹脂で接着されている。
Optical Waveguide Element 11 and Reference Light Extension Waveguide 1
4 ′ are both produced on a lithium niobate crystal substrate by a proton exchange method. The reference light extension waveguide 14 'was set to 8.15 mm in accordance with the optical length of the measurement light. The refractive index of lithium niobate is 2.175 at a wavelength of 840 nm, and the optical path length is 17.73 mm. Optical waveguide element 11
Is polished to 8 °, the former is 0.611 mm longer at the emission end of the reference light and the measurement light, and the optical path length is 18.34 mm based on the measurement light emission end surface. The angle between the waveguide and the end face of the waveguide of both the optical waveguide element 11 and the reference light extension waveguide 14 'is 8 °, and both are bonded with an ultraviolet curing resin.

【0017】一方、光導波路16に導かれた光波は、測
定光として光導波路素子端から出射し、レンズ17で被
測定物に集光され、反射光は再度レンズ17を経て光導
波路素子端にもどり3dBカプラー13にいたる。レン
ズ17には、端面を8°に研磨した屈折率分布型集光レ
ンズを用いた。レンズ端面から測定光の焦点までの距離
は1.3mmとなる。従って、測定光の光路長は18.
35mmとなり、参照光の光路長と一致する。
On the other hand, the light wave guided to the optical waveguide 16 exits from the end of the optical waveguide element as measurement light, is condensed on the object to be measured by the lens 17, and the reflected light passes through the lens 17 again to the end of the optical waveguide element. Return to the 3dB coupler 13. As the lens 17, a gradient index condenser lens whose end face was polished to 8 ° was used. The distance from the lens end surface to the focal point of the measurement light is 1.3 mm. Therefore, the optical path length of the measurement light is 18.
35 mm, which matches the optical path length of the reference light.

【0018】このとき、3dBカプラー13は、参照光
と測定光の位相差に応じて、光波を光源入射用ポート1
2と信号出力ポート18とに振り分ける。信号出力ポー
ト18に振り分けられた光波は、マルチモード光ファイ
バーG1を介して信号光として受光器21に入射するよ
うになっている。光導波路14には、参照光と測定光の
位相差を正確に計るために変調器19が設けられてい
る。受光部では、マルチモード光ファイバーG1からの
出射光がレンズ23で平行光にされ、ハーフミラー24
に入射する。ハーフミラー24で反射した光波は中心波
長842nm、透過帯域幅1nmの狭帯域フィルター2
5を経て受光素子26に入射する。ハーフミラー24を
透過した光波は、中心波長840nm、透過帯域幅1n
mの狭帯域フィルター27を経て受光素子22に入射す
る。従って、受光素子26によって得られる信号は、波
長842nmの光源で測定した場合と同じ結果が得られ
る一方、受光素子22によって得られる信号は、波長8
40nmの光源で測定した場合と同じ結果が得られる。
それぞれの受光素子の干渉信号から得られた位相情報か
ら、177μm(二波長の合成波長の1/2)の段差が
測定可能となる。
At this time, the 3 dB coupler 13 transmits the light wave according to the phase difference between the reference light and the measurement light.
2 and the signal output port 18. The light wave distributed to the signal output port 18 is incident on the light receiver 21 as signal light via the multi-mode optical fiber G1. The optical waveguide 14 is provided with a modulator 19 for accurately measuring the phase difference between the reference light and the measurement light. In the light receiving section, the light emitted from the multi-mode optical fiber G1 is collimated by the lens 23,
Incident on. The light wave reflected by the half mirror 24 has a center wavelength of 842 nm and a transmission band width of 1 nm.
After that, the light enters the light receiving element 26. The light wave transmitted through the half mirror 24 has a center wavelength of 840 nm and a transmission bandwidth of 1 n.
The light enters the light receiving element 22 through the narrow band filter 27 of m. Therefore, the signal obtained by the light receiving element 26 has the same result as that obtained by measurement with a light source having a wavelength of 842 nm, while the signal obtained by the light receiving element 22 has a wavelength of 8
The same results are obtained as when measured with a 40 nm light source.
From the phase information obtained from the interference signals of the respective light receiving elements, a step of 177 μm (1 / of the combined wavelength of the two wavelengths) can be measured.

【0019】なお、一般に誘電体多層膜で作製される狭
帯域フィルターは、透過中心波長の入射角依存性がある
ので、この性質を利用して上記狭帯域フィルターを透明
基板に誘電体多層膜を形成して作製すれば、上記実施例
の受光器21で、狭帯域フィルター27の代わりに、狭
帯域フィルター25と全く同じ特性の狭帯域フィルター
を傾けて設置することもできる。
In general, a narrow band filter made of a dielectric multilayer film has an incident angle dependence of a transmission center wavelength. Therefore, by utilizing this property, the narrow band filter is used to form the dielectric multilayer film on a transparent substrate. If formed and manufactured, a narrow band filter having exactly the same characteristics as the narrow band filter 25 can be installed in the light receiver 21 of the above-described embodiment in place of the narrow band filter 27 at an angle.

【0020】[0020]

【発明の効果】本発明に係る光導波路型変位センサは、
以上説明したように広帯域光源と、参照光と測定光の行
路差を狭帯域選別手段の帯域幅で決まる干渉長以下とな
るように長さの調整された参照光延長用導波路を備え、
光束分離手段と相互に透過波長の異なる複数の狭帯域選
別手段とを備えた受光手段を使用しているから、安定か
つ広い測定レンジで変位測定ができるという利点があ
る。
The optical waveguide type displacement sensor according to the present invention comprises:
As described above, the broadband light source, the reference light and the reference light and the reference light extension waveguide, the length of which is adjusted so as to be equal to or less than the interference length determined by the bandwidth of the narrowband selection means,
Since the light receiving means including the light beam separating means and a plurality of narrow band selecting means having mutually different transmission wavelengths is used, there is an advantage that the displacement can be measured in a stable and wide measuring range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光導波路型変位センサの実施例を
示した概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an optical waveguide type displacement sensor according to the present invention.

【図2】従来の光導波路型干渉測定装置の実施例を示し
た概略構成図である。
FIG. 2 is a schematic configuration diagram showing an embodiment of a conventional optical waveguide type interference measuring device.

【符号の説明】[Explanation of symbols]

1 光源モジュール 2 半導体レーザ 3 広帯域光源 11 光導波路素子 12 光源入射用ポート 13 3dBカプラー 14 光導波路 14’ 参照光延長用導波路 15 ミラー 16 光導波路 17 集光用レンズ 18 出射ポート 19 変調器 21 受光器 22 受光素子 23 レンズ 24 ハーフミラー 25 狭帯域フィルター 26 受光素子 27 狭帯域フィルター F1 偏波面保持光ファイバー G1 マルチモード光ファイバー REFERENCE SIGNS LIST 1 light source module 2 semiconductor laser 3 broadband light source 11 optical waveguide element 12 light source incident port 13 3 dB coupler 14 optical waveguide 14 ′ reference light extension waveguide 15 mirror 16 optical waveguide 17 condensing lens 18 emission port 19 modulator 21 light reception Device 22 light receiving element 23 lens 24 half mirror 25 narrow band filter 26 light receiving element 27 narrow band filter F1 polarization maintaining optical fiber G1 multimode optical fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 方向性結合型光導波路素子を用いた光導
波路型変位センサにおいて、広帯域光源と、光束分離手
段と透過波長の異なる複数の狭帯域選別手段を備えた受
光手段と、参照光と測定光の行路差が該狭帯域選別手段
の帯域幅で決まる干渉長以下となるように長さの調整さ
れた参照光延長用導波路を有することを特徴とする光導
波路型変位センサ。
1. An optical waveguide displacement sensor using a directional coupling type optical waveguide element, comprising: a broadband light source; a light receiving unit including a plurality of narrow band selecting units having different transmission wavelengths from a light beam separating unit; An optical waveguide type displacement sensor comprising a reference light extension waveguide whose length is adjusted so that the path difference of the measurement light is equal to or less than an interference length determined by the bandwidth of the narrow band selecting means.
JP34753596A 1996-12-26 1996-12-26 Optical waveguide type displacement sensor Pending JPH10185523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34753596A JPH10185523A (en) 1996-12-26 1996-12-26 Optical waveguide type displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34753596A JPH10185523A (en) 1996-12-26 1996-12-26 Optical waveguide type displacement sensor

Publications (1)

Publication Number Publication Date
JPH10185523A true JPH10185523A (en) 1998-07-14

Family

ID=18390887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34753596A Pending JPH10185523A (en) 1996-12-26 1996-12-26 Optical waveguide type displacement sensor

Country Status (1)

Country Link
JP (1) JPH10185523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514513A (en) * 2008-02-19 2011-05-06 ライカ・ジオシステムズ・アクチェンゲゼルシャフト Electro-optic distance measurement unit
CN107478157A (en) * 2017-07-12 2017-12-15 中国航空工业集团公司西安飞行自动控制研究所 A kind of digitally coded Optical displacement sensor
CN107478156A (en) * 2017-07-12 2017-12-15 中国航空工业集团公司西安飞行自动控制研究所 A kind of Optical displacement sensor based on recombined white light interfered device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514513A (en) * 2008-02-19 2011-05-06 ライカ・ジオシステムズ・アクチェンゲゼルシャフト Electro-optic distance measurement unit
CN107478157A (en) * 2017-07-12 2017-12-15 中国航空工业集团公司西安飞行自动控制研究所 A kind of digitally coded Optical displacement sensor
CN107478156A (en) * 2017-07-12 2017-12-15 中国航空工业集团公司西安飞行自动控制研究所 A kind of Optical displacement sensor based on recombined white light interfered device

Similar Documents

Publication Publication Date Title
EP1620699B1 (en) Fiber optic gyroscope sensing loop doubler
US5798859A (en) Method and device for wavelength locking
US4621925A (en) Fiber-optic gyro
JPH0827193B2 (en) Fiber optic gyroscope with improved bias stability and reproducibility and method of making same
US11522341B2 (en) Tunable laser and laser transmitter
JPH10270800A (en) Variable wavelength semiconductor laser light source
JPS6337212A (en) Method for reading rotational speed by passive optical resonator
US4444503A (en) Ring interferometer with a mode diaphragm
JPH05249526A (en) Optical oscillator
CN116026306B (en) Gyroscope based on low-coherence light source and angular velocity measurement method thereof
JP3428067B2 (en) Displacement measuring method and displacement measuring device used therefor
JPH10185523A (en) Optical waveguide type displacement sensor
JPH085834A (en) Optical filter and oscillation wavelength stabilizing power source
JP2001308455A (en) Wavelength variable light source and optical component loss measuring instrument
JPH0447214A (en) Optical fiber gyroscope
US20030053064A1 (en) Wavelength detector and optical transmitter
JPS59166873A (en) Optical applied voltage and electric field sensor
JP2003069504A (en) Wavelength management module and wavelength management apparatus
JPH0755571A (en) Plarization dispersion measuring instrument
JPS61296223A (en) Optical frequency meter
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
JPH10232109A (en) Optical displacement sensor
JPS60104236A (en) Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber
JPS62254478A (en) Variable wavelength light source
JP2001345511A (en) Wavelength monitor