JP3428067B2 - Displacement measuring method and displacement measuring device used therefor - Google Patents

Displacement measuring method and displacement measuring device used therefor

Info

Publication number
JP3428067B2
JP3428067B2 JP12271693A JP12271693A JP3428067B2 JP 3428067 B2 JP3428067 B2 JP 3428067B2 JP 12271693 A JP12271693 A JP 12271693A JP 12271693 A JP12271693 A JP 12271693A JP 3428067 B2 JP3428067 B2 JP 3428067B2
Authority
JP
Japan
Prior art keywords
light
optical waveguide
crystal substrate
displacement
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12271693A
Other languages
Japanese (ja)
Other versions
JPH06331314A (en
Inventor
健司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12271693A priority Critical patent/JP3428067B2/en
Publication of JPH06331314A publication Critical patent/JPH06331314A/en
Application granted granted Critical
Publication of JP3428067B2 publication Critical patent/JP3428067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学的干渉による被測
定物の変位測定方法及びそれに用いる変位測定装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring method for an object to be measured due to optical interference and a displacement measuring apparatus used therefor.

【0002】[0002]

【従来の技術】レーザ、エレクトロニクス、マイクロコ
ンピュータ、センサ素子等の発達により、可干渉性に優
れるレーザ光を用いた光学的干渉による表面の微小部分
の変位測定方法が普及している。レーザ光を用いたこの
変位測定は、非接触でかつ高精度に行うことができる。
例えば、結晶ウェハ、光学部品、X線用ミラー等の表面
粗さの測定に利用されている。
2. Description of the Related Art With the development of lasers, electronics, microcomputers, sensor elements and the like, a method of measuring displacement of a minute portion of a surface by optical interference using a laser beam having excellent coherence has become widespread. This displacement measurement using laser light can be performed with high accuracy without contact.
For example, it is used for measuring the surface roughness of crystal wafers, optical components, X-ray mirrors, and the like.

【0003】上述のレーザ光を用いた光学的干渉による
表面の微小部分の変位測定方法は、一般に次のような構
成である。レーザ発振器から放射されたレーザ光をハー
フミラー、偏光ビームスプリッター等で参照光と照射光
とに分割し、一方の参照光を参照光反射用鏡で反射さ
せ、他方の照射光を被測定物に照射して反射させ、光路
長の違いから位相差の生じたこれら二つの反射光を干渉
させる。この干渉光を光検出素子で検知して、干渉の様
子によって被測定物における表面の微小部分の変位を測
定する。レーザ光を用いた光学的干渉による表面の微小
部分の変位測定方法において、判別可能な不連続変位の
最大値は、測定に用いるレーザ光の波長λの半分であ
る。
The above-mentioned method of measuring the displacement of a minute portion of the surface by optical interference using laser light generally has the following configuration. The laser light emitted from the laser oscillator is split into reference light and irradiation light by a half mirror, a polarization beam splitter, etc., one reference light is reflected by a reference light reflecting mirror, and the other irradiation light is applied to the DUT. It irradiates and reflects it, and these two reflected lights having a phase difference due to the difference in optical path length are caused to interfere with each other. The interference light is detected by the photodetector, and the displacement of the minute portion of the surface of the object to be measured is measured according to the state of the interference. In the method of measuring the displacement of a minute portion of the surface by optical interference using laser light, the maximum value of the discontinuous displacement that can be discriminated is half the wavelength λ of the laser light used for measurement.

【0004】しかし、従来の光学的干渉による被測定物
における表面の微小部分の変位測定方法では、単一波長
の光を発する光源を用いており、この光の単一波長より
大きな変位が不連続的に生じた場合、変位が判別できな
い。そこで、それぞれ波長の異なる単一波長の光を発す
る2種類以上の光源、例えば単一波長λ1 の光を発する
光源Aと単一波長λ2 (>λ1 )の光を発する光源Bか
らの光を用いると、この両光の合成波長λ3 が、判別可
能な不連続変位の最大値を規制する。なお、両光の合成
波長λ3 は、下記の(1)式となる。 λ3 =1/(1/λ1 −1/λ2 ) (1) (1)式より、波長λ1 と波長λ2 との差が小さいほ
ど、合成波長λ3 が大きくなるので、判別可能な不連続
変位の最大値も大きくできることが分かる。それぞれ波
長の異なる光を発する2種類以上の光源を用いるには、
二つ以上のレーザ発振器を用いる方法、白色光を分光器
等で2波長以上の光に分割させる方法などで得ることが
できる。
However, in the conventional method of measuring the displacement of a minute portion of the surface of the object to be measured by optical interference, a light source emitting a light of a single wavelength is used, and a displacement larger than the single wavelength of this light is discontinuous. If it happens, the displacement cannot be determined. Therefore, two or more types of light sources each emitting a light of a single wavelength different from each other, for example, a light source A emitting a light of a single wavelength λ 1 and a light source B emitting a light of a single wavelength λ 2 (> λ 1 ) When light is used, the combined wavelength λ 3 of the two lights regulates the maximum value of the discriminable discontinuous displacement. The combined wavelength λ 3 of both lights is given by the following equation (1). λ 3 = 1 / (1 / λ 1 −1 / λ 2 ) (1) From equation (1), the smaller the difference between the wavelength λ 1 and the wavelength λ 2 , the larger the synthetic wavelength λ 3, so it can be determined. It can be seen that the maximum value of such discontinuous displacement can also be increased. To use two or more types of light sources that emit different wavelengths of light,
It can be obtained by a method of using two or more laser oscillators, a method of splitting white light into light of two wavelengths or more by a spectroscope or the like.

【0005】なお、照射光の反射光と参照光の位相差を
測定する方法としては、ヘテロダイン干渉を生じさせ、
位相差計で位相を測定する方法、ヘテロダイン干渉を生
じさせ、ビート信号を測定する方法、ガラス基板上の光
導波路に抵抗加熱で位相変調を行い、位相変調による干
渉変化から位相を測定する方法、同時に2波長以上の光
を発するレーザを用いる方法がある。
As a method for measuring the phase difference between the reflected light of the irradiation light and the reference light, heterodyne interference is generated,
Method of measuring the phase with a phase difference meter, causing heterodyne interference, measuring the beat signal, performing phase modulation by resistance heating to the optical waveguide on the glass substrate, measuring the phase from the interference change due to the phase modulation, There is a method of using a laser that emits light of two or more wavelengths at the same time.

【0006】[0006]

【発明が解決しようとする課題】ところで、二つ以上の
レーザ発振器を用いる方法では、波長の異なる光を同一
の干渉系に導入したり、被測定物の表面の同一位置にこ
れらの光を導くことが、測定システムを複雑化する。そ
のため、装置の構成が大きくなり、ミラー、レンズ、プ
リズム等の光学要素の光学的調整が煩雑になったり、ま
た、わずかな衝撃や振動によって、光路の調整ずれが生
じる危険がある。そのうえ、わずかに波長の異なる光の
干渉の違いを検出するは、非常に安定性の優れた干渉系
を用いなければならない。白色光を分光器で用いて波長
の異なる二つの光に分割しても、分割された光は波長に
よって分光器からの射出角が異なるので、上述同様に、
分割された光を被測定物の表面の同一位置に導くため
に、特別の工夫が必要となる。
By the way, in the method using two or more laser oscillators, lights having different wavelengths are introduced into the same interference system, or these lights are guided to the same position on the surface of the object to be measured. This complicates the measurement system. Therefore, the configuration of the device becomes large, and optical adjustment of optical elements such as a mirror, a lens, and a prism becomes complicated, and a slight shock or vibration may cause misalignment of the optical path. Moreover, in order to detect the difference in interference between lights having slightly different wavelengths, it is necessary to use an interferometer with excellent stability. Even if white light is used in a spectroscope to split it into two lights with different wavelengths, the split light has different exit angles from the spectroscope depending on the wavelength.
Special means are required to guide the divided light to the same position on the surface of the object to be measured.

【0007】なお、照射光の反射光と参照光の位相差を
測定する方法には、次のような問題がある。すなわち、
位相差計で位相を測定する場合、ヘテロダイン干渉を生
じさせるためのAOM変調器や位相変調器が複数必要
で、小型に干渉系を組むことが困難であり、加えて位相
差計の応答速度が遅いため、測定に時間がかかる欠点が
ある。ヘテロダイン干渉を生じさせ、ビート信号を測定
する場合も上記と同様に、AOM変調器や位相変調器が
複数必要で、小型に干渉系を組むことが難しく、しかも
半波長以下の変位は検出困難である。ガラス基板上の光
導波路に抵抗加熱で位相変調を行う場合は、温度上昇ま
での時間が電気光学効果に比べてはるかに遅いため、高
速な位相変調ができず、測定に時間がかかる欠点があ
る。2波長以上の光を発光するレーザを用いる場合、そ
れぞれの波長間のビート信号を測定するため、半波長以
下の変位は検出困難であり、λの数分の1の変位が実用
的な限界である。
The method of measuring the phase difference between the reflected light of the irradiation light and the reference light has the following problems. That is,
When the phase is measured by the phase difference meter, it is difficult to form a small interferometer because a plurality of AOM modulators and phase modulators are required to generate the heterodyne interference, and the response speed of the phase difference meter is increased. Since it is slow, there is a drawback that the measurement takes time. When a beat signal is measured by causing heterodyne interference, a plurality of AOM modulators and phase modulators are required as in the above case, it is difficult to form an interference system in a small size, and a displacement of a half wavelength or less is difficult to detect. is there. When performing phase modulation by resistance heating on an optical waveguide on a glass substrate, the time until temperature rise is much slower than the electro-optic effect, so high-speed phase modulation cannot be performed, and there is a drawback that measurement takes time. . When a laser that emits light of two or more wavelengths is used, the beat signal between the respective wavelengths is measured, so it is difficult to detect displacements of half a wavelength or less, and displacements of a fraction of λ are practical limits. is there.

【0008】本発明は、上述のような事情に鑑みてなさ
れたものであり、複数波長のレーザ光が発振可能な単一
光源、及び集積化した光学要素を用いることにより、判
別可能な不連続変位の最大値の拡大を図るとともに、調
整容易で迅速・高精度・高安定な変位測定を可能とし、
その測定方法を用いた小形で衝撃・振動に強い変位測定
装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and can be discriminated by using a single light source capable of oscillating laser beams having a plurality of wavelengths and an integrated optical element. In addition to expanding the maximum displacement value, adjustment is easy and quick, highly accurate and highly stable displacement measurement is possible.
An object of the present invention is to provide a compact displacement measuring device using the measuring method, which is resistant to shock and vibration.

【0009】[0009]

【課題を解決するための手段】本発明の変位測定方法
は、同一光源のレーザ光を参照光と照射光とに分割し
て、参照光を参照光反射用鏡に、照射光を被測定物にそ
れぞれ照射し、光路の違いによって位相差の生じた参照
光及び照射光のそれぞれの反射光を干渉させて、干渉光
から被測定物の表面の微小変位を測定する変位測定方法
において、発光電流の値によって波長の異なる2種類以
上のレーザ光を発振するレーザダイオード光源に、階段
波状に変調した発光電流を流して2種類以上の波長のレ
ーザ光を交互に発振させ、結晶基板上に構成した入力側
偏光子によりTM光、TE光のどちらか一方の偏光成分
を減衰させた後、3dBカプラでこのレーザ光を参照光
と照射光とに分割し、これら参照光及び照射光の一方
を、あるいは両方を、結晶基板上の光導波路を往復する
前に、結晶基板上に構成した電気光学効果を利用する位
相変調器によって位相変調せしめるとともに、位相変調
された参照光と照射光を3dBカプラで干渉させた後、
出力側偏光子により入力側偏光子にて減衰させたのと同
じ方向の偏光成分を減衰させ、干渉光を検出すること
を、第1の特徴としている。
A displacement measuring method according to the present invention divides a laser beam of the same light source into a reference beam and an irradiating beam, the reference beam is used as a reference beam reflecting mirror, and the irradiating beam is the object to be measured. In the displacement measurement method of measuring the micro displacement of the surface of the DUT from the interference light, the reflected light of the reference light and the reflected light of which the phase difference is caused by the difference of the optical path are interfered with each other, A laser diode light source that oscillates two or more types of laser light having different wavelengths depending on the value of Input side
Polarization component of either TM light or TE light depending on the polarizer
After attenuating , the laser light is split into a reference light and an irradiation light by a 3 dB coupler, and one or both of the reference light and the irradiation light is reciprocated before reciprocating in the optical waveguide on the crystal substrate. After phase modulation is performed by the phase modulator using the electro-optic effect formed on the substrate, and the reference light and the irradiation light that have been phase modulated are caused to interfere with each other by the 3 dB coupler ,
Same as attenuation by input side polarizer by output side polarizer
Flip attenuates the polarized light component in the direction that you detect the interference light, and the first feature.

【0010】また、本発明の変位測定方法は、第1の特
徴に加えて結晶基板がLiNbO3結晶基板又はLiT
aO3 結晶基板であることを第2の特徴としている。更
に、本発明の変位測定方法は、第1と第2の特徴に加え
て結晶基板上に構成した位相変調器によって位相変調さ
れた参照光と照射光の3dBカプラでの干渉がプロトン
交換光導波路によってなさることを特徴としている。
In addition to the first feature, the displacement measuring method of the present invention is characterized in that the crystal substrate is LiNbO 3 crystal substrate or LiT.
The second feature is that it is an aO 3 crystal substrate. Further, in the displacement measuring method of the present invention, in addition to the first and second features, the interference of the reference light and the irradiation light, which are phase-modulated by the phase modulator formed on the crystal substrate, in the 3 dB coupler is a proton exchange optical waveguide. It is characterized by being done by.

【0011】本発明の変位測定装置は、発光用電源と、
光源と、干渉系と、位相変調用電源とから構成され、光
源からの光を干渉系に導き、この光を参照光と照射光と
に分割して、参照光を参照光反射用鏡に、照射光を被測
定物にそれぞれ照射し、参照光の反射光と照射光の反射
光との干渉光を検出して、被測定物の表面の微小変位を
測定する変位測定装置において、光源が、発光電流の値
によって波長の異なる2種類以上のレーザ光を発振する
レーザダイオード光源であり、干渉系が、二つの偏光子
と、光導波路を介してこれら偏光子と結合する3dBカ
プラと、参照光用光導波路及び照射光用光導波路の一方
に、あるいは両方に設けた位相変調器と、を同一結晶基
板に集積した光導波路型干渉系であることを第1の特徴
としている。
The displacement measuring device of the present invention comprises a light emitting power source,
It is composed of a light source, an interference system, and a power source for phase modulation, guides light from the light source to the interference system, divides this light into reference light and irradiation light, and uses the reference light as a reference light reflecting mirror. Irradiation light is irradiated to the object to be measured, the interference light between the reflected light of the reference light and the reflected light of the irradiation light is detected, and in the displacement measuring device that measures the minute displacement of the surface of the object to be measured, the light source is A laser diode light source that oscillates two or more types of laser light having different wavelengths depending on the value of the emission current, and an interference system includes two polarizers, a 3 dB coupler coupled to these polarizers through an optical waveguide, and a reference light. The first feature is that the optical waveguide type interference system in which one or both of the optical waveguide for irradiation and the optical waveguide for irradiation light and the phase modulator provided on both are integrated on the same crystal substrate.

【0012】また、本発明の変位測定装置は、第1の特
徴に加えて光導波路型干渉系における結晶基板がLiN
bO3 結晶基板又はLiTaO3 結晶基板であることを
第2の特徴としている。更に、本発明の変位測定装置
は、第1と第2の特徴に加えて光導波路型干渉系がプロ
トン交換光導波路で構成されていることを特徴としてい
る。
In addition to the first feature, the displacement measuring device of the present invention is characterized in that the crystal substrate in the optical waveguide type interference system is LiN.
The second characteristic is that it is a bO 3 crystal substrate or a LiTaO 3 crystal substrate. Further, the displacement measuring device of the present invention is characterized in that, in addition to the first and second characteristics, the optical waveguide type interference system is composed of a proton exchange optical waveguide.

【0013】[0013]

【作用】図1は、本発明の変位測定方法及びそれに用い
る変位測定装置の作用を説明するための概念図である。
図中、1は発光電流の値によって波長の異なる2種類以
上のレーザ光を発振するレーザダイオード光源、2は光
アイソレータ、3は入力側光ファイバ、4は結晶基板で
ある。結晶基板4上には、次の光学要素を含む光導波路
型干渉系が構成されている。すなわち、入力側偏光子
5,レーザ光を参照光と照射光とに分割する3dBカプ
ラ6,電界を印加する位相変調用電極7a,7b,7c
及び位相変調用電極7a,7b間に形成された参照光用
光導波路8,位相変調用電極7b,7c間に形成された
照射光用光導波路10,出力側偏光子13,入力端1
6,出力端17等が光導波路干渉系を構成する。
1 is a conceptual diagram for explaining the operation of the displacement measuring method of the present invention and the displacement measuring apparatus used therefor.
In the figure, 1 is a laser diode light source that oscillates two or more types of laser light having different wavelengths depending on the value of emission current, 2 is an optical isolator, 3 is an input side optical fiber, and 4 is a crystal substrate. An optical waveguide type interference system including the following optical elements is formed on the crystal substrate 4. That is, an input side polarizer 5, a 3 dB coupler for splitting laser light into reference light and irradiation light 6, and phase modulation electrodes 7a, 7b, 7c for applying an electric field.
And the reference light optical waveguide 8 formed between the phase modulation electrodes 7a and 7b, the irradiation light optical waveguide 10 formed between the phase modulation electrodes 7b and 7c, the output side polarizer 13, and the input end 1.
6, the output end 17 and the like constitute an optical waveguide interference system.

【0014】9は光導波路干渉系の一端に設けた参照光
反射用鏡、11は集光レンズ、12は被測定物、14は
出力側光ファイバ、15は光検出用ダイオードである。
また、参照光用光導波路8と照射光用光導波路10に
は、位相変調用電極7a,7cと位相変調用電極7bに
よって互いに逆方向の電界が印加される構造で、位相変
調器18を構成する。3dBカプラ6は入力側偏光子5
の下を通る光導波路と参照光用光導波路8とを連結する
光導波路6a,出力側偏光子13の下を通る光導波路と
照射光用光導波路10とを連結する光導波路6bとの両
光導波路6a,6bが近接し、平行に位置することによ
り構成される。
Reference numeral 9 is a reference light reflecting mirror provided at one end of the optical waveguide interference system, 11 is a condenser lens, 12 is an object to be measured, 14 is an output side optical fiber, and 15 is a light detecting diode.
Further, the phase modulator 18 has a structure in which electric fields in opposite directions are applied to the reference light optical waveguide 8 and the irradiation light optical waveguide 10 by the phase modulation electrodes 7a and 7c and the phase modulation electrode 7b. To do. 3 dB coupler 6 is input side polarizer 5
Both the optical waveguide 6a that connects the optical waveguide that passes below and the optical waveguide 8 for reference light, and the optical waveguide 6b that connects the optical waveguide that passes below the output side polarizer 13 and the optical waveguide 10 for irradiation light The waveguides 6a and 6b are arranged close to each other and are located in parallel with each other.

【0015】図2に示すような階段波状に変調した発光
電流をレーザダイオード光源1に流し、階段波状の発光
電流に応じた2種類以上の波長のレーザ光を交互に発振
させる。このレーザ光は光アイソレータ2を通過した
後、入力側光ファイバ3を介して入力端16から結晶基
板4上の光導波路干渉系に伝搬する。光導波路干渉系に
おいて、レーザ光は入力側偏光子5を通り、3dBカプ
ラ6で参照光と照射光にほぼ均等に配分されて伝搬す
る。参照光は位相変調用電極7a,7b間の参照光用光
導波路8を伝播し、参照光反射用鏡9で反射させられ
る。参照光反射用鏡9からの反射光は、再び参照光用光
導波路8を通り3dBカプラ6に戻る。なお、階段波状
の変調電流波形は、必ずしも単調増加である必要はな
く、所定の電流が、ある時間連続する凹凸状の波形でも
同様な効果が得られる。
A stepwise wave-modulated light emission current as shown in FIG. 2 is passed through the laser diode light source 1 to alternately oscillate laser light of two or more kinds of wavelengths according to the stepwise wave light emission current. After passing through the optical isolator 2, this laser light propagates from the input end 16 to the optical waveguide interference system on the crystal substrate 4 via the input side optical fiber 3. In the optical waveguide interference system, the laser light passes through the input side polarizer 5 and propagates while being distributed almost equally to the reference light and the irradiation light by the 3 dB coupler 6. The reference light propagates through the reference light optical waveguide 8 between the phase modulation electrodes 7a and 7b and is reflected by the reference light reflecting mirror 9. The reflected light from the reference light reflecting mirror 9 passes through the reference light optical waveguide 8 again and returns to the 3 dB coupler 6. The staircase-shaped modulated current waveform does not necessarily need to be monotonically increasing, and the same effect can be obtained even if the predetermined current is continuous for a certain time and has an uneven waveform.

【0016】一方、照射光は位相変調用電極7b,7c
間の照射光用光導波路10を伝播して、光導波路干渉系
外へ射出し、集光レンズ11を通り被測定物12を照射
する。被測定物12からの反射光は、再び集光レンズ1
1,照射光用光導波路10を通り、3dBカプラ6に戻
る。3dBカプラ6において、参照光の反射光と照射光
の反射光とを干渉させ、光導波路6b,出力側偏光子1
3,出力端17を介して出力側光ファイバ14に伝播
し、光検出用ダイオード15に導かれる。位相変調によ
る干渉光の強度変化を、光検出用ダイオード15で検出
することにより反射光の位相変化を高精度に求め、被測
定物12の表面におけるλ/2の数百分の一から数万分
の一の微小変位を連続的に測定する。
On the other hand, the irradiation light is the phase modulation electrodes 7b and 7c.
The light is propagated through the optical waveguide 10 for irradiation light in between, emitted out of the optical waveguide interference system, and passed through the condenser lens 11 to irradiate the DUT 12. The reflected light from the DUT 12 is again collected by the condenser lens 1
1, passing through the irradiation light optical waveguide 10 and returning to the 3 dB coupler 6. In the 3 dB coupler 6, the reflected light of the reference light and the reflected light of the irradiation light are caused to interfere with each other, and the optical waveguide 6 b and the output side polarizer 1
3, propagates to the output side optical fiber 14 via the output end 17, and is guided to the photodetection diode 15. The phase change of the reflected light is obtained with high accuracy by detecting the intensity change of the interference light due to the phase modulation by the light detection diode 15, and the phase change of λ / 2 on the surface of the DUT 12 is from several hundredths to several tens of thousands. A minute displacement of a minute is continuously measured.

【0017】上述のように、本発明による変位測定方法
及び変位測定装置は、被測定物にレーザ光を照射し、光
路長変化により、被測定物表面の微小変位を測定するも
のである。発光電源は、階段波状の発光電流を供給する
ものである。用いるレーザダイオード光源1の特性に応
じて、2種類以上の大きさの発光電流が一定時間交互に
保持され、その波形は図2に示すように時間軸に対して
階段波状になっている。この波形が周期的に繰り返され
てもよい。レーザダイオード光源1は、発光電流の値に
よって波長の異なる2種類以上のレーザ光を発振するも
ので、ファブリ・ペロー共振器構造を有するものが用い
られる。このようなレーザダイオード光源1を用いるこ
とで、一つの光源で複数の波長のレーザ光を得ることが
できる。
As described above, the displacement measuring method and the displacement measuring apparatus according to the present invention measure the minute displacement of the surface of the object to be measured by irradiating the object to be measured with laser light and changing the optical path length. The light emitting power supply supplies a staircase-shaped light emitting current. According to the characteristics of the laser diode light source 1 to be used, two or more kinds of emission currents are alternately held for a certain period of time, and the waveform thereof has a stepwise waveform with respect to the time axis. This waveform may be repeated periodically. The laser diode light source 1 oscillates two or more types of laser light having different wavelengths depending on the value of the emission current, and has a Fabry-Perot resonator structure. By using such a laser diode light source 1, it is possible to obtain laser light of a plurality of wavelengths with one light source.

【0018】レーザダイオード光源1から光導波路干渉
系へレーザ光を伝播する光路の途中に設けてある光アイ
ソレータ2は、ノイズとなる戻り光をカットする。光ア
イソレータ2と光導波路干渉系とを連結する入力側光フ
ァイバ3,光導波路干渉系と光検出用ダイオード15と
を連結する出力側光ファイバ14には、公知の光ファイ
バを使用できる。光導波路干渉系は、結晶基板4上に金
属膜や誘電体膜を付与して作成される入力側偏光子5,
出力側偏光子13と3dBカプラ6及び位相変調器18
とを集積して形成される。この光導波路干渉系の結晶基
板4には、LiNbO3 (ニオブ酸リチウム)又はLi
TaO3 (タンタル酸リチウム)の結晶を用いることが
できる。
An optical isolator 2 provided in the middle of the optical path for propagating the laser light from the laser diode light source 1 to the optical waveguide interference system cuts off the returning light which becomes noise. Known optical fibers can be used for the input side optical fiber 3 for connecting the optical isolator 2 and the optical waveguide interference system 3, and for the output side optical fiber 14 for connecting the optical waveguide interference system and the photodetecting diode 15. The optical waveguide interference system includes an input side polarizer 5, which is formed by applying a metal film or a dielectric film on the crystal substrate 4.
Output side polarizer 13, 3 dB coupler 6 and phase modulator 18
It is formed by integrating and. The crystal substrate 4 of the optical waveguide interference system includes LiNbO 3 (lithium niobate) or Li
Crystals of TaO 3 (lithium tantalate) can be used.

【0019】位相変調器について述べれば、図1で位相
変調器18は、参照光用光導波路8と照射光用光導波路
10が、位相変調用電源18a並びに位相変調用電極7
a,7cと位相変調用電極7bによって互いに逆方向の
電界が印加される構造になっている。しかし、参照光用
光導波路8と照射光用光導波路10のうち、少なくとも
一方の光導波路の両側に電極を設ければよく、位相変調
用電極7a,7cのどちらかが無くても、位相変調器1
8は作用する。そうして、位相変調用電極7a,7cの
うち、少なくとも一方と位相変調用電極7bの間に所要
の大きさの電圧を印加すれば、参照光用光導波路8,照
射光用光導波路10を伝搬する光の位相差は、電気光学
効果により変調せしめられる。電気光学効果を利用した
位相変調器は、数十GHzの応答速度を有するものが作
られており、他の方法では得られない高速変調を実現で
きる。
Referring to the phase modulator, in FIG. 1, the phase modulator 18 includes a reference light optical waveguide 8 and an irradiation light optical waveguide 10, a phase modulation power supply 18a and a phase modulation electrode 7.
The electric fields in opposite directions are applied by the electrodes a, 7c and the phase modulation electrode 7b. However, it suffices if electrodes are provided on both sides of at least one of the reference light optical waveguide 8 and the irradiation light optical waveguide 10, and even if either of the phase modulation electrodes 7a and 7c is not provided, the phase modulation is performed. Bowl 1
8 works. Then, when a voltage of a required magnitude is applied between at least one of the phase modulation electrodes 7a and 7c and the phase modulation electrode 7b, the reference light optical waveguide 8 and the irradiation light optical waveguide 10 are formed. The phase difference of propagating light is modulated by the electro-optic effect. The phase modulator utilizing the electro-optic effect is made to have a response speed of several tens GHz, and high-speed modulation which cannot be obtained by other methods can be realized.

【0020】偏光子5,13は、結晶基板4の光導波路
6a,6bに金属を乗せて、TM光(基板平面と垂直な
方向に電界成分を有する光)、TE光(基板平面と平行
な方向に電界成分を有する光)どちらか一方の偏光成分
を吸収、又は放射により減衰させるものである。なお、
結晶基板4全体をプロトン交換光導波路で構成すれば、
結晶基板4自体がTM光を放射しTE光のみ伝搬するの
で、偏光子を特に設ける必要はなくなる。偏光子は、被
測定物からの反射光の偏光の純度を向上するために用い
る。偏光が乱れているままでは、完全な干渉が起こらな
いからである。
In the polarizers 5 and 13, TM light (light having an electric field component in a direction perpendicular to the substrate plane) and TE light (parallel to the substrate plane) are obtained by placing a metal on the optical waveguides 6a and 6b of the crystal substrate 4. Light having an electric field component in a direction) Either one of the polarized components is absorbed or attenuated by radiation. In addition,
If the entire crystal substrate 4 is composed of a proton exchange optical waveguide,
Since the crystal substrate 4 itself radiates TM light and propagates only TE light, it is not necessary to provide a polarizer. The polarizer is used to improve the purity of the polarized light of the reflected light from the object to be measured. This is because complete interference does not occur if the polarization remains disordered.

【0021】3dBカプラ6は、伝搬してきたレーザ光
を参照光と照射光に等配分し、それぞれ参照光用光導波
路8と照射光用光導波路10へ伝搬する。そして、参照
光反射用鏡9からの参照光の反射光、被測定物12から
の照射光の反射光は、再び3dBカプラ6で干渉せしめ
られる。参照光反射用鏡9は、結晶基板4上に形成した
照射光用光導波路10の終端面に、金属や酸化物を蒸着
して設ける。数種類の光学要素からなる光導波路型干渉
系を、同一の結晶基板4上に集積することで、各光学要
素の接続調整は不要となり、機械的にも安定し、光の結
合損失を低減できる。また、参照光光路である光導波路
6a,参照光用光導波路8と照射光光路である光導波路
6b,照射光用光導波路10とは、わずか数百μmしか
離れておらず、同じように熱変化するので、熱膨張の影
響が相殺され、その結果、精度が高く、安定な位相変位
測定が可能となる。
The 3 dB coupler 6 equally distributes the propagating laser light to the reference light and the irradiation light, and propagates them to the reference light optical waveguide 8 and the irradiation light optical waveguide 10, respectively. Then, the reflected light of the reference light from the reference light reflecting mirror 9 and the reflected light of the irradiation light from the DUT 12 are caused to interfere again by the 3 dB coupler 6. The reference light reflecting mirror 9 is provided by vapor-depositing a metal or an oxide on the end surface of the irradiation light optical waveguide 10 formed on the crystal substrate 4. By integrating the optical waveguide type interference system consisting of several kinds of optical elements on the same crystal substrate 4, it is not necessary to adjust the connection of each optical element, it is mechanically stable, and the optical coupling loss can be reduced. Further, the optical waveguide 6a, which is the reference light optical path, the optical waveguide 8 for reference light, and the optical waveguide 6b, which is the optical path for irradiation light, and the optical waveguide 10 for irradiation light, are separated by only a few hundred μm, and similarly Because of the change, the effect of thermal expansion is canceled out, and as a result, it is possible to measure the phase displacement with high accuracy and stability.

【0022】集光レンズ11は、被測定物12を照射す
る照射光、及びその反射光の光束を調整するために設け
てある。光検出用ダイオード15は、干渉光を電気信号
に変換するもので、例えば、pn接合型フォトダイオー
ド、pinフォトダイオード、アバランシェ・フォトダ
イオード(APD)等を使用できる。
The condenser lens 11 is provided for adjusting the luminous flux of the irradiation light for irradiating the DUT 12 and the reflected light flux thereof. The photodetection diode 15 converts the interference light into an electric signal, and for example, a pn junction photodiode, a pin photodiode, an avalanche photodiode (APD) or the like can be used.

【0023】[0023]

【実施例】本発明の変位測定方法に用いる変位測定装置
の作用を説明するための概念図である図1を基として、
実際に変位測定装置を製造のうえ、変位測定を行った。
厚み1mm,直径75mmのXカットされたLiNbO
3 ウェハ結晶基板4に、SiO2 による交換マスクを施
した。次に、安息香酸を用いてプロトン交換して、Y軸
方向伝搬のプロトン交換導波路及び3dBカプラ6を設
けた。更に、結晶基板4上に金属蒸着して、位相変調器
18の位相変調用電極7a,7b及び7cを形成した。
その次に、結晶基板4を3mm(幅)×30mm(長
さ)×1mm(厚さ)の寸法にダイシングした。 プロ
トン交換導波路を伝搬した光の消光比は50dB以上で
あったので、このプロトン交換導波路は偏光子として十
分機能することが示された。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Based on FIG. 1, which is a conceptual diagram for explaining the operation of a displacement measuring device used in the displacement measuring method of the present invention,
After actually manufacturing the displacement measuring device, the displacement was measured.
X-cut LiNbO with a thickness of 1 mm and a diameter of 75 mm
An exchange mask of SiO 2 was applied to the 3- wafer crystal substrate 4. Next, proton exchange was performed using benzoic acid, and a proton exchange waveguide propagating in the Y-axis direction and a 3 dB coupler 6 were provided. Further, metal was vapor-deposited on the crystal substrate 4 to form the phase modulation electrodes 7a, 7b and 7c of the phase modulator 18.
Then, the crystal substrate 4 was diced into dimensions of 3 mm (width) × 30 mm (length) × 1 mm (thickness). Since the extinction ratio of the light propagating through the proton exchange waveguide was 50 dB or more, it was shown that this proton exchange waveguide sufficiently functions as a polarizer.

【0024】位相変調器18の半波長電圧は2.8Vで
あった。ここで半波長電圧とは、位相変調器18を伝播
する光に、πradの位相変化を与えるのに必要な電圧
をいう。位相変調器18は、参照光と照射光との両方に
作成し、プッシュプル動作をさせたので、参照光と照射
光とがそれぞれ往復する間に、πradの位相変化を与
えるのに必要な電圧は、2.8V÷4=0.7Vであっ
た。
The half-wave voltage of the phase modulator 18 was 2.8V. Here, the half-wave voltage means a voltage required to give a phase change of πrad to the light propagating through the phase modulator 18. Since the phase modulator 18 was created for both the reference light and the irradiation light to perform the push-pull operation, the voltage required to give a phase change of πrad while the reference light and the irradiation light reciprocate respectively. Was 2.8V / 4 = 0.7V.

【0025】反射損失を減少させるため、入力側光ファ
イバ3,出力側光ファイバ14と結晶基板4との間に
は、反射防止膜をコーティングした。参照光反射用鏡9
は、参照光用光導波路8の終端面にアルミニウムを蒸着
して形成した。一方、照射光用光導波路10の終端面に
も、反射損失を減少させるため、反射防止膜をコーティ
ングした。そして、照射光用光導波路10の終端面から
射出した照射光を集光レンズ11で集中して被測定物1
2に照射し、反射光を再び照射光用光導波路10に導く
ようにした。
In order to reduce reflection loss, an antireflection film was coated between the input side optical fiber 3, the output side optical fiber 14 and the crystal substrate 4. Reference light reflection mirror 9
Was formed by evaporating aluminum on the end surface of the reference light optical waveguide 8. On the other hand, the end surface of the irradiation light optical waveguide 10 was also coated with an antireflection film in order to reduce reflection loss. Then, the irradiation light emitted from the end surface of the irradiation light optical waveguide 10 is concentrated by the condenser lens 11 to be measured 1.
Then, the reflected light was guided to the irradiation light optical waveguide 10 again.

【0026】レーザダイオード光源1には、レーザ発振
波長830nmのフォブリー・ペロー共振器型のものを
使用した。光アイソレータ2には、レーザ発振波長83
0nm用のものを用いた。また、光検出用ダイオード1
5には、Si−pin型フォトダイオードを使用した。
このほか、入力側光ファイバ3には、偏波保持型光ファ
イバを、出力側光ファイバ14には、コア径50μmの
多モード光ファイバを用いた。位相変調用電源18a
は、マイクロコンピュータが駆動する12bitのDA
コンバータで構成し、出力電圧範囲が±2.8Vになる
ように調整した。
The laser diode light source 1 used was a Fobry-Perot resonator type with a laser oscillation wavelength of 830 nm. The optical isolator 2 has a laser oscillation wavelength of 83
The one for 0 nm was used. In addition, the light detection diode 1
For 5, a Si-pin type photodiode was used.
In addition, a polarization maintaining optical fiber was used as the input side optical fiber 3, and a multimode optical fiber with a core diameter of 50 μm was used as the output side optical fiber 14. Phase modulation power supply 18a
Is a 12-bit DA driven by a microcomputer
It was composed of a converter and adjusted so that the output voltage range was ± 2.8V.

【0027】レーザダイオード光源1から発振したレー
ザ光を光アイソレータ2に通したのち、入力側光ファイ
バ3を介して、光導波路型干渉系へ導いた。多モード光
ファイバである出力側光ファイバ14を通じて、干渉光
を光検出用ダイオード15へ導いた。レーザダイオード
光源1のレーザ発振波長を、830.1nm及び83
1.8nmに切り替えて、それぞれの波長において被測
定物12からの反射光の位相を測定した。このときの位
相測定誤差は、0.006rad以下であった。0.0
06radの位相差は、λ×0.006/(2π)=
0.8nmの光路長変化に相当する。したがって、本変
位測定装置の変位分解能は0.4nm以下である。合成
波の波長λ3 は、(1)式より0.4mmであり、理論
的には光路差0.4mm,すなわち0.2mm以下の不
連続変位を測定できることになる。被測定物12として
は、オーバハングの段差傷を付与したアルミニウム板を
用いた。その結果、0.13mmの段差を測定でき、図
3に示す測定結果を得た。
The laser light oscillated from the laser diode light source 1 was passed through the optical isolator 2 and then guided through the input side optical fiber 3 to the optical waveguide type interference system. The interference light is guided to the photodetection diode 15 through the output side optical fiber 14 which is a multimode optical fiber. The laser oscillation wavelength of the laser diode light source 1 is 830.1 nm and 83
By switching to 1.8 nm, the phase of the reflected light from the DUT 12 was measured at each wavelength. The phase measurement error at this time was 0.006 rad or less. 0.0
The phase difference of 06 rad is λ × 0.006 / (2π) =
This corresponds to an optical path length change of 0.8 nm. Therefore, the displacement resolution of this displacement measuring device is 0.4 nm or less. The wavelength λ 3 of the synthetic wave is 0.4 mm from the equation (1), and theoretically, the optical path difference of 0.4 mm, that is, the discontinuous displacement of 0.2 mm or less can be measured. As the object to be measured 12, an aluminum plate provided with overhanging step scratches was used. As a result, a step difference of 0.13 mm could be measured, and the measurement result shown in FIG. 3 was obtained.

【0028】[0028]

【発明の効果】以上説明したように本発明に係る物体の
表面における微小部分の変位測定方法及びそれに用いる
変位測定装置は、複数波長のレーザ光が発振可能な単一
光源、集積化した光学部品を用いることにより、判別可
能な不連続変位の最大値を拡大ができるとともに、調整
容易で迅速・高精度・高安定な変位測定が可能である。
また、装置の小型化が促進され、衝撃・振動に強い変位
測定装置が得られる。
As described above, the displacement measuring method for a minute portion on the surface of an object and the displacement measuring apparatus used therefor according to the present invention are a single light source capable of oscillating laser beams of a plurality of wavelengths and an integrated optical component. By using, it is possible to increase the maximum value of the discontinuous displacement that can be discriminated, and it is possible to perform easy, quick, highly accurate and highly stable displacement measurement.
In addition, miniaturization of the device is promoted, and a displacement measuring device that is resistant to shock and vibration can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の変位測定方法及びそれに用いる変位測
定装置の作用を説明するための概念図である。
FIG. 1 is a conceptual diagram for explaining an operation of a displacement measuring method of the present invention and a displacement measuring device used for the method.

【図2】本発明の変位測定方法及びそれに用いる変位測
定装置におけるレーザダイオードの発光電流の波形図で
ある。
FIG. 2 is a waveform diagram of an emission current of a laser diode in the displacement measuring method of the present invention and the displacement measuring apparatus used therefor.

【図3】本発明の変位測定装置に係る実施例で得られた
測定結果を示す図である。
FIG. 3 is a diagram showing measurement results obtained in an example of the displacement measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザダイオード光源 3 入力側光ファイバ 4 結晶基板 5 入力側偏光子 6 3dBカプラ 7a 位相変調用電極 7b 位相変調用電極 7c 位相変調用電極 8 参照光用光導波路 9 参照光反射用鏡 10 照射光用光導波路 12 被測定物 13 出力側偏光子 14 出力側光ファイバ 15 光検出用ダイオード 18 位相変調器 18a 位相変調用電源 1 Laser diode light source 3 Input side optical fiber 4 Crystal substrate 5 Input side polarizer 6 3dB coupler 7a Phase modulation electrode 7b Phase modulation electrode 7c Phase modulation electrode 8 Optical waveguide for reference light 9 Reference light reflection mirror 10 Optical waveguide for irradiation light 12 DUT 13 Output side polarizer 14 Output side optical fiber 15 Photodetection diode 18 Phase modulator 18a Phase modulation power supply

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同一光源のレーザ光を参照光と照射光と
に分割して、前記参照光を参照光反射用鏡に、前記照射
光を被測定物にそれぞれ照射し、光路の違いによって位
相差の生じた前記参照光及び前記照射光のそれぞれの反
射光を干渉させて、干渉光から前記被測定物の表面の微
小変位を測定する変位測定方法において、 発光電流の値によって波長の異なる2種類以上のレーザ
光を発振するレーザダイオード光源に、階段波状に変調
した前記発光電流を流して前記2種類以上の波長のレー
ザ光を交互に発振させ、 結晶基板上に構成した入力側偏光子によりTM光、TE
光のどちらか一方の偏光成分を減衰させた後、3dBカ
プラで前記レーザ光を参照光と照射光とに分割し、 前記参照光及び前記照射光の一方を、あるいは両方を、
前記結晶基板上の光導波路を往復する前に、前記結晶基
板上に構成した電気光学効果を利用する位相変調器によ
って位相変調せしめるとともに、位相変調された前記参
照光と前記照射光を前記3dBカプラで干渉させた後、
出力側偏光子により前記入力側偏光子にて減衰させたの
と同じ方向の偏光成分を減衰させ、干渉光を検出するこ
とを特徴とする変位測定方法。
1. A laser beam of the same light source is divided into reference light and irradiation light, and the reference light is irradiated to a reference light reflecting mirror and the irradiation light is irradiated to an object to be measured. In a displacement measuring method for measuring a minute displacement of the surface of the object to be measured from the interference light by interfering each reflected light of the reference light and the irradiation light having a phase difference, the wavelength varies depending on the value of the emission current. A laser diode light source that oscillates more than one type of laser light is caused to flow the emission current that has been modulated in a staircase shape to alternately oscillate the laser beams of two or more types of wavelengths, and the input side polarizer configured on the crystal substrate TM light, TE
After attenuating either polarization component of the light, the laser light is split into reference light and irradiation light by a 3 dB coupler, and one or both of the reference light and the irradiation light is
Before going back and forth through the optical waveguide on the crystal substrate, phase modulation is performed by a phase modulator using the electro-optic effect formed on the crystal substrate, and the phase-modulated reference light and irradiation light are the 3 dB coupler. After interfering with
Attenuated at the input side polarizer by the output side polarizer
Attenuates the same direction of the polarization component with a displacement measuring method characterized that you detect the interference light.
【請求項2】 発光用電源と、光源と、干渉系と、位相
変調用電源とから構成され、前記光源からの光を前記干
渉系に導き、前記光を参照光と照射光とに分割して、前
記参照光を参照光反射用鏡に、前記照射光を被測定物に
それぞれ照射し、前記参照光の反射光と前記照射光の反
射光との干渉光を検出して、前記被測定物の表面の微小
変位を測定する変位測定装置において、 前記光源が、発光電流の値によって波長の異なる2種類
以上のレーザ光を発振するレーザダイオード光源であ
り、 前記干渉系が、二つの偏光子と、光導波路を介して前記
偏光子と結合する3dBカプラと、参照光用光導波路及
び照射光用光導波路の一方に、あるいは両方に設けた位
相変調器と、を同一結晶基板に集積した光導波路型干渉
系であることを特徴とする変位測定装置。
2. A light source for light emission, a light source, an interference system, and a power source for phase modulation, which guides light from the light source to the interference system and splits the light into reference light and irradiation light. The reference light is reflected by the reference light reflecting mirror, and the irradiation light is applied to the object to be measured, and the interference light between the reflected light of the reference light and the reflected light of the irradiation light is detected, and the measured object is measured. In a displacement measuring device for measuring a minute displacement of a surface of an object, the light source is a laser diode light source that oscillates two or more types of laser light having different wavelengths depending on a value of a light emission current, and the interference system includes two polarizers. And a 3 dB coupler coupled to the polarizer via an optical waveguide, and a phase modulator provided on one or both of the reference light optical waveguide and the irradiation light optical waveguide, and a phase modulator integrated on the same crystal substrate. Displacement characterized by being a waveguide type interference system Constant apparatus.
【請求項3】 結晶基板がLiNbO3結晶基板又はL
iTaO3結晶基板である請求項1に記載の変位測定方
法。
3. The crystal substrate is a LiNbO 3 crystal substrate or L
The displacement measuring method according to claim 1, which is an iTaO 3 crystal substrate.
【請求項4】 光導波路型干渉系における結晶基板がL
iNbO3結晶基板又はLiTaO3結晶基板である請求
項2に記載の変位測定装置
4. A crystal substrate in an optical waveguide type interference system is L
The displacement measuring device according to claim 2, which is an iNbO 3 crystal substrate or a LiTaO 3 crystal substrate.
【請求項5】 結晶基板上に構成した位相変調器によっ
て位相変調された参照光と照射光の3dBカプラでの干
渉がプロトン交換光導波路によってなされる請求項1又
は請求項3に記載の変位測定方法。
5. The displacement measurement according to claim 1 or 3, wherein the interference of the reference light and the irradiation light phase-modulated by the phase modulator formed on the crystal substrate in the 3 dB coupler is caused by the proton exchange optical waveguide. Method.
【請求項6】 光導波路型干渉系がプロトン交換光導波
路で構成されている請求項2又は請求項4に記載の変位
測定装置。
6. The displacement measuring device according to claim 2, wherein the optical waveguide type interference system is composed of a proton exchange optical waveguide.
JP12271693A 1993-05-25 1993-05-25 Displacement measuring method and displacement measuring device used therefor Expired - Fee Related JP3428067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12271693A JP3428067B2 (en) 1993-05-25 1993-05-25 Displacement measuring method and displacement measuring device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12271693A JP3428067B2 (en) 1993-05-25 1993-05-25 Displacement measuring method and displacement measuring device used therefor

Publications (2)

Publication Number Publication Date
JPH06331314A JPH06331314A (en) 1994-12-02
JP3428067B2 true JP3428067B2 (en) 2003-07-22

Family

ID=14842829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12271693A Expired - Fee Related JP3428067B2 (en) 1993-05-25 1993-05-25 Displacement measuring method and displacement measuring device used therefor

Country Status (1)

Country Link
JP (1) JP3428067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056275B1 (en) 2010-02-01 2011-08-11 주식회사 정관 Polymer waveguide optical current sensors with output power tapping

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053957A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
JP4939304B2 (en) * 2007-05-24 2012-05-23 東レエンジニアリング株式会社 Method and apparatus for measuring film thickness of transparent film
JP5514641B2 (en) * 2010-06-16 2014-06-04 株式会社アイ・テー・オー Laser interference bump measuring instrument
PL236750B1 (en) * 2016-12-06 2021-02-08 Inphotech Spolka Z Ograniczona Odpowiedzialnoscia Waveguide interferometer
EP3401634A1 (en) * 2017-05-12 2018-11-14 Taylor Hobson Limited Distance measuring assembly for determining the distance to an object
CN110927872B (en) * 2019-12-12 2020-11-27 中国电子科技集团公司第四十四研究所 Optical waveguide intensity modulator chip with large optical path difference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056275B1 (en) 2010-02-01 2011-08-11 주식회사 정관 Polymer waveguide optical current sensors with output power tapping

Also Published As

Publication number Publication date
JPH06331314A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
US4893353A (en) Optical frequency synthesizer/sweeper
US5106191A (en) Two-frequency distance and displacement measuring interferometer
US20020064353A1 (en) Mode locking semiconductor laser system including external cavity
JPH10500767A (en) Interferometer
JP7152802B2 (en) Optical comb generator
TW201719109A (en) Apparatus for measuring cavity length of optical resonant cavity
JP3428067B2 (en) Displacement measuring method and displacement measuring device used therefor
JP2004020564A (en) Stable fabry-perot interferometer
WO2005047965A1 (en) Optical frequency comb generator and optical modulator
CN116026306B (en) Gyroscope based on low-coherence light source and angular velocity measurement method thereof
JPH1183894A (en) Optical accelerometer
US6233370B1 (en) Interference measurement apparatus and probe used for interference measurement apparatus
JPS5948668A (en) Optical fiber speedometer
JP3337624B2 (en) Micro displacement measuring device and method
JP2823870B2 (en) Apparatus for narrowing spectral line width of semiconductor laser
JPS59166873A (en) Optical applied voltage and electric field sensor
JPH10185523A (en) Optical waveguide type displacement sensor
JP3283660B2 (en) Voltage measuring device
JPH0875434A (en) Surface form measuring device
Yang et al. Optical Fibre Sensor Set‐Up Elements
JP2004193416A (en) Laser beam width constriction device
JP2787345B2 (en) Two-wavelength light source element
JP2809727B2 (en) Fabry-Perot resonator
JPH1137718A (en) Instrument and method for measuring microdisplacement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees