JPH0990278A - Method for assembling stereoscopic-viewing optical member - Google Patents

Method for assembling stereoscopic-viewing optical member

Info

Publication number
JPH0990278A
JPH0990278A JP7249508A JP24950895A JPH0990278A JP H0990278 A JPH0990278 A JP H0990278A JP 7249508 A JP7249508 A JP 7249508A JP 24950895 A JP24950895 A JP 24950895A JP H0990278 A JPH0990278 A JP H0990278A
Authority
JP
Japan
Prior art keywords
phase difference
difference plate
lens
shape
stereoscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7249508A
Other languages
Japanese (ja)
Inventor
Toshihisa Nakamura
寿久 中村
Tomohiko Hattori
知彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP7249508A priority Critical patent/JPH0990278A/en
Publication of JPH0990278A publication Critical patent/JPH0990278A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for assembling a stereoscopic-viewing optical member which is easily produced and has a high yield, excellent productivity, high accuracy and high strength by providing this method with a sticking stage for sticking a polarization filter and a phase difference plate, a removing stage for removing only the stuck phase difference plate to an arbitrary shape and a packing stage for packing a transparent member into the removed part. SOLUTION: Columnar lenses 107 are set on the stage of a laser beam machine and the polarization filter 108 and the phase difference plate 109 are adhered to the top end faces of these lenses 107. Next, the modulated images of the end face images of the lenses 107 are inputted to a shape variable mask, by which part of the phase difference plate 109 is subjected to blanking with the laser to a semicircular shape in compliance with the end face shapes of the lenses 107 existing in the arbitrary position on the stage. Next, the transparent member 110 made of resin, etc., which is approximately equal in optical constants, such as refractive index and transmittance, to the phase difference plate 109 is packed into the blanked parts. The polarization filter 108, the phase difference plate 109 and the transmission member 110 are then cut off to meet the end face shape of the lenses 107.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は立体視に用いる、レ
ンズ中間部に偏光光学部材を配設した立体視用光学部材
の組立方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of assembling a stereoscopic optical member having a polarizing optical member in the lens intermediate portion, which is used for stereoscopic viewing.

【0002】[0002]

【従来の技術】従来のファイバスコープの映像は、物体
間の相対距離等の奥行きに関する情報の欠如から、映像
を見ながらの操作がし難く、立体映像の得られるステレ
オファイバスコープの開発が盛んに行われている。その
構造については種々のものが提案されているが、従来提
案されているものの多くは双眼の観察光学系により右目
用と左目用の映像を取り込み、各々を観察者またはステ
レオ映像表示装置に伝達していた。これら双眼のステレ
オファイバスコープは二系列の光学系を必要とするため
に、細径化が難しく、左右目の輻輳角の調整が困難であ
る等の問題点を有していたため、実用化が困難であっ
た。そこで本出願人は、例えば特願平6−269914
号に示されるような、単眼で立体視が可能なステレオフ
ァイバスコープを提案している。
2. Description of the Related Art In the conventional fiberscope image, it is difficult to operate while viewing the image due to lack of depth information such as relative distance between objects. Has been done. Various structures have been proposed, but most of the structures proposed so far capture images for the right eye and the left eye by a binocular observation optical system and transmit them to an observer or a stereo image display device. Was there. Since these binocular stereo fiberscopes require two series of optical systems, it is difficult to reduce the diameter, and it is difficult to adjust the vergence angle of the left and right eyes. Met. Therefore, the present applicant is, for example, Japanese Patent Application No. 6-269914.
We have proposed a stereo fiberscope capable of stereoscopic viewing with a single eye as shown in No.

【0003】[0003]

【発明が解決しようとする課題】この単眼ステレオファ
イバスコープは、観察用レンズの実効中心近傍に偏光方
位角がおよそ直交する偏光フィルタを配置している。こ
の偏光フィルタは、その有効領域が左右半分ずつに分け
られており、左側の領域を構成する偏光フィルタの偏光
方位角と右側の領域を構成する偏光フィルタの偏光方位
角が互いに直交するように構成されている。このような
立体視用の観察レンズは、従来、レンズ部材端面上で、
偏光方位角が直交するように角度を調整して打ち抜いた
二種の偏光フィルタを貼り合わせ、この上にレンズ部材
を載せて組み立てていた。しかしながらこの方法では、
レンズ端面上で二種の偏光フィルタを貼り合わせること
が難しく、特に細径なレンズを用いた場合にはこの工程
に多大なる時間を要す上に、組立てた立体視用レンズの
精度も十分ではなく量産に対応する事が難しかった。
In this monocular stereo fiberscope, a polarization filter whose polarization azimuth angles are approximately orthogonal is arranged near the effective center of the observation lens. The polarization filter has an effective area divided into left and right halves, and the polarization azimuth of the polarization filter forming the left area and the polarization azimuth of the polarization filter forming the right area are orthogonal to each other. Has been done. Conventionally, such an observation lens for stereoscopic vision is provided on the end surface of the lens member,
Two types of polarizing filters, which are punched by adjusting the angles so that the polarization azimuth angles are orthogonal to each other, are attached to each other, and a lens member is placed thereon to assemble. However, with this method,
It is difficult to bond the two types of polarizing filters on the lens end face, and particularly when a lens with a small diameter is used, this process requires a lot of time, and the accuracy of the assembled stereoscopic lens is not sufficient. It was difficult to support mass production without it.

【0004】従って、本発明は上述した課題に鑑みてな
されたものであり、その目的は、製造が容易で歩留まり
が高い等生産性に優れ、高精度、高強度な立体視用光学
部材の組立方法を提供することである。
Therefore, the present invention has been made in view of the above-mentioned problems, and an object thereof is to assemble an optical member for stereoscopic vision which is excellent in productivity such as easy manufacture and high yield, and which is highly accurate and strong. Is to provide a method.

【0005】[0005]

【課題を解決するための手段】上述した課題を解決し目
的を達成するために、本発明に係わる立体視用光学部材
の組立方法は、偏光フィルタと位相差板とを貼り合わせ
る貼り合わせ工程と、貼り合わされた前記偏光フィルタ
と位相差板の内の位相差板のみを任意の形状に除去する
除去工程と、前記除去された位相差板の部分に、該位相
差板と光学定数の略等しい透明部材を充填する充填工程
とを具備することを特徴としている。
In order to solve the above-mentioned problems and to achieve the object, a method of assembling a stereoscopic optical member according to the present invention comprises a laminating step of laminating a polarizing filter and a retardation plate. , A removing step of removing only the retardation plate of the laminated polarizing filter and the retardation plate into an arbitrary shape, and an optical constant substantially equal to that of the retardation plate in the removed retardation plate portion. And a filling step of filling the transparent member.

【0006】また、この発明に係わる立体視用光学部材
の組立方法において、前記除去工程は、レーザ加工によ
り行われることを特徴としている。
In the method for assembling the stereoscopic optical member according to the present invention, the removing step is performed by laser processing.

【0007】また、この発明に係わる立体視用光学部材
の組立方法において、前記位相差板は、λ/2板である
ことを特徴としている。
Further, in the method for assembling a stereoscopic optical member according to the present invention, the retardation plate is a λ / 2 plate.

【0008】また、この発明に係わる立体視用光学部材
の組立方法において、前記偏光フィルタと前記位相差板
の両側には、円柱状のレンズが接着されることを特徴と
している。
Further, in the method of assembling the stereoscopic optical member according to the present invention, cylindrical lenses are bonded to both sides of the polarizing filter and the retardation plate.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な一実施形態
について、添付図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

【0010】図1は、一実施形態の立体視用光学部材の
組立方法に用いられるレーザ加工装置の基本構成を示す
図である。
FIG. 1 is a diagram showing a basic configuration of a laser processing apparatus used in an assembling method of an optical member for stereoscopic vision according to one embodiment.

【0011】図1において、レーザ加工装置50は、レ
ーザ光を発振するレーザ発振器10と、レーザ発振器1
0から照射されたレーザ光を拡大するための凸レンズか
らなるビームエクスパンダ12と、ビームエクスパンダ
12から出射した光の散乱光を除去するための空間フィ
ルタ14と、ビームエクスパンダ12で拡大されたレー
ザ光を平行光に戻すためのコリメートレンズ16と、コ
リメートされたレーザ光の形状を被加工物22の加工に
必要な所望の形状に成形するための形状可変マスク18
と、形状可変マスク18を通過したレーザ光を集光する
ための集光レンズ20とを備えている。また、形状可変
マスク18と集光レンズ20との間には、加工物22の
表面で反射されたレーザ光をテレビカメラ26に導くた
めのハーフミラー24が設けられている。テレビカメラ
26には制御装置28が接続されており、テレビカメラ
26で撮像した映像に基づいて、形状可変マスク18を
制御する。また、制御装置28にはテレビモニタ30が
接続されており、テレビカメラ26で撮像された映像を
オペレータが観察できるようになされている。
In FIG. 1, a laser processing apparatus 50 includes a laser oscillator 10 that oscillates a laser beam and a laser oscillator 1.
The beam expander 12 made of a convex lens for expanding the laser light emitted from 0, the spatial filter 14 for removing scattered light of the light emitted from the beam expander 12, and the beam expander 12 are expanded. A collimator lens 16 for returning the laser light to parallel light, and a shape variable mask 18 for shaping the shape of the collimated laser light into a desired shape necessary for processing the workpiece 22.
And a condenser lens 20 for condensing the laser light that has passed through the variable shape mask 18. Further, a half mirror 24 for guiding the laser light reflected on the surface of the workpiece 22 to the television camera 26 is provided between the variable shape mask 18 and the condenser lens 20. A control device 28 is connected to the television camera 26, and controls the variable shape mask 18 based on an image captured by the television camera 26. Further, a television monitor 30 is connected to the control device 28 so that the operator can observe the video imaged by the television camera 26.

【0012】このように構成されるレーザ加工装置は、
以下のように動作する。
The laser processing apparatus configured as described above is
It works as follows.

【0013】即ち、レーザ発振器10より照射されたレ
ーザ光はビームエクスパンダ12にて拡大され、コリメ
ートレンズ16によりコリメートされた後、照射光学系
32により加工物22の表面に達する。照射光学系32
に設置された形状可変マスク18を透過したレーザ光を
集光レンズ20にて加工物22の表面に集光させること
でマスク18の形状に合わせたレーザ加工を行う。この
時ハーフミラー24によって、加工物22の表面からの
反射光を照射光学系32から取り出し、加工物22の表
面の状態を観察できるように、テレビカメラ26に導
く。テレビカメラ26により取り込んだ加工物22の表
面の映像は制御装置28による演算処理後、変調像とし
て形状可変マスク18に入力される。これにより形状可
変マスク18のマスク形状の変更を行い、遮光部位の調
整を行って加工物22の表面でのレーザ加工形状の制御
を行う。すなわち、テレビカメラ26で撮像された所
の、加工物22の表面形状及びその表面におけるレーザ
光の照射形状が加工物22上に加工しようとする形状に
適さない場合は、形状可変マスク18の光透過状態を変
更し、レーザ光の照射形状及び照射強度を加工に適した
ものとなるよう制御する。このとき、テレビモニタ30
に接続することで、加工物22の表面の映像および形状
可変マスク18に入力する変調像を観察する。なお各構
成部材の位置、大きさおよび形状は本発明の趣旨に反し
ない限り任意である。また、本発明に基づくレーザ加工
装置において発振、及び加工に用いるレーザの波長は任
意であり、レーザ照射光学系と撮像光学系において必ず
しも同一波長である必要はない。
That is, the laser light emitted from the laser oscillator 10 is expanded by the beam expander 12, collimated by the collimator lens 16, and then reaches the surface of the workpiece 22 by the irradiation optical system 32. Irradiation optical system 32
The laser beam that has passed through the variable shape mask 18 installed at is focused on the surface of the workpiece 22 by the condenser lens 20 to perform laser processing that matches the shape of the mask 18. At this time, the half mirror 24 takes out the reflected light from the surface of the workpiece 22 from the irradiation optical system 32 and guides it to the television camera 26 so that the state of the surface of the workpiece 22 can be observed. The image of the surface of the workpiece 22 captured by the television camera 26 is input to the variable shape mask 18 as a modulated image after the arithmetic processing by the controller 28. Thereby, the mask shape of the variable shape mask 18 is changed, the light-shielding portion is adjusted, and the laser processing shape on the surface of the workpiece 22 is controlled. That is, when the surface shape of the workpiece 22 and the irradiation shape of the laser beam on the surface taken by the television camera 26 are not suitable for the shape to be processed on the workpiece 22, the light of the shape variable mask 18 is changed. The transmission state is changed and the irradiation shape and irradiation intensity of the laser light are controlled to be suitable for processing. At this time, the TV monitor 30
By connecting to, the image of the surface of the workpiece 22 and the modulation image input to the variable shape mask 18 are observed. The position, size and shape of each constituent member are arbitrary as long as they do not violate the gist of the present invention. Further, in the laser processing apparatus according to the present invention, the wavelength of the laser used for oscillation and processing is arbitrary, and the laser irradiation optical system and the imaging optical system do not necessarily have the same wavelength.

【0014】次に、図2、図3に変調像を入力すること
でレーザ遮光部位の形状を変化させることの可能な、形
状可変マスク18の構成例を示す。
Next, FIGS. 2 and 3 show examples of the configuration of the variable shape mask 18 capable of changing the shape of the laser light shielding portion by inputting a modulation image.

【0015】図2に示すように、一対の透明電極40及
び偏光方位角の直交する一対の偏光板42の間に、透過
光の偏光特性を変化させることの可能な光透過性の強誘
電ファインセラミックスである例えばPLZT[(Pb,
La)(Zr,Ti)O3]、あるいはTN液晶44を挟
むことより光学素子46を構成する。この光学素子46
が形状可変マスク18の1画素を構成する。すなわち、
光学素子46を、図3のようにマトリックス状に配置
し、個々の光学素子46に加工物22の表面の映像の変
調像を入力することで、レーザ透過位置、遮光位置の制
御及び透過の割合の制御を行い形状可変マスク18とす
る。形状可変マスクの本体及び各構成部品の位置、大き
さ、形状は本発明の趣旨に反しない限り任意である。
As shown in FIG. 2, between the pair of transparent electrodes 40 and the pair of polarizing plates 42 whose polarization azimuth angles are orthogonal to each other, a light-transmissive ferroelectric fine film capable of changing the polarization characteristic of transmitted light. Ceramics such as PLZT [(Pb,
La) (Zr, Ti) O3] or the TN liquid crystal 44 is sandwiched to form the optical element 46. This optical element 46
Form one pixel of the variable shape mask 18. That is,
The optical elements 46 are arranged in a matrix as shown in FIG. 3, and the modulated image of the image of the surface of the workpiece 22 is input to each optical element 46 to control the laser transmission position and the light shielding position and the transmission ratio. And the variable shape mask 18 is formed. The position, size, and shape of the main body of the variable shape mask and each component are arbitrary as long as they do not violate the gist of the present invention.

【0016】また、上記の実施形態のような偏光を利用
して透過光の制御を行う光学素子以外にも透過及び散乱
特性を利用した光学素子を用いて形状可変マスクを構成
しても良い。図4に示すように、屈折率異方性のある液
晶等の媒体60を適当に分散させた媒体62を二枚の透
明電極64で挟み込み、照射した光の透過、散乱を電場
によって制御する光学素子を、マトリックス状に配置す
る。このマトリックスの後方に集光レンズ66とアパー
チャー68及びアパーチャー68を通過した光を再び平
行光にするためのレンズ70を配置する。そして、上記
の光学素子各々に加工物22の表面の映像の変調像を入
力することで、形状可変マスクとする。形状可変マスク
の本体及び各構成部品の位置、大きさ、形状は本発明の
趣旨に反しない限り任意である。
In addition to the optical element for controlling the transmitted light by using the polarized light as in the above embodiment, the variable shape mask may be constructed by using an optical element utilizing the transmission and scattering characteristics. As shown in FIG. 4, a medium 62 in which a medium 60 such as a liquid crystal having a refractive index anisotropy is appropriately dispersed is sandwiched between two transparent electrodes 64, and the transmission and scattering of irradiated light is controlled by an electric field. The elements are arranged in a matrix. A condenser lens 66, an aperture 68, and a lens 70 for collimating the light passing through the aperture 68 again are arranged behind this matrix. Then, by inputting the modulated image of the image of the surface of the workpiece 22 to each of the above-mentioned optical elements, the shape variable mask is obtained. The position, size, and shape of the main body of the variable shape mask and each component are arbitrary as long as they do not violate the gist of the present invention.

【0017】次に、本実施形態の立体視用光学部材(立
体視用レンズ)の製造工程を説明する。
Next, the manufacturing process of the optical member for stereoscopic vision (lens for stereoscopic vision) of this embodiment will be described.

【0018】まず、図5に示すように、図1のレーザ加
工装置のステージ上の任意の位置に円柱状のレンズ10
7をセットし、このレンズ107の上端面に偏光フィル
タ108と位相差板109を接着する。ここでは、位相
差板109はλ/2板である。観察光学系34からは図
6に示すような位相差板109及び偏光フィルタ108
を介してのレンズ107の端面像がテレビカメラ26に
取り込まれる。。次に、図8に示すようなレンズ107
の端面像の変調像を形状可変マスク18に入力すること
で、ステージ上の任意の位置に存在するレンズ107の
端面形状に合わせて位相差板109の一部を、図7に示
すように半円形状にレーザにより打ち抜き加工を行う。
図9はレーザ加工後の真上からの観察図である。
First, as shown in FIG. 5, a cylindrical lens 10 is placed at an arbitrary position on the stage of the laser processing apparatus shown in FIG.
7 is set, and the polarization filter 108 and the phase difference plate 109 are bonded to the upper end surface of the lens 107. Here, the retardation plate 109 is a λ / 2 plate. From the observation optical system 34, the retardation plate 109 and the polarization filter 108 as shown in FIG.
The end face image of the lens 107 is captured by the television camera 26 via. . Next, the lens 107 as shown in FIG.
By inputting the modulated image of the end face image of the phase difference mask 18 to the variable shape mask 18, a part of the retardation film 109 is adjusted to half as shown in FIG. 7 according to the end face shape of the lens 107 existing at an arbitrary position on the stage. Punching is done by laser into a circular shape.
FIG. 9 is an observation view from directly above after laser processing.

【0019】次に、図10に示すように、レーザによる
位相差板109の打ち抜き部に位相差板109と屈折
率、透過率などの光学定数のおよそ等しい樹脂等の透明
部材110を充填する。
Next, as shown in FIG. 10, a laser-punched portion of the retardation plate 109 is filled with a transparent member 110 such as a resin having an optical constant approximately equal to that of the retardation plate 109 such as refractive index and transmittance.

【0020】次に、図12に示すようなレンズ107の
端面像の変調像を形状可変マスク18に入力し、レンズ
107の端面形状に合わせて、図11に示すように偏光
フィルタ108、位相差板109および透明部材110
を、レーザにより切り取る。図13はレーザ加工後の断
面図、図14は真上からの観察図である。偏光フィルタ
108上には、位相差板109が半円状に残っており、
このように変更フィルタ108と位相差板(λ/2板)
109が重なった左側部分では、透過光の偏光方位角が
右側の偏光フィルタ109のみの部分を透過した光の偏
光方位角に対して90度回転する。従って、立体視用の
光学素子を構成することが出来る。
Next, a modulated image of the end face image of the lens 107 as shown in FIG. 12 is input to the variable shape mask 18, and the polarization filter 108 and the phase difference as shown in FIG. 11 are matched with the end face shape of the lens 107. Plate 109 and transparent member 110
Are cut out with a laser. FIG. 13 is a cross-sectional view after laser processing, and FIG. 14 is an observation view from directly above. On the polarization filter 108, the phase difference plate 109 remains in a semicircular shape,
In this way, the changing filter 108 and the phase difference plate (λ / 2 plate)
In the left side portion where 109 is overlapped, the polarization azimuth angle of the transmitted light is rotated by 90 degrees with respect to the polarization azimuth angle of the light transmitted through only the right side portion of the polarization filter 109. Therefore, an optical element for stereoscopic viewing can be configured.

【0021】次に、図15に示すように透明部材110
の上にレンズ111を接着することにより、レンズ実効
中心付近に偏光方位角の直交する二種の偏光特性を有す
る光学部材を左右に分割配設した、立体視用レンズの組
み立てを行った。
Next, as shown in FIG. 15, the transparent member 110.
By assembling the lens 111 on the above, a stereoscopic lens was assembled in which two optical members having two kinds of polarization characteristics whose polarization azimuth angles are orthogonal to each other were separately arranged near the lens effective center.

【0022】このような立体視用レンズの組立方法によ
り、二種の偏光フィルタの偏光方位角の調整及びフィル
タ対構成のためのレンズ端面上での位置合わせの手間を
軽減でき、製造工程の簡略化ができる。また、レーザに
より、直接、二偏光特性を有した光学部材を加工するこ
とから高い歩留まりを実現することができた。
With such a method of assembling the stereoscopic lens, the labor of adjusting the polarization azimuth angles of the two types of polarization filters and the alignment on the lens end face for the filter pair construction can be reduced, and the manufacturing process can be simplified. Can be converted. In addition, a high yield can be realized by directly processing the optical member having the dual polarization characteristic with the laser.

【0023】なお、本発明は、上記実施形態に限定され
るものではなく、立体視用レンズを構成する所の、各部
材の種類、形状、寸法、加工の形状及び、加工に用いる
レーザ波長は任意である。また、レーザ照射光学系と加
工物表面撮像系において必ずしも同一波長の光である必
要はない。
The present invention is not limited to the above-mentioned embodiment, and the types, shapes, dimensions, processing shapes of each member and the laser wavelength used for processing, which constitute the stereoscopic lens, are It is optional. The laser irradiation optical system and the workpiece surface imaging system do not necessarily have to have the same wavelength of light.

【0024】[0024]

【発明の効果】以上詳述したように本発明によれば、製
造工程が簡素で、歩留まりが高い立体視用光学部材の組
立方法が提供される。
As described above in detail, according to the present invention, there is provided a method of assembling a stereoscopic optical member having a simple manufacturing process and a high yield.

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施形態の立体視用光学部材の組立方法に用
いられるレーザ加工装置の構成例を示した図である。
FIG. 1 is a diagram showing a configuration example of a laser processing apparatus used in a method for assembling a stereoscopic optical member according to an embodiment.

【図2】偏光を利用して透過光の制御を行う光学素子の
構成例を示した図である。
FIG. 2 is a diagram showing a configuration example of an optical element that controls transmitted light using polarized light.

【図3】形状可変フィルタの構成例を示した図である。FIG. 3 is a diagram showing a configuration example of a variable shape filter.

【図4】透過及び散乱特性を利用した光学素子の説明図
である。
FIG. 4 is an explanatory diagram of an optical element that utilizes transmission and scattering characteristics.

【図5】一実施形態の立体視用レンズ組立工程を示す断
面図である。
FIG. 5 is a cross-sectional view showing a stereoscopic lens assembling process of one embodiment.

【図6】一実施形態の立体視用レンズ組立工程を示す上
面図である。
FIG. 6 is a top view showing a stereoscopic lens assembling process of one embodiment.

【図7】一実施形態の立体視用レンズ組立工程を示す断
面図である。
FIG. 7 is a cross-sectional view showing a stereoscopic lens assembling process of one embodiment.

【図8】一実施形態の立体視用レンズ組立工程において
レーザ加工装置の形状可変マスクに入力した加工物表面
の変調像を示す概略図である。
FIG. 8 is a schematic diagram showing a modulation image of the surface of the workpiece input to the variable shape mask of the laser processing apparatus in the stereoscopic lens assembling process of the embodiment.

【図9】一実施形態の立体視用レンズ組立工程を示す上
面図である。
FIG. 9 is a top view showing a stereoscopic lens assembling process of one embodiment.

【図10】一実施形態の立体視用レンズ組立工程を示す
断面図である。
FIG. 10 is a cross-sectional view showing a stereoscopic lens assembling process of one embodiment.

【図11】一実施形態の立体視用レンズ組立工程を示す
断面図である。
FIG. 11 is a cross-sectional view showing a stereoscopic lens assembling process of one embodiment.

【図12】一実施形態の立体視用レンズ組立工程におい
てレーザ加工装置の加工マスクに入力した加工物表面の
変調像を示す概略図である。
FIG. 12 is a schematic diagram showing a modulation image of the surface of the workpiece input to the processing mask of the laser processing apparatus in the stereoscopic lens assembling process of the embodiment.

【図13】一実施形態の立体視用レンズ組立工程を示す
断面図である。
FIG. 13 is a cross-sectional view showing a stereoscopic lens assembling process of one embodiment.

【図14】一実施形態の立体視用レンズ組立工程を示す
上面図である。
FIG. 14 is a top view showing a stereoscopic lens assembling process of one embodiment.

【図15】一実施形態の立体視用レンズ組立工程を示す
断面図である。
FIG. 15 is a cross-sectional view showing a stereoscopic lens assembling process of one embodiment.

【符号の説明】[Explanation of symbols]

10 レーザ発振器 12 ビームエクスパンダ 14 空間フィルタ 16 コリメートレンズ 18 形状可変フィルタ 20 集光レンズ 22 加工物 24 ハーフミラー 26 テレビカメラ 28 制御装置 30 テレビモニタ 32 照射光学系 40 透明電極 42 偏光板 44 透過光の偏光特性を変えることの可能な物質 46 光学素子 50 レーザ加工装置 60,62 媒体 64 透明電極 66 集光レンズ 68 アパーチャー 107 レンズ 108 偏光板 109 位相差板 110 透明部材 111 レンズ 10 Laser Oscillator 12 Beam Expander 14 Spatial Filter 16 Collimating Lens 18 Variable Shape Filter 20 Condensing Lens 22 Workpiece 24 Half Mirror 26 Television Camera 28 Control Device 30 Television Monitor 32 Irradiation Optical System 40 Transparent Electrode 42 Polarizing Plate 44 Transmitted Light Material capable of changing polarization characteristics 46 Optical element 50 Laser processing device 60,62 Medium 64 Transparent electrode 66 Condensing lens 68 Aperture 107 Lens 108 Polarizing plate 109 Phase difference plate 110 Transparent member 111 Lens

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 偏光フィルタと位相差板とを貼り合わせ
る貼り合わせ工程と、 貼り合わされた前記偏光フィルタと位相差板の内の位相
差板のみを任意の形状に除去する除去工程と、 前記除去された位相差板の部分に、該位相差板と光学定
数の略等しい透明部材を充填する充填工程とを具備する
ことを特徴とする立体視用光学部材の組立方法。
1. A bonding step of bonding a polarization filter and a retardation plate together, a removal step of removing only the phase difference plate of the bonded polarization filter and retardation plate into an arbitrary shape, and the removal step. The method for assembling a stereoscopic optical member, comprising: a filling step of filling a transparent member having an optical constant substantially equal to that of the retardation plate thus formed.
【請求項2】 前記除去工程は、レーザ加工により行わ
れることを特徴とする請求項1に記載の立体視用光学部
材の組立方法。
2. The method for assembling a stereoscopic optical member according to claim 1, wherein the removing step is performed by laser processing.
【請求項3】 前記位相差板は、λ/2板であることを
特徴とする立体視用光学部材の組立方法。
3. The method for assembling a stereoscopic optical member, wherein the retardation plate is a λ / 2 plate.
【請求項4】 前記偏光フィルタと前記位相差板の両側
には、円柱状のレンズが接着されることを特徴とする立
体視用光学部材の組立方法。
4. A method for assembling a stereoscopic optical member, characterized in that cylindrical lenses are bonded to both sides of the polarization filter and the retardation plate.
JP7249508A 1995-09-27 1995-09-27 Method for assembling stereoscopic-viewing optical member Withdrawn JPH0990278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7249508A JPH0990278A (en) 1995-09-27 1995-09-27 Method for assembling stereoscopic-viewing optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7249508A JPH0990278A (en) 1995-09-27 1995-09-27 Method for assembling stereoscopic-viewing optical member

Publications (1)

Publication Number Publication Date
JPH0990278A true JPH0990278A (en) 1997-04-04

Family

ID=17194019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7249508A Withdrawn JPH0990278A (en) 1995-09-27 1995-09-27 Method for assembling stereoscopic-viewing optical member

Country Status (1)

Country Link
JP (1) JPH0990278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777154B2 (en) 2002-11-06 2010-08-17 Sony Corporation Method for manufacturing divided waveplate filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777154B2 (en) 2002-11-06 2010-08-17 Sony Corporation Method for manufacturing divided waveplate filter
US8262829B2 (en) 2002-11-06 2012-09-11 Sony Corporation Method for manufacturing divided waveplate filter

Similar Documents

Publication Publication Date Title
JP4470355B2 (en) Display system without glasses
KR100440956B1 (en) 2D/3D Convertible Display
KR20060023392A (en) Manufacturing method of three dimensional image display and assembling apparatus for the same
JPH10221643A (en) Stereoscopic picture display device
KR100786860B1 (en) Autostereoscopic display appratus having varifocal lens
JP2002365589A (en) Three-dimensional display device
JPH0743633A (en) Display device and spectacle type video display device using the same
JPH09138371A (en) Polarizing spectacle type stereoscopic video display device
RU2340116C1 (en) Method of playing back stereoscopic images from camcorder with converging axes
JPH0990278A (en) Method for assembling stereoscopic-viewing optical member
JP3324694B2 (en) Three-dimensional display method and device
US20040169922A1 (en) Stereo microscopy
JP2012123098A (en) Stereoscopic image photographing adaptor and imaging apparatus
RU2578372C2 (en) Acoustooptical device for obtaining spectral stereo images with spectrum adjustment
KR200435384Y1 (en) Stereo camera with one image sensor
KR100659327B1 (en) three-dimension projector
JP2000197073A (en) Stereoscopic display device
JP2513403B2 (en) Projection type stereoscopic display device
JP3035129B2 (en) Stereo optical device
KR100502798B1 (en) 3D liquid crystal display
KR101974961B1 (en) 3D image display device and driving method for the same
US20240004215A1 (en) Full lightfield with monocular and stereoscopic depth control via monocular-to-binocular hybridization
JPH10221645A (en) Stereoscopic picture display device
US20240004195A1 (en) Wearable device with 1d-1d optical surfaces for stereoscopic and monocular depth programming
KR20000039515A (en) Display device for three dimensional image

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203