JPH0959763A - Formation of metallic film on surface of organic substrate - Google Patents

Formation of metallic film on surface of organic substrate

Info

Publication number
JPH0959763A
JPH0959763A JP21710695A JP21710695A JPH0959763A JP H0959763 A JPH0959763 A JP H0959763A JP 21710695 A JP21710695 A JP 21710695A JP 21710695 A JP21710695 A JP 21710695A JP H0959763 A JPH0959763 A JP H0959763A
Authority
JP
Japan
Prior art keywords
treatment
metal film
base material
substrate
organic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21710695A
Other languages
Japanese (ja)
Inventor
Kouichi Kusumura
浩一 楠村
Takao Hayashi
隆夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP21710695A priority Critical patent/JPH0959763A/en
Publication of JPH0959763A publication Critical patent/JPH0959763A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a metallic film with sufficiently high adhesion on the surface of a smooth org. substrate by activating the surface of the org. substrate by photoirradiation, etc., and executing a vapor growth method after treating with a silane coupling agent containing a specified sulfur atom. SOLUTION: The activating treatment is applied on the surface of the org. substrate such as epoxy resin. This treatment is executed by an irradiation treatment of a light such as laser having a wavelength activating a bond or a plasma treatment. Then the surface of the substrate is subjected to a coupling treatment with a sulfur atom containing silane coupling agent expressed by the general formula, X-Si-(OR)3 (X is an org. reactive group containing sulfur atom. R is-CH3 or-CH2 -CH3 ). In this way, a mercapto group excellent in reactivity with metal is formed. Then the material is heat-treated at about 50-120 deg.C at need or subjected to the plasma treatment with a gas plasma such as oxygen, nitrogen and argon, then the metallic film is formed on this substrate surface by using the vapor growth method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気相成長法による
有機質基材表面への金属膜形成方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a metal film on the surface of an organic base material by a vapor phase growth method.

【0002】[0002]

【従来の技術】有機質基材表面への気相成長法による金
属膜形成技術は、装飾品、フレキシブルプリント基板な
どの電子機器部品、包装用フィルムをはじめ、幅広く利
用される技術である。しかしながら、有機質基材表面へ
の気相成長法による金属膜形成技術における大きな問題
点として、有機質基材と金属膜との密着性が挙げられ、
有機質基材表面に強固に密着した金属膜を得ることは非
常に難しい。
2. Description of the Related Art A technique for forming a metal film on a surface of an organic base material by a vapor phase growth method is widely used for decorative products, electronic device parts such as flexible printed boards, and packaging films. However, as a major problem in the technique for forming a metal film on the surface of an organic base material by a vapor phase growth method, adhesion between the organic base material and the metal film can be mentioned.
It is very difficult to obtain a metal film that firmly adheres to the surface of the organic base material.

【0003】従来、この問題を解決するために様々な方
法がとられている。一つには酸、アルカリ等による表面
処理を行って有機質基材表面に凹凸を形成し、アンカー
効果等により、金属膜の密着性を高める方法が行われて
いる。しかし、この方法では、金属膜表面に凹凸が生じ
るため、金属光沢がでなく、高周波用回路基板に使う場
合には凹凸による表皮抵抗が生じて電気特性に悪影響が
あり、凹凸形成のための工程が複雑になるなどの問題が
ある。
Conventionally, various methods have been adopted to solve this problem. One method is to perform surface treatment with an acid, an alkali or the like to form irregularities on the surface of the organic base material, and increase the adhesion of the metal film by the anchor effect or the like. However, in this method, since unevenness occurs on the surface of the metal film, there is no metallic luster, and when it is used for a high-frequency circuit board, skin resistance due to unevenness occurs and the electrical characteristics are adversely affected. There is a problem that it becomes complicated.

【0004】また、金属膜を形成する前に、有機質基材
表面にチタンまたはクロム等をプリコートすることによ
り、金属膜の密着性を高める方法も行われている。しか
し、この方法では、回路基板として金属膜をパターンエ
ッチングして使用する際のエッチング性に問題が生じ
る。つまり、上層となる金属膜をパターンエッチングし
て使用する際に、下層となるチタンまたはクロム等のプ
リコート層が残るという問題が生じるのである。
In addition, a method of pre-coating the surface of the organic base material with titanium, chromium or the like before forming the metal film to enhance the adhesiveness of the metal film is also used. However, this method has a problem in etching property when the metal film is used as a circuit board by pattern etching. That is, when the metal film to be the upper layer is used by pattern etching, a problem arises that the precoat layer of titanium, chromium or the like to be the lower layer remains.

【0005】また、特開昭63−270455公報に
は、アルゴンガス等の不活性ガスまたは酸素、窒素、一
酸化炭素、二酸化炭素などの活性ガスを用いて、これら
の単独または混合ガスのプラズマで表面処理を行った
後、金属膜を形成する方法が提案されている。このよう
な表面処理では、有機質基材表面を活性化させるととも
に、−OH等の官能基形成が行われる。−OH等の官能
基は金属との親和性が高く、金属膜の密着性を高める働
きをするというのである。
Japanese Patent Application Laid-Open No. 63-270455 discloses that an inert gas such as an argon gas or an active gas such as oxygen, nitrogen, carbon monoxide or carbon dioxide is used and a plasma of these gases alone or in a mixed gas is used. A method of forming a metal film after performing a surface treatment has been proposed. In such a surface treatment, the surface of the organic base material is activated and at the same time, a functional group such as —OH is formed. The functional group such as -OH has a high affinity for the metal and functions to enhance the adhesion of the metal film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
プラズマによる前処理によっても、十分に良好な有機質
基材と金属膜との密着性が得られるというまでには至ら
ない。
However, even the above-mentioned pretreatment with plasma is not enough to obtain sufficiently good adhesion between the organic base material and the metal film.

【0007】この発明は、上記事情に鑑み、有機質基材
の表面に凹凸を形成したり、所望の金属膜以外の材料を
プリコートしたりすることなく、平滑な有機質基材の表
面に気相成長法によって、金属膜を十分に密着力高く形
成することのできる有機質基材表面への金属膜形成方法
を提供することを課題とする。
In view of the above circumstances, the present invention provides vapor phase growth on a smooth surface of an organic base material without forming irregularities on the surface of the organic base material or precoating a material other than a desired metal film. An object of the present invention is to provide a method for forming a metal film on the surface of an organic base material, which can form a metal film with sufficiently high adhesion by a method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する請求
項1記載の発明は、有機質基材表面に結合を活性化させ
る波長の光の照射処理またはプラズマ処理を行う活性化
処理を施し、以下の一般式X−Si−(OR)3 (ただ
し、Xは硫黄原子を含む有機反応基を示し、Rは−CH
3 または−CH2 −CH3 を示している。)で示される
硫黄原子含有シランカップリング剤によるカップリング
処理を行った後、この有機質基材表面に気相成長法によ
って金属膜を形成することを特徴として構成している。
In order to solve the above-mentioned problems, the invention according to claim 1 performs an irradiation treatment of a light having a wavelength for activating a bond or an activation treatment of a plasma treatment on the surface of an organic substrate, Of the general formula X-Si- (OR) 3 (wherein X represents an organic reactive group containing a sulfur atom, and R represents -CH).
Shows a 3 or -CH 2 -CH 3. ), A metal film is formed on the surface of the organic base material by a vapor phase growth method after a coupling treatment with a sulfur atom-containing silane coupling agent.

【0009】このような有機質基材表面への金属膜形成
方法によれば、照射する光の波長によって定まるエネル
ギーが、有機質基材表面の結合の結合エネルギーと略一
致するので、結合を励起させて活性化させることがで
き、−OH等の官能基を形成させることができる。また
は、プラズマ処理によって、有機質基材表面を活性化さ
せるとともに、−OH等の官能基を形成させることがで
きる。さらに、カップリング処理によって、このような
有機質基材表面の−OH等の官能基と硫黄含有シランカ
ップリング剤の反応によってメルカプト基(−SH)を
形成することができる。このメルカプト基は金属との反
応性に優れているので、この有機質基材表面に気相形成
した金属膜が強く密着することになる。
According to such a method for forming a metal film on the surface of an organic base material, the energy determined by the wavelength of the irradiation light is substantially equal to the binding energy of the bond on the surface of the organic base material, so that the bond is excited. It can be activated and can form functional groups such as -OH. Alternatively, the plasma treatment can activate the surface of the organic base material and form a functional group such as —OH. Furthermore, by the coupling treatment, a mercapto group (—SH) can be formed by the reaction of the functional group such as —OH on the surface of the organic base material with the sulfur-containing silane coupling agent. Since the mercapto group has excellent reactivity with the metal, the metal film formed in the vapor phase strongly adheres to the surface of the organic base material.

【0010】請求項2記載の発明は、請求項1記載の発
明において、カップリング処理を行った後に、さらに熱
処理を行うことを特徴として構成している。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, after the coupling treatment, a heat treatment is further conducted.

【0011】このような有機質基材表面への金属膜形成
方法では、熱処理を行うことによって、メルカプト基の
形成反応が促進される。
In such a method for forming a metal film on the surface of an organic base material, heat treatment accelerates the reaction for forming a mercapto group.

【0012】請求項3記載の発明は、請求項1記載の発
明において、カップリング処理を行った後に、さらにプ
ラズマ処理を行うことを特徴として構成している。
The invention according to claim 3 is characterized in that, in the invention according to claim 1, the plasma treatment is further performed after the coupling treatment.

【0013】このような有機質基材表面への金属膜形成
方法では、プラズマ処理を行うことによって、メルカプ
ト基の形成反応がさらに促進される。
In such a method for forming a metal film on the surface of an organic base material, a plasma treatment is performed to further accelerate the reaction for forming a mercapto group.

【0014】請求項4記載の発明は、請求項3記載の発
明において、プラズマ処理を、酸素、窒素、アルゴンガ
スのうち少なくとも一つを用いたガスプラズマによって
行うことを特徴として構成している。
The invention according to claim 4 is characterized in that, in the invention according to claim 3, the plasma treatment is performed by gas plasma using at least one of oxygen, nitrogen and argon gas.

【0015】このような有機質基材表面への金属膜形成
方法では、酸素、窒素、アルゴンガスのうち少なくとも
一つを用いたガスプラズマによる処理によって、メルカ
プト基の形成反応がより確実に促進される。
In such a method for forming a metal film on the surface of an organic base material, a treatment with a gas plasma using at least one of oxygen, nitrogen and argon gas promotes the formation reaction of a mercapto group more reliably. .

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を以下に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0017】この実施の形態は、まず有機質基材表面に
結合を活性化させる波長の光の照射処理またはプラズマ
処理を行う活性化処理を施す。次に、硫黄含有シランカ
ップリング剤によるカップリング処理を行った後、この
有機質基材表面に気相成長法によって金属膜を形成する
有機質基材表面への金属膜形成方法である。
In this embodiment, first, the surface of the organic base material is subjected to an irradiation treatment with light having a wavelength for activating the bonding or an activation treatment for performing a plasma treatment. Next, a method of forming a metal film on the surface of an organic base material is performed by performing a coupling treatment with a sulfur-containing silane coupling agent and then forming a metal film on the surface of the organic base material by a vapor deposition method.

【0018】有機質基材としては、エポキシ樹脂、ポリ
イミド樹脂、PET樹脂などの様々な合成樹脂材料を用
いることができ、板状、フィルム状のものなど様々な形
状のものを使用することができる。
As the organic base material, various synthetic resin materials such as an epoxy resin, a polyimide resin, and a PET resin can be used, and various shapes such as a plate shape and a film shape can be used.

【0019】また、活性化処理として照射する結合を活
性化する波長の光としては、レーザ光等を例示すること
ができるが、これに限定されず、様々な種類の光を照射
することができる。照射する光の波長によって定まるエ
ネルギーの値が、有機質基材を構成する活性化させたい
結合の結合エネルギーと略一致するような光を選択する
ことによって、有効に有機質基材表面の結合を活性化さ
せることができる。
The light having a wavelength for activating the bond to be irradiated as the activation treatment may be, for example, a laser light, but is not limited thereto, and various kinds of light can be irradiated. . Effectively activate the bond on the surface of the organic base material by selecting light such that the energy value determined by the wavelength of the irradiated light is substantially the same as the binding energy of the bond to be activated that constitutes the organic base material. Can be made.

【0020】また、活性化処理として行うプラズマ処理
としては、アルゴンガス等の不活性ガスまたは酸素、窒
素、一酸化炭素、二酸化炭素などの活性ガスを用いて、
これらの単独または混合ガスのプラズマによる処理を行
うことができる。
In the plasma treatment performed as the activation treatment, an inert gas such as an argon gas or an active gas such as oxygen, nitrogen, carbon monoxide, or carbon dioxide is used.
The plasma treatment of these single or mixed gas can be performed.

【0021】また、硫黄原子含有シランカップリング剤
としては、一般式X−Si−(OR)3 (ただし、Xは
硫黄原子を含む有機反応基を示し、Rは−CH3 または
−CH2 −CH3 を示している。)で示される硫黄含有
シランカップリング剤を単独またはメタノールなどに溶
かして塗布することによって行うことができる。このよ
うな塗布方法としては、上記カップリング剤溶液に有機
質基材を浸漬する方法や、有機質基材にカップリング剤
溶液をスプレーする方法などがあるが、これらに限定さ
れることはない。また、カップリング剤塗布量は特に制
限されるものでないが、カップリング剤をメタノールに
溶かして用いる場合には、濃度が0.1重量%以上のメ
タノール溶液に有機質基材を浸漬して、カップリング剤
を付着させるのが好ましい。
The sulfur atom-containing silane coupling agent has the general formula X-Si- (OR) 3 (wherein X represents an organic reactive group containing a sulfur atom, and R represents —CH 3 or —CH 2 —). CH 3 is represented by the formula (1) or a sulfur-containing silane coupling agent represented by the formula ( 3 ) alone or dissolved in methanol or the like and applied. Examples of such an application method include, but are not limited to, a method of immersing the organic base material in the coupling agent solution and a method of spraying the coupling agent solution on the organic base material. Further, the coating amount of the coupling agent is not particularly limited, but when the coupling agent is dissolved in methanol and used, the organic base material is dipped in a methanol solution having a concentration of 0.1% by weight or more to form a cup. It is preferable to attach a ring agent.

【0022】また、気相成長法としては、スパッタリン
グ法や真空蒸着法などを代表的に例示することができ
る。また、金属膜としては、銅膜が代表的なものである
が、特定の金属膜に限らないことは言うまでもない。金
属膜の厚みも特に制限されないが、0.01〜数十μm
程度の一般的な厚みに形成することができる。
As the vapor phase growth method, a sputtering method, a vacuum deposition method, and the like can be typically exemplified. Further, a copper film is a typical metal film, but it goes without saying that it is not limited to a specific metal film. The thickness of the metal film is also not particularly limited, but is 0.01 to several tens μm.
It can be formed to a general thickness of the order.

【0023】また、活性化処理を行い、カップリング剤
溶液の塗布を行った後、さらに熱処理をするようにして
もよい。この場合の熱処理は、温度100〜140℃、
時間0.5〜2時間程度の条件が特に好ましい。
After the activation treatment is performed and the coupling agent solution is applied, a heat treatment may be further performed. The heat treatment in this case is performed at a temperature of 100 to 140 ° C.
A condition of about 0.5 to 2 hours is particularly preferable.

【0024】また、上記のように活性化処理を行い、カ
ップリング剤溶液の塗布を行った後、有機質基材をプラ
ズマ処理するようにしてもよい。プラズマは酸素、窒
素、アルゴンガスを単独で、あるいは複数を併用して用
いたガスプラズマであることが好ましい。
The activation treatment may be performed as described above, the coupling agent solution may be applied, and then the organic base material may be plasma-treated. The plasma is preferably a gas plasma using oxygen gas, nitrogen gas, or argon gas alone or in combination.

【0025】[0025]

【実施例】以下に具体的な実施例を説明する。 (実施例1)基板ホルダーに有機樹脂基材としてポリイ
ミド基板を取り付け、真空チャンバー内に配置し、この
真空チャンバー内を1×10-5トール以下になるまで真
空排気した。そして、酸素ガスを導入し、プラズマを発
生させ、ポリイミド基板の活性化処理を行った。
EXAMPLES Specific examples will be described below. Example 1 A polyimide substrate as an organic resin base material was attached to a substrate holder, placed in a vacuum chamber, and the vacuum chamber was evacuated to 1 × 10 −5 Torr or less. Then, oxygen gas was introduced to generate plasma to activate the polyimide substrate.

【0026】次に、硫黄含有シランカップリング剤とし
て3−メルカプトプロピルトリメトキシシランを用い、
この1重量%メタノール溶液に前記ポリイミド基板の表
面を浸漬させて、カップリング剤溶液の塗布を行い、さ
らに、70℃で1時間熱処理を行った。
Next, 3-mercaptopropyltrimethoxysilane was used as a sulfur-containing silane coupling agent,
The surface of the polyimide substrate was immersed in this 1% by weight methanol solution to apply a coupling agent solution, and then heat treatment was performed at 70 ° C. for 1 hour.

【0027】この後、気相成長法による金属膜の形成
を、ガス成分アルゴン、ガス圧を2.0×10-3トー
ル、ポリイミド基板の温度を室温、ターゲット電圧を−
500Vとした条件によるマグネトロンスパッタリング
法で、上記のポリイミド基板の表面に厚み0.2μmの
銅膜を形成した。 (実施例2)実施例1と全く同様にして、ポリイミド基
板に対する処理を、硫黄含有シランカップリング剤とし
て3−メルカプトプロピルトリメトキシシランによるカ
ップリング剤溶液の塗布までを行い、加熱処理を行わず
に以下の工程を実施した。
After that, the formation of the metal film by the vapor phase growth method is performed by using a gas component of argon, a gas pressure of 2.0 × 10 −3 Torr, a polyimide substrate temperature of room temperature, and a target voltage of −.
A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate by a magnetron sputtering method under the condition of 500V. (Example 2) In exactly the same manner as in Example 1, the polyimide substrate was treated up to the application of a coupling agent solution of 3-mercaptopropyltrimethoxysilane as a sulfur-containing silane coupling agent, without heat treatment. The following steps were carried out.

【0028】基板ホルダーに上記処理を行ったポリイミ
ド基板を取り付け、真空チャンバー内に配置した。この
真空チャンバー内を1×10-5トール以下になるまで真
空排気し、真空チャンバー内にアルゴンガスを導入し
て、アルゴンガス圧760トール(常圧)、放電電力1
00W、周波数15kHzの条件で1分間、ポリイミド
基板の表面をアルゴンガスプラズマ処理を行った。
The polyimide substrate thus treated was attached to the substrate holder and placed in a vacuum chamber. The inside of this vacuum chamber was evacuated to 1 × 10 −5 Torr or less, and argon gas was introduced into the vacuum chamber, the argon gas pressure was 760 Torr (normal pressure), and the discharge power was 1
Argon gas plasma treatment was performed on the surface of the polyimide substrate for 1 minute under the conditions of 00 W and frequency of 15 kHz.

【0029】この後、実施例1と同様の処理を行って、
気相成長法による金属膜の形成を行いポリイミド基板の
表面に厚み0.2μmの銅膜を形成した。 (実施例3)実施例1の酸素ガスのプラズマによる活性
化処理の代わりに、1×10-5トール以下になるまで真
空排気した真空チャンバー内で、ハロゲンヒーターでポ
リイミド基板を100℃に予備加熱を行って吸着水分を
除去し、この後、C=O結合のエネルギー179kca
l/molに相当する波長(150〜160nm)のレ
ーザ光をポリイミド基板表面に照射して活性化処理と
し、以下、実施例1同様の処理を行って、気相成長法に
よる金属膜の形成を行いポリイミド基板の表面に厚み
0.2μmの銅膜を形成した。 (実施例4)実施例3と全く同様にして、ポリイミド基
板に対する処理を、3−メルカプトプロピルトリメトキ
シシランによるカップリング剤溶液の塗布までを行い、
加熱処理を行わずに以下の工程を実施した。
Thereafter, the same processing as in Example 1 is performed,
A metal film was formed by a vapor phase growth method to form a copper film having a thickness of 0.2 μm on the surface of the polyimide substrate. (Example 3) Instead of the activation treatment by plasma of oxygen gas in Example 1, the polyimide substrate was preheated to 100 ° C. with a halogen heater in a vacuum chamber evacuated to 1 × 10 −5 Torr or less. To remove the adsorbed water, and thereafter, the energy of the C═O bond is 179 kca.
The polyimide substrate surface is irradiated with laser light having a wavelength (150 to 160 nm) corresponding to 1 / mol to perform activation treatment. Then, the same treatment as in Example 1 is performed to form a metal film by vapor phase epitaxy. Then, a copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate. (Example 4) In exactly the same manner as in Example 3, the polyimide substrate was treated up to the coating of the coupling agent solution with 3-mercaptopropyltrimethoxysilane,
The following steps were carried out without heat treatment.

【0030】基板ホルダーに上記処理を行ったポリイミ
ド基板を取り付け、真空チャンバー内に配置した。この
真空チャンバー内を1×10-5トール以下になるまで真
空排気し、真空チャンバー内にアルゴンガスを導入し
て、アルゴンガス圧760トール(常圧)、放電電力1
00W、周波数15kHzの条件で1分間、ポリイミド
基板の表面をアルゴンガスプラズマ処理を行った。
The polyimide substrate thus treated was attached to the substrate holder and placed in a vacuum chamber. The inside of this vacuum chamber was evacuated to 1 × 10 −5 Torr or less, and argon gas was introduced into the vacuum chamber, the argon gas pressure was 760 Torr (normal pressure), and the discharge power was 1
Argon gas plasma treatment was performed on the surface of the polyimide substrate for 1 minute under the conditions of 00 W and frequency of 15 kHz.

【0031】この後、実施例3と同様の処理を行って、
気相成長法による金属膜の形成を行いポリイミド基板の
表面に厚み0.2μmの銅膜を形成した。 (比較例1)実施例1における、ポリイミド基板にカッ
プリング剤溶液を塗布する処理を行わない他は、全く同
様にしてポリイミド基板の表面に厚み0.2μmの銅膜
を形成した。 (比較例2)実施例2における、ポリイミド基板にカッ
プリング剤溶液を塗布する処理を行わない他は、全く同
様にしてポリイミド基板の表面に厚み0.2μmの銅膜
を形成した。 (比較例3)実施例3における、ポリイミド基板にカッ
プリング剤溶液を塗布する処理を行わない他は、全く同
様にしてポリイミド基板の表面に厚み0.2μmの銅膜
を形成した。 (比較例4)実施例4における、ポリイミド基板にカッ
プリング剤溶液を塗布する処理を行わない他は、全く同
様にしてポリイミド基板の表面に厚み0.2μmの銅膜
を形成した。
Thereafter, the same processing as in the third embodiment is performed,
A metal film was formed by a vapor phase growth method to form a copper film having a thickness of 0.2 μm on the surface of the polyimide substrate. Comparative Example 1 A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate in the same manner as in Example 1, except that the treatment of applying the coupling agent solution to the polyimide substrate was not performed. Comparative Example 2 A copper film having a thickness of 0.2 μm was formed on the surface of a polyimide substrate in exactly the same manner as in Example 2, except that the treatment of applying the coupling agent solution to the polyimide substrate was not performed. Comparative Example 3 A copper film having a thickness of 0.2 μm was formed on the surface of a polyimide substrate in exactly the same manner as in Example 3, except that the treatment of applying the coupling agent solution to the polyimide substrate was not performed. Comparative Example 4 A copper film having a thickness of 0.2 μm was formed on the surface of a polyimide substrate in the same manner as in Example 4, except that the treatment of applying the coupling agent solution to the polyimide substrate was not performed.

【0032】上記の実施例1〜4および比較例1〜5に
述べた方法によって、有機質基材の表面に形成した銅膜
について、密着性を評価するために碁盤目試験を行っ
た。この試験は銅膜に2mm間隔に碁盤目状の切り目を
ナイフで入れた後、この表面にセロハンテープを貼って
剥がすことによって行い、銅膜が剥離しなければ「○」
と評価し、また碁盤目状の切り目を入れなくとも剥離す
れば「×」と評価し、碁盤目状の切り目を入れた場合の
み剥離すれば「△」と評価した。この結果を以下の表1
に示す。
The copper film formed on the surface of the organic base material by the method described in Examples 1 to 4 and Comparative Examples 1 to 5 was subjected to a cross-cut test to evaluate the adhesion. This test is performed by making a grid-shaped cut in the copper film at intervals of 2 mm with a knife, and then applying a cellophane tape to the surface and peeling it off.
It was evaluated as "x" if peeling was performed without making a grid-like cut, and "△" if peeling was performed only when a grid-like cut was made. The results are shown in Table 1 below.
Shown in

【0033】[0033]

【表1】 [Table 1]

【0034】表1の実施例1〜4と比較例1〜4とを対
比すると、カップリング剤溶液を塗布する処理を実施し
た各実施例のものでは、銅膜の密着性が高いのに対し
て、カップリング剤溶液を塗布していない各比較例のも
のは密着性が低く、カップリング剤溶液の塗布による金
属膜の密着性の向上の効果が確認される。
When Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 are compared, in each Example in which the treatment of applying the coupling agent solution is performed, the adhesion of the copper film is high. Thus, the adhesiveness of each comparative example to which the coupling agent solution is not applied is low, and the effect of improving the adhesiveness of the metal film by the application of the coupling agent solution is confirmed.

【0035】以上の結果から、光を照射したのちカップ
リング剤溶液を塗布することによって、金属膜の密着性
が向上していることが確認される。
From the above results, it is confirmed that the adhesion of the metal film is improved by applying the coupling agent solution after irradiating with light.

【0036】[0036]

【発明の効果】請求項1記載の発明では、有機質基材表
面に結合を活性化させる活性化処理を施し、さらに硫黄
含有シランカップリング剤によるカップリング処理によ
って、金属膜を強く有機質基材に密着させることができ
る。このような前処理は、従来の微細な凹凸形成による
前処理に比較して工程が簡単であって、容易に行うこと
ができるものである。
According to the first aspect of the invention, the surface of the organic substrate is subjected to activation treatment for activating the bond, and further the coupling treatment with the sulfur-containing silane coupling agent is performed to strongly transform the metal film into an organic substrate. Can be closely attached. Such a pretreatment has a simpler process and can be easily performed as compared with the conventional pretreatment by forming fine irregularities.

【0037】また、有機質基材の表面に凹凸を形成する
必要がないので、形成した金属膜に金属光沢が得られ、
装飾用、反射鏡用などの用途に有用である。また、高周
波用回路基板に使う場合を想定すると、凹凸による表皮
抵抗が生じる心配がなく、電気特性の良好な高周波用回
路基板を製造することができる。
Further, since it is not necessary to form irregularities on the surface of the organic base material, a metallic luster can be obtained in the formed metal film,
It is useful for applications such as decoration and reflectors. Further, assuming that it is used for a high-frequency circuit board, it is possible to manufacture a high-frequency circuit board having good electrical characteristics without fear of causing skin resistance due to unevenness.

【0038】また、所望の金属膜の下層にチタンまたは
クロム等のプリコート層を存在させる必要がないもので
ある。したがって、電子材料用途の回路基板などに用い
る場合、導体回路となる金属層のエッチングに悪影響を
与えることがなく、回路形成が容易であって、有機質基
材をベースとした回路板の製造に好適に用いられる金属
膜形成方法になっている。
Further, it is not necessary to provide a precoat layer of titanium, chromium or the like under the desired metal film. Therefore, when used as a circuit board for electronic materials, it does not adversely affect the etching of the metal layer to be a conductor circuit, facilitates circuit formation, and is suitable for manufacturing circuit boards based on organic base materials. It is a method for forming a metal film used for.

【0039】請求項2記載の発明では、熱処理を行うこ
とによって、メルカプト基の形成反応が促進され、より
金属膜の密着力が向上する。
According to the second aspect of the present invention, the heat treatment accelerates the formation reaction of the mercapto group and further improves the adhesion of the metal film.

【0040】請求項3記載の発明では、プラズマ処理を
行うことによって、メルカプト基の形成反応が促進さ
れ、より金属膜の密着力が向上する。
According to the third aspect of the invention, by performing the plasma treatment, the formation reaction of the mercapto group is promoted, and the adhesion of the metal film is further improved.

【0041】請求項4記載の発明では、酸素、窒素、ア
ルゴンガスのうち少なくとも一つを用いたガスプラズマ
による処理によって、メルカプト基の形成反応がより確
実に促進され、金属膜の密着力を確実に向上させること
ができる。
According to the fourth aspect of the present invention, the treatment with the gas plasma using at least one of oxygen, nitrogen and argon gas promotes the formation reaction of the mercapto group more reliably and ensures the adhesion of the metal film. Can be improved.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月21日[Submission date] November 21, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】このような有機質基材表面への金属膜形成
方法によれば、照射する光の波長によって定まるエネル
ギーが、有機質基材表面の結合の結合エネルギーと略一
致するので、結合を励起させて活性化させることがで
。または、プラズマ処理によって、有機質基材表面を
活性化させるとともに、−OH等の官能基を形成させる
ことができる。さらに、カップリング処理によって、こ
のような有機質基材表面の−OH等の官能基と硫黄含有
シランカップリング剤の反応によってメルカプト基(−
SH)を形成することができる。このメルカプト基は金
属との反応性に優れているので、この有機質基材表面に
気相形成した金属膜が強く密着することになる。
According to such a method for forming a metal film on the surface of an organic base material, the energy determined by the wavelength of the irradiation light is substantially equal to the binding energy of the bond on the surface of the organic base material, so that the bond is excited. Ki de be activated
You . Alternatively, the plasma treatment can activate the surface of the organic base material and form a functional group such as —OH. Further, by the coupling treatment, a functional group such as -OH on the surface of the organic base material and a sulfur-containing silane coupling agent react with each other to form a mercapto group (-
SH) can be formed. Since the mercapto group has excellent reactivity with the metal, the metal film formed in the vapor phase strongly adheres to the surface of the organic base material.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】また、活性化処理を行い、カップリング剤
溶液の塗布を行った後、さらに熱処理をするようにして
もよい。この場合の熱処理は、温度50〜120℃、時
間0.5〜2時間程度の条件が特に好ましい。
After the activation treatment is performed and the coupling agent solution is applied, a heat treatment may be further performed. The heat treatment in this case is particularly preferably performed under the conditions of a temperature of 50 to 120 ° C. and a time of about 0.5 to 2 hours.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】この後、実施例1と同様の処理を行って、
気相成長法による金属膜の形成を行いポリイミド基板の
表面に厚み0.2μmの銅膜を形成した。 (実施例3)実施例1の酸素ガスのプラズマによる活性
化処理の代わりに、1×10-5トール以下になるまで真
空排気した真空チャンバー内で、ハロゲンヒーターでポ
リイミド基板を100℃に予備加熱を行って吸着水分を
除去し、この後、C=O結合のエネルギー179kca
l/molに相当する波長(150〜160nm)のレ
ーザ光をポリイミド基板表面に照射して活性化処理を行
、以下、実施例1と全く同様の処理を行って、気相成
長法による金属膜の形成を行いポリイミド基板の表面に
厚み0.2μmの銅膜を形成した。 (実施例4)実施例3と全く同様にして、ポリイミド基
板に対する処理を、3−メルカプトプロピルトリメトキ
シシランによるカップリング剤溶液の塗布までを行い、
加熱処理を行わずに以下の工程を実施した。
Thereafter, the same processing as in Example 1 is performed,
A metal film was formed by a vapor phase growth method to form a copper film having a thickness of 0.2 μm on the surface of the polyimide substrate. (Example 3) Instead of the activation treatment by plasma of oxygen gas in Example 1, the polyimide substrate was preheated to 100 ° C. with a halogen heater in a vacuum chamber evacuated to 1 × 10 −5 Torr or less. To remove the adsorbed water, and thereafter, the energy of the C═O bond is 179 kca.
The activation treatment is performed by irradiating the surface of the polyimide substrate with laser light having a wavelength (150 to 160 nm) corresponding to 1 / mol.
There, following by performing exactly the same treatment as in Example 1 to form a copper film having a thickness of 0.2μm on the surface of the polyimide substrate subjected to the formation of metal film by vapor deposition. (Example 4) In exactly the same manner as in Example 3, the polyimide substrate was treated up to the coating of the coupling agent solution with 3-mercaptopropyltrimethoxysilane,
The following steps were carried out without heat treatment.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】上記の実施例1〜4および比較例1〜
述べた方法によって、有機質基材の表面に形成した銅膜
について、密着性を評価するために碁盤目試験を行っ
た。この試験は銅膜に2mm間隔に碁盤目状の切り目を
ナイフで入れた後、この表面にセロハンテープを貼って
剥がすことによって行い、銅膜が剥離しなければ「○」
と評価し、また碁盤目状の切り目を入れなくとも剥離す
れば「×」と評価し、碁盤目状の切り目を入れた場合の
み剥離すれば「△」と評価した。この結果を以下の表1
に示す。
The copper film formed on the surface of the organic substrate by the method described in Examples 1 to 4 and Comparative Examples 1 to 4 was subjected to a cross-cut test to evaluate the adhesion. This test is performed by making a grid-shaped cut in the copper film at intervals of 2 mm with a knife, and then applying a cellophane tape to the surface and peeling it off.
It was evaluated as "x" if peeling was performed without making a grid-like cut, and "△" if peeling was performed only when a grid-like cut was made. The results are shown in Table 1 below.
Shown in

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機質基材表面に結合を活性化させる波
長の光の照射処理またはプラズマ処理を行う活性化処理
を施し、一般式X−Si−(OR)3 (ただし、Xは硫
黄原子を含む有機反応基であり、Rは−CH3 または−
CH2 −CH 3 である。)で示される硫黄原子含有シラ
ンカップリング剤によるカップリング処理を行った後、
この有機質基材表面に気相成長法によって金属膜を形成
することを特徴とする有機質基材表面への金属膜形成方
法。
1. A wave for activating a bond on the surface of an organic substrate.
Activation treatment with long light irradiation or plasma treatment
The general formula X-Si- (OR)Three(However, X is sulfur
It is an organic reactive group containing a yellow atom, and R is —CH.ThreeOr-
CH2-CH ThreeIt is. ) Sila containing sulfur atom
After performing a coupling treatment with a coupling agent,
Form a metal film on the surface of this organic substrate by vapor phase epitaxy
Method for forming a metal film on the surface of an organic substrate characterized by
Law.
【請求項2】 カップリング処理を行った後に、さらに
熱処理を行うことを特徴とする請求項1記載の有機質基
材表面への金属膜形成方法。
2. The method for forming a metal film on the surface of an organic base material according to claim 1, further comprising heat treatment after the coupling treatment.
【請求項3】 カップリング処理を行った後に、さらに
プラズマ処理を行うことを特徴とする請求項1記載の有
機質基材表面への金属膜形成方法。
3. The method for forming a metal film on the surface of an organic base material according to claim 1, further comprising plasma treatment after the coupling treatment.
【請求項4】 プラズマ処理を、酸素、窒素、アルゴン
ガスのうち少なくとも一つを用いたガスプラズマによっ
て行うことを特徴とする請求項3記載の有機質基材表面
への金属膜形成方法。
4. The method for forming a metal film on a surface of an organic base material according to claim 3, wherein the plasma treatment is performed by gas plasma using at least one of oxygen, nitrogen and argon gas.
JP21710695A 1995-08-25 1995-08-25 Formation of metallic film on surface of organic substrate Withdrawn JPH0959763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21710695A JPH0959763A (en) 1995-08-25 1995-08-25 Formation of metallic film on surface of organic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21710695A JPH0959763A (en) 1995-08-25 1995-08-25 Formation of metallic film on surface of organic substrate

Publications (1)

Publication Number Publication Date
JPH0959763A true JPH0959763A (en) 1997-03-04

Family

ID=16698950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21710695A Withdrawn JPH0959763A (en) 1995-08-25 1995-08-25 Formation of metallic film on surface of organic substrate

Country Status (1)

Country Link
JP (1) JPH0959763A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048749A1 (en) * 1999-02-18 2000-08-24 Battelle Memorial Institute Method for adhering laminate structures
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
WO2008111234A1 (en) * 2007-03-12 2008-09-18 Kazufumi Ogawa Shaped plastic member with a metal film, a manufacturing method thereof and articles made therefrom
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6627267B2 (en) 1997-09-29 2003-09-30 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6656537B2 (en) 1997-09-29 2003-12-02 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6909230B2 (en) 1998-12-16 2005-06-21 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6497598B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6613395B2 (en) 1998-12-16 2003-09-02 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6858259B2 (en) 1998-12-16 2005-02-22 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6497924B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Method of making non-linear optical polymer
US6811829B2 (en) 1998-12-16 2004-11-02 Battelle Memorial Institute Method of making a coating of a microtextured surface
US6509065B2 (en) 1998-12-16 2003-01-21 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6522067B1 (en) 1998-12-16 2003-02-18 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6544600B2 (en) 1998-12-16 2003-04-08 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
WO2000048749A1 (en) * 1999-02-18 2000-08-24 Battelle Memorial Institute Method for adhering laminate structures
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6923702B2 (en) 1999-10-25 2005-08-02 Battelle Memorial Institute Method of making encapsulated display devices
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device
WO2008111234A1 (en) * 2007-03-12 2008-09-18 Kazufumi Ogawa Shaped plastic member with a metal film, a manufacturing method thereof and articles made therefrom
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9362530B2 (en) 2008-12-22 2016-06-07 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction

Similar Documents

Publication Publication Date Title
JPH0959763A (en) Formation of metallic film on surface of organic substrate
JPH08325713A (en) Formation of metallic film on organic substrate surface
JP3330143B2 (en) Metal coating method using low temperature plasma and electrodeposition
EP0678596A1 (en) Metallic body with vapor-deposited treatment layer(s) and adhesion-promoting layer
JP5360963B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
JPH0149788B2 (en)
DE19983075T1 (en) Organic substrate with optical layers precipitated by magnetron sputtering and method for producing the same
JPH01259170A (en) Production of metal structure on insulator
WO2006059845A1 (en) Method of surface modification of polyimide film using silanes coupling agent, manufacturing method of flexible copper clad laminate and its product thereby
EP0370269B1 (en) A process for treating the surface of polyimide articles
JP4013352B2 (en) Method for forming metal film on resin substrate surface
JPH09228026A (en) Formation of metallic film onto organic base material
JPH09176831A (en) Formation of metallic film on surface of organic substrate
JPH10130823A (en) Method for forming metal film on surface of organic substrate
JPH10237631A (en) Formation of metallic coating onto surface of organic base material
JPH10130816A (en) Metal film forming method on surface of organic substrate
JPH10265943A (en) Formation of metallic film on organic substrate surface
JP3263470B2 (en) Metallization method for organic substrate surface
JPH1161378A (en) Formation of metallic film on surface of organic substrate
JPH09316627A (en) Formation of metallic film on organic substrate surface
JPH1030167A (en) Formation of metallic film on surface of organic base material
JP4013353B2 (en) Method for forming metal film on resin substrate surface
WO2000048749A1 (en) Method for adhering laminate structures
Chung et al. An Auger study on the interaction of Cu and Cr films with polyimide
JPH08225923A (en) Formation of metallic film on surface of organic base material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105