JPH08325713A - Formation of metallic film on organic substrate surface - Google Patents

Formation of metallic film on organic substrate surface

Info

Publication number
JPH08325713A
JPH08325713A JP13132295A JP13132295A JPH08325713A JP H08325713 A JPH08325713 A JP H08325713A JP 13132295 A JP13132295 A JP 13132295A JP 13132295 A JP13132295 A JP 13132295A JP H08325713 A JPH08325713 A JP H08325713A
Authority
JP
Japan
Prior art keywords
metal film
base material
organic base
substrate surface
polyimide substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13132295A
Other languages
Japanese (ja)
Inventor
Kouichi Kusumura
浩一 楠村
Satoru Ogawa
悟 小川
Takao Hayashi
隆夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13132295A priority Critical patent/JPH08325713A/en
Publication of JPH08325713A publication Critical patent/JPH08325713A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To attach a metallic film firmly to an org. substrate by irradiating the substrate surface with a light of wavelength activating bonding, further applying an amine soln. and then forming a metallic film by a vapor deposition method. CONSTITUTION: The surface of an org. substrate is irradiated with a light having an energy equivalent to the binding energy of the substrate surface. The light activates the substrate surface to form a functional group such as -OH. The amine group of an amide soln. reacts with the functional group such as-OH to form an amide group. Since the amide group is highly reactive with the metal, the metallic film is firmly attached to the substrate surface. When the substrate surface is heat-treated or treated with plasma after the amine soln. is applied, the formation of the amide group is promoted more surely and preferably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相成長法による有機
質基材表面への金属膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal film on the surface of an organic base material by a vapor phase growth method.

【0002】[0002]

【従来の技術】有機質基材表面への気相成長法による金
属膜形成技術は、装飾品、フレキシブルプリント基板な
どの電子機器部品、包装用フィルムをはじめ、幅広く利
用される技術である。しかしながら、有機質基材表面へ
の気相成長法による金属膜形成技術における大きな問題
点として、有機質基材と金属膜との密着性が挙げられ、
有機質基材表面に強固に密着した金属膜を得ることは非
常に難しい。
2. Description of the Related Art A technique for forming a metal film on a surface of an organic base material by a vapor phase growth method is widely used for decorative products, electronic device parts such as flexible printed boards, and packaging films. However, as a major problem in the technique for forming a metal film on the surface of an organic substrate by vapor phase growth, the adhesion between the organic substrate and the metal film can be mentioned.
It is very difficult to obtain a metal film that firmly adheres to the surface of the organic base material.

【0003】従来、この問題を解決するために様々な方
法がとられている。一つには酸、アルカリ等による表面
処理を行って有機質基材表面に凹凸を形成し、アンカー
効果等により、金属膜の密着性を高める方法が行われて
いる。しかし、この方法では、金属膜表面に凹凸が生じ
るため、金属光沢がでなく、高周波用回路基板に使う場
合には凹凸による表皮抵抗が生じて電気特性に悪影響が
あり、凹凸形成のための工程が複雑になるなどの問題が
ある。
Conventionally, various methods have been adopted to solve this problem. One method is to perform surface treatment with an acid, an alkali or the like to form irregularities on the surface of the organic base material, and increase the adhesion of the metal film by the anchor effect or the like. However, in this method, since unevenness occurs on the surface of the metal film, there is no metallic luster, and when it is used for a high-frequency circuit board, skin resistance due to unevenness occurs and the electrical characteristics are adversely affected. There is a problem that it becomes complicated.

【0004】また、金属膜を形成する前に、有機質基材
表面にチタンまたはクロム等をプリコートすることによ
り、金属膜の密着性を高める方法も行われている。しか
し、この方法では、回路基板として金属膜をパターンエ
ッチングして使用する際のエッチング性に問題が生じ
る。つまり、上層となる金属膜をパターンエッチングし
て使用する際に、下層となるチタンまたはクロム等のプ
リコート層が残るという問題が生じるのである。
In addition, a method of pre-coating the surface of the organic base material with titanium, chromium or the like before forming the metal film to enhance the adhesiveness of the metal film is also used. However, this method has a problem in etching property when the metal film is used as a circuit board by pattern etching. That is, when the metal film to be the upper layer is used by pattern etching, a problem arises that the precoat layer of titanium, chromium or the like to be the lower layer remains.

【0005】また、特開昭63−270455公報に
は、アルゴンガス等の不活性ガスまたは酸素、窒素、一
酸化炭素、二酸化炭素などの活性ガスを用いて、これら
の単独または混合ガスのプラズマで表面処理した後、金
属膜を形成する方法が提案されている。このような表面
処理では、有機質基材表面を活性化させるとともに、−
OH等の官能基形成が行われる。−OH等の官能基は金
属との親和性が高く、金属膜の密着性を高める働きをす
るというのである。
Further, in Japanese Patent Laid-Open No. 63-270455, an inert gas such as argon gas or an active gas such as oxygen, nitrogen, carbon monoxide, carbon dioxide, etc. is used, and a plasma of these gases alone or in a mixed gas is used. A method of forming a metal film after surface treatment has been proposed. Such a surface treatment activates the surface of the organic base material and
Functional groups such as OH are formed. A functional group such as —OH has a high affinity with a metal and functions to enhance the adhesiveness of the metal film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
プラズマによる前処理によっても、十分に良好な有機質
基材と金属膜との密着性が得られるというまでには至ら
ない。
However, even the above-mentioned pretreatment with plasma is not enough to obtain sufficiently good adhesion between the organic base material and the metal film.

【0007】この発明は、上記事情に鑑み、有機質基材
の表面に凹凸を形成したり、所望の金属膜以外の材料を
プリコートしたりすることなく、平滑な有機質基材の表
面に気相成長法によって、金属膜を十分に密着力高く形
成することのできる有機質基材表面への金属膜形成方法
を提供することを課題とする。
In view of the above circumstances, the present invention provides vapor phase growth on a smooth surface of an organic base material without forming irregularities on the surface of the organic base material or precoating a material other than a desired metal film. An object of the present invention is to provide a method for forming a metal film on the surface of an organic base material, which can form a metal film with sufficiently high adhesion by a method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する請求
項1記載の発明は、有機質基材表面に結合を活性化させ
る波長の光を照射し、さらにアミン溶液を塗布した後、
この有機質基材表面に気相成長法によって金属膜を形成
することを特徴として構成している。
In order to solve the above-mentioned problems, the invention according to claim 1 irradiates the surface of the organic substrate with light having a wavelength for activating the bond, and after applying an amine solution,
It is characterized in that a metal film is formed on the surface of the organic base material by a vapor phase growth method.

【0009】請求項2記載の発明は、請求項1記載の発
明において、アミン溶液を塗布した後に、さらに熱処理
を行うことを特徴として構成している。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, after the amine solution is applied, a heat treatment is further performed.

【0010】請求項3記載の発明は、請求項1記載の発
明において、アミン溶液を塗布した後に、さらにプラズ
マ処理を行うことを特徴として構成している。
The invention according to claim 3 is characterized in that, in the invention according to claim 1, after the amine solution is applied, a plasma treatment is further performed.

【0011】請求項4記載の発明は、請求項4記載の発
明において、プラズマ処理を、酸素、窒素、アルゴンガ
スのうち少なくとも一つを用いたガスプラズマによって
行うことを特徴として構成している。
The invention according to claim 4 is characterized in that, in the invention according to claim 4, the plasma treatment is performed by gas plasma using at least one of oxygen, nitrogen and argon gas.

【0012】有機質基材としては、エポキシ樹脂、ポリ
イミド樹脂、PET樹脂などの様々な合成樹脂材料を用
いることができ、板状、フィルム状のものなど様々な形
状のものを使用することができる。
As the organic base material, various synthetic resin materials such as epoxy resin, polyimide resin and PET resin can be used, and various shapes such as plate and film can be used.

【0013】気相成長法としては、スパッタリング法や
真空蒸着法などを代表的に例示することができる。ま
た、金属膜としては、銅膜が代表的なものであるが、特
定の金属膜に限らないことは言うまでもない。金属膜の
厚みも特に制限されないが、0.01〜数十μm程度の
一般的な厚みに形成することができる。
Typical examples of the vapor phase growth method include a sputtering method and a vacuum vapor deposition method. Further, a copper film is a typical metal film, but it goes without saying that it is not limited to a specific metal film. The thickness of the metal film is also not particularly limited, but it can be formed to a general thickness of about 0.01 to several tens of μm.

【0014】結合を活性化する波長の光としては、レー
ザ光等を例示することができるが、これに限定されず、
様々な種類の光を照射することができる。照射する光の
波長によって定まるエネルギーの値が、有機質基材を構
成する活性化させたい結合の結合エネルギーと略一致す
るような光を選択することによって、有効に有機質基材
表面の結合を活性化させることができる。
Examples of the light having a wavelength that activates the bond include laser light, but the light is not limited thereto.
Various types of light can be emitted. Effectively activate the bond on the surface of the organic base material by selecting light such that the energy value determined by the wavelength of the irradiated light is substantially the same as the binding energy of the bond to be activated that constitutes the organic base material. Can be made.

【0015】塗布するアミンとしては、アニリン、メチ
ルアニリン、エチルアニリン、ベンジルアミン等の芳香
族アミンを例示することができ、アミン単独で、あるい
はメタノール等の溶剤に溶かして使用することができ
る。有機質基材表面へのアミン溶液の塗布方法として
は、アミン溶液に有機質基材を浸漬する方法や、有機質
基材にアミン溶液をスプレーする方法などがあるが、こ
れらに限定されることはない。またアミンの塗布量は特
に制限されるものでないが、アミンをメタノールに溶か
して用いる場合には、アミンの濃度が0.1重量%以上
のメタノール溶液に有機質基材を浸漬してアミンを付着
させるのが好ましい。
As the amine to be applied, aromatic amines such as aniline, methylaniline, ethylaniline and benzylamine can be exemplified, and the amine can be used alone or can be used by dissolving it in a solvent such as methanol. The method for applying the amine solution to the surface of the organic base material includes, but is not limited to, a method of immersing the organic base material in the amine solution and a method of spraying the amine solution on the organic base material. The amount of amine applied is not particularly limited, but when the amine is dissolved in methanol to be used, the organic base material is immersed in a methanol solution having an amine concentration of 0.1% by weight or more to attach the amine. Is preferred.

【0016】また、光を照射し、アミン溶液の塗布を行
った後、さらに熱処理をするようにしてもよい。この場
合の熱処理は、温度100〜140℃、時間0.5〜2
時間程度の条件が特に好ましい。
Further, after irradiating with light and applying the amine solution, heat treatment may be further performed. The heat treatment in this case is performed at a temperature of 100 to 140 ° C. for a time of 0.5 to 2
Conditions of about time are particularly preferable.

【0017】また、上記のように光を照射し、アミン溶
液の塗布を行った後、有機質基材をプラズマ処理するよ
うにしてもよい。プラズマは酸素、窒素、アルゴンガス
を単独で、あるいは複数を併用して用いたガスプラズマ
であることが好ましい。
Alternatively, the organic base material may be subjected to plasma treatment after being irradiated with light and applied with the amine solution as described above. The plasma is preferably a gas plasma using oxygen gas, nitrogen gas, or argon gas alone or in combination.

【0018】[0018]

【作用】請求項1記載の発明では、照射する光の波長に
よって定まるエネルギーが、有機質基材表面の結合の結
合エネルギーと略一致するので、結合を励起させて活性
化させることができ、−OH等の官能基を形成させるこ
とができる。さらに、アミン溶液の塗布によって、有機
質基材表面の−OH等の官能基とアミノ基の反応によっ
てアミド基を形成することができる。このアミド基は金
属との反応性に優れているので、この有機質基材表面に
気相形成した金属膜が強く密着することになる。
In the invention described in claim 1, since the energy determined by the wavelength of the light to be irradiated is substantially the same as the binding energy of the bond on the surface of the organic base material, the bond can be excited and activated. Functional groups such as Further, by applying the amine solution, an amide group can be formed by reacting a functional group such as —OH on the surface of the organic substrate with an amino group. Since the amide group has excellent reactivity with a metal, the metal film formed in the vapor phase strongly adheres to the surface of the organic base material.

【0019】請求項2記載の発明では、熱処理を行うこ
とによって、アミド基の形成反応が促進される。
According to the second aspect of the present invention, the amide group forming reaction is promoted by performing the heat treatment.

【0020】請求項3記載の発明では、プラズマ処理を
行うことによって、アミド基の形成反応が促進される。
According to the third aspect of the invention, the amide group forming reaction is promoted by performing the plasma treatment.

【0021】請求項4記載の発明では、酸素、窒素、ア
ルゴンガスのうち少なくとも一つを用いたガスプラズマ
による処理によって、アミド基の形成反応がより確実に
促進される。
According to the fourth aspect of the present invention, the amide group forming reaction is more reliably promoted by the treatment with gas plasma using at least one of oxygen, nitrogen and argon gas.

【0022】[0022]

【実施例】以下に具体的な実施例を説明する。 (実施例1)基板ホルダーに有機樹脂基材としてポリイ
ミド基板を取り付け、真空チャンバー内に配置し、この
真空チャンバー内を1×10-5トール以下になるまで真
空排気し、ハロゲンヒーターでポリイミド基板を100
℃に予備加熱を行った。この予備加熱によって、ポリイ
ミド基板に吸着した水分等を除去している。
EXAMPLES Specific examples will be described below. (Example 1) A polyimide substrate as an organic resin substrate was attached to a substrate holder, placed in a vacuum chamber, the vacuum chamber was evacuated to 1 x 10 -5 Torr or less, and the polyimide substrate was heated with a halogen heater. 100
Preheating to 0 ° C was performed. By this preheating, the moisture and the like adsorbed on the polyimide substrate is removed.

【0023】次に、結合を活性化させる波長の光とし
て、C=O結合のエネルギー179kcal/molに
相当する波長(およそ150〜160nm)のレーザ光
を、ポリイミド基板の表面に照射した。
Next, as the light having a wavelength for activating the bond, laser light having a wavelength (about 150 to 160 nm) corresponding to the energy of the C═O bond of 179 kcal / mol was irradiated on the surface of the polyimide substrate.

【0024】照射終了後、このポリイミド基板の表面
を、アニリンの1重量%メタノール溶液に浸漬させ、ア
ミンとしてアニリンを用いたアミン溶液の塗布を行い、
さらに、120℃で熱処理を行った。
After the irradiation, the surface of the polyimide substrate was dipped in a 1 wt% methanol solution of aniline to apply an amine solution using aniline as the amine.
Further, heat treatment was performed at 120 ° C.

【0025】この後、気相成長法による金属膜の形成
を、ガス成分アルゴン、ガス圧を2.0×10-3トー
ル、ポリイミド基板の温度を室温、ターゲット電圧を−
500Vとした条件によるマグネトロンスパッタリング
法で、上記のポリイミド基板の表面に厚み0.2μmの
銅膜を形成した。 (実施例2)実施例1と全く同様にして、ポリイミド基
板に対する処理を、アミンとしてアニリンを用いたアミ
ン溶液の塗布までを行い、加熱処理を行わずに以下の工
程を実施した。
After that, the formation of the metal film by the vapor phase growth method is performed by using a gas component of argon, a gas pressure of 2.0 × 10 −3 Torr, a polyimide substrate temperature of room temperature, and a target voltage of −.
A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate by a magnetron sputtering method under the condition of 500V. (Example 2) In exactly the same manner as in Example 1, the polyimide substrate was treated up to the application of an amine solution using aniline as the amine, and the following steps were carried out without heat treatment.

【0026】基板ホルダーに上記処理を行ったポリイミ
ド基板を取り付け、真空チャンバー内に配置した。この
真空チャンバー内を1×10-5トール以下になるまで真
空排気し、真空チャンバー内にアルゴンガスを導入し
て、アルゴンガス圧760トール(常圧)、放電電力1
00W、周波数15kHzの条件で1分間、ポリイミド
基板の表面をアルゴンガスプラズマ処理を行った。
The above-treated polyimide substrate was attached to the substrate holder and placed in a vacuum chamber. The inside of this vacuum chamber was evacuated to 1 × 10 −5 Torr or less, and argon gas was introduced into the vacuum chamber, the argon gas pressure was 760 Torr (normal pressure), and the discharge power was 1
Argon gas plasma treatment was performed on the surface of the polyimide substrate for 1 minute under the conditions of 00 W and frequency of 15 kHz.

【0027】この後、実施例1と同様の処理を行って、
気相成長法による金属膜の形成を行いポリイミド基板の
表面に厚み0.2μmの銅膜を形成した。 (実施例3)実施例2のアルゴンガスプラズマ処理の代
わりに、酸素ガスを真空チャンバー内に導入して酸素ガ
スプラズマによる表面処理を行うようにした他は、全く
同様にしてポリイミド基板の表面に厚み0.2μmの銅
膜を形成した。 (実施例4)実施例2のアルゴンガスプラズマ処理の代
わりに、窒素ガスを真空チャンバー内に導入して窒素ガ
スプラズマによる表面処理を行うようにした他は、全く
同様にしてポリイミド基板の表面に厚み0.2μmの銅
膜を形成した。 (比較例1)実施例1における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例2)実施例1における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例3)実施例3における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例4)実施例4における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例5)実施例1における、レーザ光をポリイミド
基板の表面に照射する工程を行わない他は、全く同様に
してポリイミド基板の表面に厚み0.2μmの銅膜を形
成した。
Thereafter, the same processing as in the first embodiment is performed,
A metal film was formed by a vapor phase growth method to form a copper film having a thickness of 0.2 μm on the surface of the polyimide substrate. (Embodiment 3) Instead of the argon gas plasma treatment of Embodiment 2, oxygen gas was introduced into the vacuum chamber to perform surface treatment by oxygen gas plasma. A copper film having a thickness of 0.2 μm was formed. (Example 4) Instead of the argon gas plasma treatment of Example 2, nitrogen gas was introduced into the vacuum chamber to perform the surface treatment by the nitrogen gas plasma, except that the surface of the polyimide substrate was treated in exactly the same manner. A copper film having a thickness of 0.2 μm was formed. (Comparative Example 1) A copper film having a thickness of 0.2 µm was formed on the surface of a polyimide substrate in the same manner as in Example 1, except that the process of applying the aniline solution to the polyimide substrate was not performed. Comparative Example 2 A copper film having a thickness of 0.2 μm was formed on the surface of a polyimide substrate in the same manner as in Example 1, except that the treatment of applying the aniline solution to the polyimide substrate was not performed. Comparative Example 3 A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate in the same manner as in Example 3, except that the treatment of applying the aniline solution to the polyimide substrate was not performed. (Comparative Example 4) A copper film having a thickness of 0.2 [mu] m was formed on the surface of a polyimide substrate in the same manner as in Example 4, except that the treatment of applying the aniline solution to the polyimide substrate was not performed. Comparative Example 5 A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate in exactly the same manner as in Example 1, except that the step of irradiating the surface of the polyimide substrate with the laser light was not performed.

【0028】上記の実施例1〜4および比較例1〜5に
述べた方法によって、有機質基材の表面に形成した銅膜
について、密着性を評価するために碁盤目試験を行っ
た。この試験は銅膜に2mm間隔に碁盤目状の切り目を
ナイフで入れた後、この表面にセロハンテープを貼って
剥がすことによって行い、銅膜が剥離しなければ「○」
と評価し、また碁盤目状の切り目を入れなくとも剥離す
れば「×」と評価し、碁盤目状の切り目を入れた場合の
み剥離すれば「△」と評価した。この結果を以下の表1
に示す。
The copper film formed on the surface of the organic base material by the method described in Examples 1 to 4 and Comparative Examples 1 to 5 was subjected to a cross-cut test to evaluate the adhesion. This test is performed by making a square-shaped cut on the copper film at intervals of 2 mm with a knife, and then sticking cellophane tape on the surface and peeling it off. If the copper film does not peel off, "○"
It was evaluated as "x" when peeled without making a grid-shaped cut, and evaluated as "△" when peeled only when a grid-shaped cut was made. The results are shown in Table 1 below.
Shown in

【0029】[0029]

【表1】 [Table 1]

【0030】表1の実施例1〜4と比較例1〜4とを対
比すると、アニリン溶液を塗布する処理を実施した各実
施例のものでは、銅膜の密着性が高いのに対して、アニ
リン溶液を塗布していない各比較例のものは密着性が低
く、アニリン溶液の塗布による金属膜の密着性の向上の
効果が確認される。
When Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 are compared, in each of the Examples in which the treatment of applying the aniline solution was performed, the adhesion of the copper film was high. The adhesiveness of each comparative example to which the aniline solution is not applied is low, and the effect of improving the adhesiveness of the metal film by applying the aniline solution is confirmed.

【0031】また、実施例1と比較例5とを対比する
と、レーザ光を照射していない比較例のものは密着性が
低く、レーザ光を照射による密着性の向上の効果が確認
される。
Further, comparing Example 1 with Comparative Example 5, the adhesiveness of the Comparative Example not irradiated with laser light is low, and the effect of improving the adhesiveness by irradiation of laser light is confirmed.

【0032】以上の結果から、光を照射したのちアニリ
ン溶液を塗布することによって、金属膜の密着性が向上
していることが確認される。
From the above results, it is confirmed that the adhesion of the metal film is improved by applying the aniline solution after irradiating with light.

【0033】[0033]

【発明の効果】請求項1記載の発明では、結合を活性化
させる波長の光を照射し、さらにアミン溶液を塗布する
前処理によって、金属膜を強く有機質基材に密着させる
ことができる。このような前処理は、従来の微細な凹凸
形成による前処理に比較して工程が簡単であって、容易
に行うことができる。
According to the first aspect of the present invention, the metal film can be strongly adhered to the organic substrate by the pretreatment of irradiating light having a wavelength for activating the bond and further applying the amine solution. Such a pretreatment has a simpler process and can be easily performed as compared with the conventional pretreatment by forming fine irregularities.

【0034】したがって、有機質基材の表面に化学エッ
チングにより凹凸を形成したり所望の金属膜以外の材料
をプリコートしたりすることなく、有機質基材の表面に
密着強度の高い金属膜を気相成長法により形成すること
ができる。
Therefore, a metal film having high adhesion strength is vapor-phase grown on the surface of the organic base material without forming irregularities on the surface of the organic base material by chemical etching or precoating a material other than the desired metal film. It can be formed by a method.

【0035】また、有機質基材の表面に凹凸を形成する
必要がないので、形成した金属膜に金属光沢が得られ、
装飾用、反射鏡用などの用途に有用である。また、高周
波用回路基板に使う場合を想定すると、凹凸による表皮
抵抗が生じる心配がなく、電気特性の良好な高周波用回
路基板を製造することができる。
Further, since it is not necessary to form irregularities on the surface of the organic base material, a metallic luster can be obtained in the formed metal film,
It is useful for applications such as decoration and reflectors. Further, assuming that it is used for a high-frequency circuit board, it is possible to manufacture a high-frequency circuit board having good electrical characteristics without fear of causing skin resistance due to unevenness.

【0036】また、所望の金属膜の下層にチタンまたは
クロム等のプリコート層を存在させる必要がないもので
ある。したがって、電子材料用途の回路基板などに用い
る場合、導体回路となる金属層のエッチングに悪影響を
与えることがなく、回路形成が容易であって、有機質基
材をベースとした回路板の製造に好適に用いられる金属
膜形成方法になっている。
Further, it is not necessary to provide a precoat layer of titanium, chromium or the like under the desired metal film. Therefore, when used as a circuit board for electronic materials, it does not adversely affect the etching of the metal layer to be a conductor circuit, facilitates circuit formation, and is suitable for manufacturing circuit boards based on organic base materials. It is a method for forming a metal film used for.

【0037】請求項2記載の発明では、熱処理を行うこ
とによって、アミド基の形成反応が促進され、より金属
膜の密着力が向上する。
According to the second aspect of the present invention, by performing the heat treatment, the amide group forming reaction is promoted and the adhesion of the metal film is further improved.

【0038】請求項3記載の発明では、プラズマ処理を
行うことによって、アミド基の形成反応が促進され、よ
り金属膜の密着力が向上する。
According to the third aspect of the invention, by performing the plasma treatment, the amide group forming reaction is promoted and the adhesion of the metal film is further improved.

【0039】請求項4記載の発明では、酸素、窒素、ア
ルゴンガスのうち少なくとも一つを用いたガスプラズマ
による処理によって、アミド基の形成反応がより確実に
促進され、金属膜の密着力を確実に向上させることがで
きる。
According to the fourth aspect of the present invention, the treatment with gas plasma using at least one of oxygen, nitrogen and argon gas promotes the formation reaction of the amide group more reliably and ensures the adhesion of the metal film. Can be improved.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月3日[Submission date] August 3, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】請求項4記載の発明は、請求項記載の発
明において、プラズマ処理を、酸素、窒素、アルゴンガ
スのうち少なくとも一つを用いたガスプラズマによって
行うことを特徴として構成している。
The invention of claim 4 is characterized in that, in the invention of claim 3 , the plasma treatment is performed by gas plasma using at least one of oxygen, nitrogen and argon gas.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】この後、実施例1と同様の処理を行って、
気相成長法による金属膜の形成を行いポリイミド基板の
表面に厚み0.2μmの銅膜を形成した。 (実施例3)実施例2のアルゴンガスプラズマ処理の代
わりに、酸素ガスを真空チャンバー内に導入して酸素ガ
スプラズマによる表面処理を行うようにした他は、全く
同様にしてポリイミド基板の表面に厚み0.2μmの銅
膜を形成した。 (実施例4)実施例2のアルゴンガスプラズマ処理の代
わりに、窒素ガスを真空チャンバー内に導入して窒素ガ
スプラズマによる表面処理を行うようにした他は、全く
同様にしてポリイミド基板の表面に厚み0.2μmの銅
膜を形成した。 (比較例1)実施例1における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例2)実施例における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例3)実施例3における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例4)実施例4における、ポリイミド基板にアニ
リン溶液を塗布する処理を行わない他は、全く同様にし
てポリイミド基板の表面に厚み0.2μmの銅膜を形成
した。 (比較例5)実施例1における、レーザ光をポリイミド
基板の表面に照射する工程を行わない他は、全く同様に
してポリイミド基板の表面に厚み0.2μmの銅膜を形
成した。
Thereafter, the same processing as in the first embodiment is performed,
A metal film was formed by a vapor phase growth method to form a copper film having a thickness of 0.2 μm on the surface of the polyimide substrate. Example 3 Instead of the argon gas plasma treatment of Example 2, oxygen gas was introduced into the vacuum chamber to perform surface treatment with oxygen gas plasma, and the surface of the polyimide substrate was processed in the same manner. A copper film having a thickness of 0.2 μm was formed. (Example 4) Instead of the argon gas plasma treatment of Example 2, nitrogen gas was introduced into the vacuum chamber to perform the surface treatment by the nitrogen gas plasma, and the same procedure was performed on the surface of the polyimide substrate. A copper film having a thickness of 0.2 μm was formed. Comparative Example 1 A copper film having a thickness of 0.2 μm was formed on the surface of a polyimide substrate in exactly the same manner as in Example 1, except that the treatment of coating the polyimide substrate with the aniline solution was not performed. Comparative Example 2 A copper film having a thickness of 0.2 μm was formed on the surface of a polyimide substrate in the same manner as in Example 2 , except that the treatment of applying the aniline solution to the polyimide substrate was not performed. Comparative Example 3 A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate in the same manner as in Example 3, except that the treatment of applying the aniline solution to the polyimide substrate was not performed. Comparative Example 4 A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate in the same manner as in Example 4, except that the treatment of applying the aniline solution to the polyimide substrate was not performed. Comparative Example 5 A copper film having a thickness of 0.2 μm was formed on the surface of the polyimide substrate in exactly the same manner as in Example 1 except that the step of irradiating the surface of the polyimide substrate with the laser beam was not performed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機質基材表面に結合を活性化させる波
長の光を照射し、さらにアミン溶液を塗布した後、この
有機質基材表面に気相成長法によって金属膜を形成する
ことを特徴とする有機質基材表面への金属膜形成方法。
1. A surface of an organic base material is irradiated with light having a wavelength for activating a bond, an amine solution is further applied, and then a metal film is formed on the surface of the organic base material by a vapor phase growth method. A method for forming a metal film on the surface of an organic substrate.
【請求項2】 アミン溶液を塗布した後に、さらに熱処
理を行うことを特徴とする請求項1記載の有機質基材表
面への金属膜形成方法。
2. The method of forming a metal film on the surface of an organic base material according to claim 1, further comprising heat treatment after applying the amine solution.
【請求項3】 アミン溶液を塗布した後に、さらにプラ
ズマ処理を行うことを特徴とする請求項1記載の有機質
基材表面への金属膜形成方法。
3. The method for forming a metal film on the surface of an organic base material according to claim 1, further comprising plasma treatment after applying the amine solution.
【請求項4】 プラズマ処理を、酸素、窒素、アルゴン
ガスのうち少なくとも一つを用いたガスプラズマによっ
て行うことを特徴とする請求項3記載の有機質基材表面
への金属膜形成方法。
4. The method for forming a metal film on a surface of an organic base material according to claim 3, wherein the plasma treatment is performed by gas plasma using at least one of oxygen, nitrogen and argon gas.
JP13132295A 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface Withdrawn JPH08325713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13132295A JPH08325713A (en) 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13132295A JPH08325713A (en) 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface

Publications (1)

Publication Number Publication Date
JPH08325713A true JPH08325713A (en) 1996-12-10

Family

ID=15055250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13132295A Withdrawn JPH08325713A (en) 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface

Country Status (1)

Country Link
JP (1) JPH08325713A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048749A1 (en) * 1999-02-18 2000-08-24 Battelle Memorial Institute Method for adhering laminate structures
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6537411B1 (en) 1999-06-29 2003-03-25 The National University Of Singapore Method for low temperature lamination of metals to polyimides
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6656537B2 (en) 1997-09-29 2003-12-02 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6627267B2 (en) 1997-09-29 2003-09-30 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6497598B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6909230B2 (en) 1998-12-16 2005-06-21 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6811829B2 (en) 1998-12-16 2004-11-02 Battelle Memorial Institute Method of making a coating of a microtextured surface
US6497924B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Method of making non-linear optical polymer
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6509065B2 (en) 1998-12-16 2003-01-21 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6522067B1 (en) 1998-12-16 2003-02-18 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6613395B2 (en) 1998-12-16 2003-09-02 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6544600B2 (en) 1998-12-16 2003-04-08 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6858259B2 (en) 1998-12-16 2005-02-22 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
WO2000048749A1 (en) * 1999-02-18 2000-08-24 Battelle Memorial Institute Method for adhering laminate structures
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6537411B1 (en) 1999-06-29 2003-03-25 The National University Of Singapore Method for low temperature lamination of metals to polyimides
USRE40531E1 (en) * 1999-10-25 2008-10-07 Battelle Memorial Institute Ultrabarrier substrates
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6923702B2 (en) 1999-10-25 2005-08-02 Battelle Memorial Institute Method of making encapsulated display devices
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9362530B2 (en) 2008-12-22 2016-06-07 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction

Similar Documents

Publication Publication Date Title
JPH08325713A (en) Formation of metallic film on organic substrate surface
JPH0959763A (en) Formation of metallic film on surface of organic substrate
US8173522B2 (en) Method and device for machining a wafer, in addition to a wafer comprising a separation layer and a support layer
JPH0149788B2 (en)
WO2006059845A1 (en) Method of surface modification of polyimide film using silanes coupling agent, manufacturing method of flexible copper clad laminate and its product thereby
EP0370269B1 (en) A process for treating the surface of polyimide articles
US4964923A (en) Method of forming a copper film on a ceramic body
JP2005523584A5 (en)
GB2091634A (en) Transfer lamination of vapour deposited copper thin sheets and films
JP2003008179A (en) Patterning method of printed circuit and flexible wiring
JP4013352B2 (en) Method for forming metal film on resin substrate surface
US6703186B1 (en) Method of forming a conductive pattern on a circuit board
JPH09176831A (en) Formation of metallic film on surface of organic substrate
JPH10265943A (en) Formation of metallic film on organic substrate surface
JPH10237631A (en) Formation of metallic coating onto surface of organic base material
JPH10130823A (en) Method for forming metal film on surface of organic substrate
JPH1161378A (en) Formation of metallic film on surface of organic substrate
JPH08225923A (en) Formation of metallic film on surface of organic base material
JPH10130816A (en) Metal film forming method on surface of organic substrate
JP3263470B2 (en) Metallization method for organic substrate surface
JPH09316627A (en) Formation of metallic film on organic substrate surface
JPH1030167A (en) Formation of metallic film on surface of organic base material
JPH09228026A (en) Formation of metallic film onto organic base material
JP2010001543A (en) Method for forming copper film, and wiring board
JP4013353B2 (en) Method for forming metal film on resin substrate surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806